The apparatus and techniques described herein relate to magnetic core structures which may reduce or eliminate dimensional resonance and/or reduce the amount of magnetic material in the magnetic core. Such apparatus and techniques may find application in the field of wireless power transfer, for example.
Magnetic cores used in various devices such as inductors and transformers to confine magnetic flux and store energy magnetically.
One application of magnetic cores is in wireless power transfer systems. A wireless power transfer system can transfer energy wirelessly through magnetic coupling. Various types of wireless power transfer systems exist, some examples of which are often referred to as inductive systems and resonant systems. A wireless power transfer system comprises wireless power transfer coils (also herein termed “coils” or “windings”) separated by some distance. These coils may include a loop or loops of conductors optionally placed in a magnetic core. A wireless power transmitter may include a transmit coil that may be coupled to a power source via power electronics. The power electronics may invert a DC (direct current) signal into an AC (alternating current) signal that can be transmitted wirelessly through electromagnetic induction. A wireless power receiver may include a receive coil and power electronics (e.g., a rectifier) that couples the receive coil to a load.
Some aspects relate to an apparatus, comprising: a magnetic core, comprising: a center post; an outer rim; and a backplate, having: a plurality of magnetic material members extending between the center post and the outer rim; and a plurality of notches having a width that increases with increased distance from the center post.
The center post may have at least one notch.
The outer rim may have at least one notch.
The center post may comprise a plurality of stacked pieces of magnetic material.
The outer rim may comprise a plurality of stacked pieces of magnetic material.
The center post may have the at least one notch extending through an entire thickness of the center post.
The outer rim may have the at least one notch extending through an entire thickness of the outer rim.
The notches in the stacked pieces of magnetic material of the center post or outer rim may be at different angular locations in different levels of magnetic material.
The plurality of notches of the backplate may be wedge-shaped.
The apparatus may further comprise a winding between the center post and the outer rim.
The winding may comprise a plurality of layers of foil conductors.
Some aspects relate to an apparatus, comprising: a magnetic core, comprising: one or more of A, B and/or C: A) a center post having at least one notch, termed at least one first notch; B) an outer rim having at least one notch, termed at least one second notch; and/or C) a backplate having at least one notch, termed at least one third notch.
The apparatus may comprise only A, only B, only C, two of A, B and C, or all of A, B and C.
The magnetic core may comprise A and the at least one first notch may extend entirely through a thickness of the center post, the magnetic core may comprise B and the at least one second notch may extend entirely through a thickness of the outer rim and/or the magnetic core may comprise C and the at least one third notch may extend entirely through a thickness of the backplate.
The at least one first, second and/or third notch, of which the magnetic core comprises, may comprise a plurality of segments at different circumferential positions, each of the plurality of segments extending partially through a core component, wherein the core component is the center post, outer rim or backplate.
The at least one first notch may be circumferentially aligned with or offset with respect to the at least one second notch and/or the at least one third notch.
The center post, outer rim and/or backplate individually may be a core component formed of a plurality of pieces of magnetic material.
Each of the plurality of pieces of magnetic material for a core component may have a same shape or a different shape, wherein the core component is the center post, outer rim or backplate.
The at least one first, second and/or third notch may be formed by a volume of reduced magnetic permeability and/or permittivity with respect to an adjacent region of the center post, outer rim and/or backplate or the at least one first, second and/or third notch may be formed by an interface between a plurality of pieces of magnetic material brought into contact with one another.
The at least one third notch may comprise a plurality of third notches individually having a wedge shape that is wider with increasing distance from a center of the magnetic core.
The apparatus may further comprise a winding magnetically coupled to the magnetic core.
Some aspects relate to an apparatus comprising: a magnetic core, comprising: two or more of A, B and C: A) a center post; B) an outer rim; and/or C) a backplate connecting the center post and the outer rim, wherein one or more notches are formed in two or more of the center post, outer rim and backplate, wherein when the magnetic core comprises an outer rim, a backplate and a center post, the center post not including a notch, a number of notches in the outer rim is different from two or a number of notches in the backplate is different from two.
Notches may be formed in the outer rim and the backplate.
The notches may extend entirely through a thickness of two or more of the center post, outer rim and backplate.
The notches may comprise a plurality of segments at different circumferential positions, each of the plurality of segments extending partially through a core component, wherein the core component is the center post, outer rim or backplate.
At least one first notch may be circumferentially aligned with or offset with respect to the at least one second notch and/or the at least one third notch.
The center post, outer rim and/or backplate may be formed of a plurality of pieces of magnetic material.
Each of the plurality of pieces of magnetic material for a core component may have a same shape or a different shape, wherein the core component is the center post, outer rim or backplate.
The notches may be formed by a volume of reduced magnetic permeability and/or permittivity with respect to an adjacent region of the center post, outer rim and/or backplate or the notches may be formed by an interface between a plurality of pieces of magnetic material brought into contact with one another.
The notches may comprise a plurality of notches individually having a wedge shape that is wider with increasing distance from a center of the magnetic core.
The magnetic core may comprise a ferromagnetic material.
