The present invention relates to a magnetic core, more particularly is very suitable for use for a core configured by superposing a plurality of bent soft magnetic sheets in a thickness direction.
There is a core configured by bending in advance parts of each of the electrical steel sheets and other soft magnetic sheets for forming the corner areas of the core, cutting the soft magnetic sheets into predetermined lengths, and stacking them in a sheet thickness direction.
In PTL 1, as this type of core, a magnetic core obtained by superposing in the sheet thickness direction a plurality of soft magnetic sheets bent into ring shapes and differing in lengths, evenly offsetting the facing end faces of the soft magnetic sheets over the sheet thickness direction by increments of predetermined dimensions, and rendering the joined parts of the end faces into stepped shapes is described.
Further, in PTL 2, the following magnetic core is described: First, a silicon steel sheet strip is wound several turns by a one-turn cut system of cutting one location every turn so as to form circular shapes of predetermined dimensions and so as to obtain a cross-sectional area of a predetermined thickness. This is fastened by a fastening band to configure a magnetic core body. Further, two corresponding locations of the magnetic core body are pressed by a press machine etc. to thereby make the magnetic core body deform to an approximately oval shape. Further, in PTL 2, using a jig to clamp the magnetic core and performing stress relief annealing is described.
Further, in PTL 3, a transformer in which even if gaps at coil openings become narrow, the work of insertion of electrical steel sheets is made possible, deformation of the electrical steel sheets is eliminated, overlapped locations are made smaller, and worsening of the core loss can be reduced is described.
Further, in PTL 4, using gaps formed at corner areas of a core member block as passages for flow of air, oil, or another cooling medium is described.
However, in the arts described in PTLs 1 and 2, there are single joined parts of the magnetic cores (at each layer, there is a single location where the end faces of the soft magnetic sheets face each other). If there are single locations of the joined parts of the magnetic core, the load in lacing (work of setting windings (coils) at magnetic core) is large. Therefore, it may be considered to use a structure in which the two leg parts of a magnetic core facing each other over an interval are provided with joined parts at respectively single locations each for a total of two locations so as to reduce the lacing load.
However, if doing this, at the time of joining the soft magnetic sheets, soft magnetic sheets enter between the other soft magnetic sheets and soft magnetic sheets to be joined, so the magnetic core is liable to deform and the predetermined shape to fail to be obtained. Further, due to the magnetic core deforming, the core loss is liable to become greater.
Therefore, at the total two locations of joined parts explained above, it is demanded that the end faces of the each layers of the soft magnetic sheets be made to reliably abut against each other to be joined. However, if, at the joined parts, the positions of the end faces to be joined of the electrical steel sheets become offset in a stepped manner, if not possible to align the respective end faces offset in the stepped manner, the end faces will no longer be able to be joined. Therefore, at the joined parts, the positioning in the direction perpendicular to the surfaces of the electrical steel sheets must be performed with a good precision. In particular, if employing the system such as described in PTL 1 of bending the soft magnetic sheets in advance, cutting them into predetermined lengths, then superposing them in the thickness direction, when respectively stacking the individual soft magnetic sheets, positional offset will easily occur. Improvement is required.
On the other hand, in PTL 3, if the gaps at the coil openings become too narrow, insertion of U-shaped electrical steel sheets into the coil openings facilitates the work of insertion at the narrow gaps compared with use of only one-turn cut type electrical steel sheets. However, with this technique, the outsides of the one-turn cut type of electrical steel sheets are covered by the U-shaped electrical steel sheets, so there is the problem that the heat generated at the corner areas of the electrical steel sheets causes the temperature inside of the transformer to end up rising. In particular, if providing the corner areas of the magnetic core with bent parts with small radii of curvature, heat is generated due to the worsened core loss caused by the effects of strain introduced into the bent parts, so the occurrence of heat must be reliably suppressed.
In PTL 4, use of the gaps formed at the corner areas of the core member block as passages for flow of air, oil, or another cooling medium is described. However, with just forming gaps, if using the magnetic core to form a transformer, sometimes the desired cooling effect will not be able to be obtained. Further, to obtain satisfactory performance as a transformer, along with a cooling effect, a noise suppression effect is sought. In PTL 4, a configuration of a transformer simultaneously satisfying the cooling effect and noise suppression effect is not envisioned at all.
The present invention was made in consideration of the above such problem and has as its object to join end faces of a plurality of soft magnetic sheets superposed in a thickness direction and bent at parts forming corner areas of the core during which keeping the positions of the end faces from becoming offset from the desired positions.
The magnetic core of the present invention is a magnetic core in which a first corner area and second corner area, and a third corner area and fourth corner area are respectively arranged at intervals in a first direction and the first corner area and third corner area, and the second corner area and fourth corner area are respectively arranged at intervals in a second direction vertical to the first direction, which magnetic core comprising a first part having a plurality of soft magnetic sheets which are shaped respectively bent at positions corresponding to the first corner area and the second corner area and which plurality of soft magnetic sheets are stacked so that the sheet surfaces are superposed, a second part having a plurality of soft magnetic sheets which are shaped respectively bent at positions corresponding to the third corner area and the fourth corner area and which plurality of soft magnetic sheets are stacked so that the sheet surfaces are superposed, and a third part, end parts in the longitudinal direction of the soft magnetic sheets forming the first part and end parts in the longitudinal direction of the soft magnetic sheets forming the second part rendered a state made to abut against each other in the second direction and the positions in the circumferential direction of the magnetic core of the locations of the abutting state being offset in the second direction, the abutting state of the end parts in the longitudinal direction of the soft magnetic sheets forming the first part and end parts in the longitudinal direction of the soft magnetic sheets forming the second part in the second direction being held, the third part being arranged at a window part comprised of a region at the inside of the first part and the second part, at least part of a region of one end of the third part and at least part of a region of another end of the third part respectively made to contact an inner circumferential surface of the window part in the second direction.
According to the present invention, it is possible to join end faces of a plurality of soft magnetic sheets superposed in a thickness direction and bent at parts forming corner areas of the core during which keeping the positions of the end faces from becoming offset from the desired positions.
Below, while referring to the drawings, embodiments of the present invention will be explained. Further, in the drawings, the X-Y-Z coordinates show the relationships in the directions in the figures. The origins of the coordinates are not limited to the positions shown in the drawings. Further, the symbols of circles with x's inside them indicate the directions from the front sides to the rear sides of the paper surfaces.
Further, the terms such as “parallel”, “along”, “vertical”, “perpendicular”, “same, “identical”, etc. specifying shapes or geometric conditions and their extents used in this Description and the directions and values of lengths, angles, etc. are not bound to their strict meanings and shall be interpreted as including ranges of extents where functions similar to the functions described can be expected. For example, if within the range of design tolerances, these can be treated as within ranges of extents where similar functions can be expected.
In
In
The first corner area 101 and the second corner area 102 are arranged at an interval in the Z-axial direction (first direction). The third corner area 103 and the fourth corner area 104 are also arranged at an interval in the Z-axial direction (first direction). Further, the first corner area 101 and the third corner area 103 are arranged at an interval in the X-axial direction (second direction). The second corner area 102 and fourth corner area 104 are also arranged at an interval in the X-axial direction (second direction).
The first part 110 has a plurality of soft magnetic sheets which are shaped respectively bent at positions corresponding to the first corner area 101 and second corner area 102 and which plurality of soft magnetic sheets are stacked so that the sheet surfaces are superposed over each other. The second part 120 has a plurality of soft magnetic sheets which are shaped respectively bent at positions corresponding to the third corner area 103 and fourth corner area 104 and which plurality of soft magnetic sheets are stacked so that the sheet surfaces are superposed over each other. The soft magnetic sheets are for example grain-oriented electrical steel sheets. The direction from the first corner area 101 toward the second corner area 102 of the grain-oriented electrical steel sheets (direction vertical to sheet width direction and sheet thickness direction) matches the rolling direction (the sheets are cut out in that way). In the following explanation, the case where the soft magnetic sheets are grain-oriented electrical steel sheets is given as an example in the explanation. The thickness of the grain-oriented electrical steel sheets is not particularly limited and may be suitably selected in accordance with the application etc., but usually is within 0.15 mm to 0.35 mm in range, preferably 0.18 mm to 0.23 mm in range. Further, the grain-oriented electrical steel sheets forming the first part 110 and second part 120 may be comprised of sheets which are the same (in thickness, constituents, microstructures, etc.)