Some aspects relate to an apparatus, comprising: a magnetic core, comprising: one or more of A and/or B: A) a center post; and/or B) an outer rim, wherein the magnetic core does not include a backplate.
One or more notches may be formed in the center post and/or the outer rim.
The notches may extend entirely through a thickness of the center post and/or the outer rim.
The notches may comprise a plurality of segments at different circumferential positions, each of the plurality of segments extending partially through a core component, wherein the core component is the center post or outer rim.
At least one first notch may be circumferentially aligned with or offset with respect to the at least one second notch.
The center post and/or outer rim may be formed of a plurality of pieces of magnetic material.
Each of the plurality of pieces of magnetic material for a core component may have a same shape or a different shape, wherein the core component is the center post, or outer rim.
The notches may be formed by a volume of reduced magnetic permeability and/or permittivity with respect to an adjacent region of the center post, and/or outer rim or the notches may be formed by an interface between a plurality of pieces of magnetic material brought into contact with one another.
The magnetic core may comprise a ferromagnetic material.
The center post may have a hole.
A number of notches in the backplate may be different from two and/or a number of notches in the outer rim is different from two.
Some aspects relate to a magnetic core, comprising: one or more of A, B and C: A) a center post having at least one first notch; B) an outer rim; and/or C) a backplate connecting the center post and the outer rim, wherein the outer rim has at least one second notch, the backplate has at least one third notch, or the outer rim has at least one second notch and the backplate has at least one third notch.
Some aspects relate to a magnetic core, comprising: two or more of A, B and C: A) a center post; B) an outer rim; and/or C) a backplate connecting the center post and the outer rim, wherein one or more notches are formed in two or more of the center post, outer rim and backplate, wherein when the magnetic core comprises an outer rim, a backplate and a center post, the center post not including a notch, a number of notches in the outer rim is different from two or a number of notches in the backplate is different from two.
Some aspects relate to a method of making or using the apparatus of any preceding paragraph or any apparatus described herein.
The foregoing summary is provided by way of illustration and is not intended to be limiting.
In the drawings, each identical or nearly identical component that is illustrated in various figures is represented by a like reference character. For purposes of clarity, not every component may be labeled in every drawing. The drawings are not necessarily drawn to scale, with emphasis instead being placed on illustrating various aspects of the techniques and devices described herein.
Many wireless charging applications call for physically large coils resulting in large magnetic cores, which can be problematic. Large magnetic cores are heavy and expensive. Additionally, they can suffer from dimensional resonance, in which the relatively high permeability and permittivity of magnetic core material results in standing electromagnetic waves perpendicular to the flux path. These standing waves reduce performance by causing power loss (dimensional resonance loss) and reducing energy storage (the energy stored in inductance).
The inventors have developed shapes for magnetic cores that can reduce or eliminate dimensional resonance and/or can reduce the mass of magnetic material. Adding one or more notches to the center post, backplate, and/or outer rim of a core shape (e.g., a pot core) reduces or eliminates the impact of dimensional resonance in magnetic cores as it eliminates the standing electromagnetic wave. Furthermore, the notches can be used to reduce the mass of magnetic material. These “notches” can be any size or shape that creates a break in the magnetic core material, which may include a volume without magnetic material or an interface between adjacent contacting pieces of magnetic material where two separate pieces of magnetic material contact one another. An interface may have surface roughness that produces a microscopic discontinuity in the magnetic material, which can prevent dimensional resonance. In the case where notches are a break in the magnetic core material, the notches can be air, potting material, rubber, plastic, or any material with a permeability and/or permittivity that is low relative to that of the magnetic core material (e.g., the product of the notch permeability and permittivity may be less than 20% of that of the magnetic core material). Such a structure can be formed by constructing a single part with notches, or combining pieces of magnetic material to form a core shape. Notches can be designed to reduce the mass of core material without significantly impacting core loss.
In wireless power transfer applications, the transmit or receive coils may be magnetically coupled to a magnetic core, which can provide many benefits including increasing the magnetic coupling factor, providing shielding, and shaping the magnetic field to minimize loss. The benefits of a magnetic core apply to any type of winding but are particularly useful for foil windings because they can be used to reduce or minimize lateral current crowding—the crowding of current near the edges of the conductors due to non-parallel field lines.
A magnetic core may be, wholly or partially, made of one or more ferromagnetic materials, which have a relative permeability of greater than 1, optionally greater than 10. The magnetic core materials may include, but are not limited to, one or more of iron, various steel alloys, cobalt, ferrites including manganese-zinc (MnZn) and/or nickel-zinc (NiZn) ferrites, nano-granular materials such as Co—Zr—O, and powdered core materials made of powders of ferromagnetic materials mixed with organic or inorganic binders. However, the techniques and devices described herein are not limited as to the particular material of the magnetic core. Further, the magnetic core is not limited to pot cores.
A magnetic core for a wireless power transfer coil may comprise up to three main components, or more, such as: a center post, backplate, and outer rim, for example. The core may be in various shapes, including but not limited to, a pot core or P core, PH core, PM core, PQ core, RM core, E core, EQ core, EH core, EP core, EQ core and planar E core.