Surfaces (end faces) of single end parts (first end parts) in the longitudinal directions of the grain-oriented electrical steel sheets forming the first part 110 and surfaces (end faces) of single end parts (first end parts) in the longitudinal directions of the grain-oriented electrical steel sheets forming the second part 120 are rendered a state made to respectively abut against each other in the X-axial direction (second direction). Similarly, surfaces (end faces) of other end parts (second end parts) in the longitudinal directions of the grain-oriented electrical steel sheets forming the first part 110 and surfaces (end faces) of other end parts (second end parts) in the longitudinal directions of the grain-oriented electrical steel sheets forming the second part 120 are rendered a state made to respectively abut against each other in the X-axial direction (second direction).
At this time, as shown in
Further, the region between the first corner area 101 and the second corner area 102 of the first part 110 becomes a first parallelepiped part 105 with a longitudinal direction parallel to the Z-axis. The region between the third corner area 103 and fourth corner area 104 of the second part 120 becomes a second parallelepiped part 106 with a longitudinal direction parallel to the Z-axis. The region between the first corner area 101 and third corner area 103 of the first part 110 and second part 120 becomes a third parallelepiped part 107 with a longitudinal direction parallel to the X-axis. The region between the second corner area 102 and fourth corner area 104 of the first part 110 and second part 120 becomes a fourth parallelepiped part 108 with a longitudinal direction parallel to the X-axis.
The third part 130 has a plurality of grain-oriented electrical steel sheets stacked so that the sheet surfaces are superposed. The longitudinal directions of the grain-oriented electrical steel sheets (directions vertical to sheet width directions and sheet thickness directions) are the same as the rolling direction.
As shown in
Further, as shown in
Further, in the figures, for convenience in illustration, the numbers of the grain-oriented electrical steel sheets will not necessarily match the actual numbers.
The band 140 is attached to (wound around) the outer circumferential surface of the magnetic core 100 formed by the thus arranged first part 110, second part 120, and third part 130. The band 140 is for example made of stainless steel. The band 140 has mounting hardware etc. for the magnetic core 100 attached to it, but for convenience in illustration, in
Here, in the following explanation, the part of the magnetic core 100 formed by the first part 110 and second part 120 will be referred to as the “magnetic core body” in accordance with need. In the present embodiment, the core length of the magnetic core body is not particularly limited. However, even if the core length changes in the core, the volume of the bent parts of the core is constant. Therefore, the core loss occurring at the bent parts of the core is constant. A longer core length means a smaller volume rate of the bent parts of the core (=volume of bent parts of core÷volume of core as a whole). Therefore, a longer core length means a smaller effect by the bent parts of the core on worsening of core loss. Accordingly, the core length of the magnetic core body is preferably 1.5 m or more, more preferably 1.7 m or more. Further, the “core length of the magnetic core body” means the length of the magnetic core body in the circumferential direction of the magnetic core at the center point in the stacking direction of the grain-oriented electrical steel sheets when viewing the magnetic core from the sheet width direction (Y-axial direction) of the soft magnetic sheets (grain-oriented electrical steel sheets).
Further, the magnetic core is reduced in core loss, so can be suitably used for any conventionally known applications such as magnetic core etc. for transformers, reactors, and noise filters, etc.
As explained above, the magnetic core body is comprised of, in the circumferential direction of the magnetic core 100, corner areas (first corner area 101 to fourth corner area 104) and parallelepiped parts (first parallelepiped part 105 to fourth parallelepiped part 108) alternately continuing after each other. In the example shown in
In this embodiment, the angles formed by two parallelepiped parts (first parallelepiped part 105 to fourth parallelepiped part 108) adjoining each other across the corner areas (first corner area 101 to fourth corner area 104) are 90°. In the example shown in
Further, when viewing the magnetic core 100 from the sheet width direction (Y-axial direction) of the grain-oriented electrical steel sheets, the corner areas (first corner area 101 to fourth corner area 104) have two bent parts having curved shapes. The total of the bent angles present at one corner area becomes 90°.