It is not necessary for the magnetic core to have all three components: center post, backplate and outer rim. For example, some cores may consist of a center post and backplate, or just a backplate. For foil windings, cores with only the center post, only the outer rim, or only the center post and the outer rim may especially be useful for minimizing loss while keeping a minimal mass, though such cores are not limited for use with foil windings. A core may have a hole or opening in the middle, in particular in the center post, to reduce mass. Alternatively or additionally, a core may have a hole in one of the backplate or outer rim so that the wire leads can exit the core. A useful single notch embodiment includes a notch in the outer rim and backplate, but not the center post. For completeness, one or more notches in any one or more core features (e.g., outer rim, backplate, or center post) is an embodiment of the present disclosure. A single notch in the center post, backplate and/and outer rim may be enough to reduce or eliminate dimensional resonance.
In some embodiments, dimensional resonance may produce significant losses when the size of a core component exceeds either 1) the skin depth of the magnetic core component
or 2) the quarter wavelength
of the magnetic core component, where f is the frequency of operation, ρ is the electrical conductivity, μ is the magnetic permeability of the core and ε is the permittivity of the core. A magnetic core component when the characteristic length of the core component exceeds a percentage (e.g., 10%, 30%, 50%, 70%, or 90%) of either the skin depth or the quarter wavelength may benefit from one or more notches are described herein. The characteristic length for a core component is the extent (width, height, radius or circumference, for example) of the core component in a direction perpendicular to the direction in which the magnetic field lines extend. For the center post, the magnetic field lines are mostly in the thickness direction, so the characteristic length can be either the diameter of the center post, or the circumference of the center post. For the backplate, the magnetic field lines are mostly radial, and the characteristic length is either the thickness of the backplate, or the circumference of the backplate. For the outer rim, the magnetic field lines are mostly in the thickness direction, and the characteristic length is either the radial thickness of the outer rim, or the circumference of the outer rim.
The notches can be straight, as illustrated, or may have any other shape such as a zig-zag shape or a curved shape. As shown in
A plurality of notches in any or all core components (e.g., outer rim 14, backplate 16, or center post 12) may be desirable for some cores, particularly larger cores.
Multi-notch embodiments also include multiple notches in any core component, and one or more notches in any of the other core components. The number of notches may be different in the different core components. Any of the core components may have a single notch and one or more other components may have plurality of notches. For example, a core may have one notch in the center post and a plurality of notches in the backplate and outer rim. Alternatively, another core component may have a single notch.
Some embodiments that have multiple notches in the backplate can be improved by having the notches be in the shape of the wedge which forms a “wagon wheel” design. An example of such a design is shown in
Because the flux area increases radially in the backplate, without the notches 62 there is excessive core material in the backplate as it expands radially towards the outer rim of the core. Accordingly, the absence of core material in the notches 62 does not have a significant effect on performance. In the embodiment of
In some applications, for example applications where reduced mass is desired, some embodiments with only the center post 12 and the outer rim 14, but without any backplate 16, may be beneficial. For example, high-Q resonators made of thin conductor layers, such as those shown in
The inventors recognize that in some other applications, the elimination of the outer rim, in addition to the elimination of the backplate, may be useful. The inventors recognize that the resulting shape may be used as a center post, around which a winding 17 may be placed around the center post 12 with approximate concentricity to the center post (e.g., the center of the conductor and the center of the center post is offset by less than the radius of the center post). Furthermore, the inventors recognize the value of this structure in a wireless power transfer system. This structure may provide structural rigidity and a significant reduction of mass without a significant decrease in performance.
Various aspects of the apparatus and techniques described herein may be used alone, in combination, or in a variety of arrangements not specifically discussed in the embodiments described in the foregoing description and is therefore not limited in its application to the details and arrangement of components set forth in the foregoing description or illustrated in the drawings. For example, aspects described in one embodiment may be combined in any manner with aspects described in other embodiments.
Use of ordinal terms such as “first,” “second,” “third,” etc., in the claims to modify a claim element does not by itself connote any priority, precedence, or order of one claim element over another or the temporal order in which acts of a method are performed, but are used merely as labels to distinguish one claim element having a certain name from another element having a same name (but for use of the ordinal term) to distinguish the claim elements.
The terms “substantially,” “approximately,” “about” and the like refer to a parameter being within 10%, optionally less than 5% of its stated value.
Also, the phraseology and terminology used herein is for the purpose of description and should not be regarded as limiting. The use of “including,” “comprising,” or “having,” “containing,” “involving,” and variations thereof herein, is meant to encompass the items listed thereafter and equivalents thereof as well as additional items.
This application claims priority under 35 U.S.C. § 120 to and is a continuation of International Application No. PCT/US2021/016305, filed Feb. 3, 2021, which claims the benefit under 35 U.S.C. § 119(e) of the filing date of U.S. Provisional Application Ser. No. 62/970,127, filed Feb. 4, 2020, each of which is incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
62970127 | Feb 2020 | US |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/US2021/016305 | Feb 2021 | US |
Child | 17547812 | US |