In
One corner area is formed by one or more bent parts. Therefore, a bent part continues after a parallelepiped part through a flat part and, after that bent part, flat parts and bent parts alternately continue in accordance with the number of bent parts in one corner area. At a final bent part in the corner area, that parallelepiped part and an adjoining parallelepiped part continue after each other through flat parts in a state sandwiching that corner area between them. In the example shown in
In the example shown in
Since the angle θ formed by two parallelepiped parts adjoining each other across one corner area is 90°, if there are two or more bent parts in one corner area, the bent angle φ of one bent part is less than 90°. Further, if there is one bent part in one corner area, the bent angle φ of the one bent part is 90°. From the viewpoint of keeping strain from occurring due to deformation at the time of work and keeping down the core loss, the bent angle φ is preferably 60° or less, more preferably 45° or less. As shown in
While referring to
The bent angles φ of the bent parts are less than 90° and the total of the bent angles of all of the bent parts present in one corner area is 90°.
In the present embodiment, a “bent part” shows the region surrounded by the line spanning the point D and point E on the line La representing the inside surface of the grain-oriented electrical steel sheet, the line spanning the point F and point G on the line Lb representing the outside surface of the grain-oriented electrical steel sheet, the line connecting the point D and point E, and the line connecting the point F and point G when viewing the magnetic core from a sheet width direction (Y-axial direction) of a grain-oriented electrical steel sheet and defining the point D and point E on the line La representing the inside surface of the grain-oriented electrical steel sheet and the point F and point G on the line Lb representing the outside surface of the grain-oriented electrical steel sheet as follows:
Here, the point D, the point E, the point F, and the point G are defined as follows:
The point where the line AB connecting the center point A of radius of curvature at the curved part included in the line La representing the inside surface of a grain-oriented electrical steel sheet and the intersecting point B of the two virtual lines Lb-elongation 1 and Lb-elongation 2 obtained by extending straight parts, adjoining the two sides of the curved part included in the line Lb representing the outside surface of the grain-oriented electrical steel sheet intersects the line representing the inside surface of the grain-oriented electrical steel sheet is defined as the origin C.
Further, the point separated from the origin C by exactly a distance “m” represented by the following formula (1) in one direction along the line La representing the inside surface of the grain-oriented electrical steel sheet is defined as the point D.
Further, the point separated from the origin C by exactly the distance “m” in the other direction along the line La representing the inside surface of the grain-oriented electrical steel sheet is defined as the point E.
Further, the intersecting point between the straight part facing the point D in the straight part included in the line Lb representing the outside surface of the grain-oriented electrical steel sheet and the virtual line drawn vertically with respect to the straight part facing the point D and passing through the point D is defined as the point G.
Further, the intersecting point between the straight part facing the point E in the straight part included in the line Lb representing the outside surface of the grain-oriented electrical steel sheet and the virtual line drawn vertically with respect to the straight part facing the point E and passing through the point E is defined as the point F.
m=r×(π×φ/180) (1)
In formula (1), “m” expresses the distance from the point C, and “r” expresses the distance from the center point A to the point C (radius of curvature).
That is, “r” shows the radius of curvature in the case of deeming the curve near the point C to be an arc and represents the radius of curvature of the inside surface of the grain-oriented electrical steel sheet when viewing the magnetic core from the sheet width direction (Y-axial direction) of the grain-oriented electrical steel sheet. The smaller the radius of curvature “r”, the sharper the curve of the curved part of the bent part, while the larger the radius of curvature “r”, the more moderate the curve of the curved part of the bent part. For example, the radius of curvature “r” of the bent part may be made a range of over 1 mm and less than 3 mm.
In the magnetic core of the present embodiment, the radii of curvature at the bent parts of the grain-oriented electrical steel sheets stacked in the sheet thickness direction may be ones having certain degrees of error. If having error, the radii of curvature of the bent parts are specified as the average values of the radii of curvature of the stacked grain-oriented electrical steel sheets. Further, if having error, the error is preferably not more than 0.1 mm.
Further, the method of measurement of the radius of curvature of a bent part is also not particularly limited, but for example a commercially available microscope (Nikon ECLIPSE LV150) may be used for observation at 200× to measure it.
Next, one example of the method of manufacture of the magnetic core 100 of the present embodiments will be explained.
Further, the lengths in the longitudinal directions and width directions of the grain-oriented electrical steel sheets forming the first part 110 and second part 120 are determined in accordance with the specifications of the magnetic core 100. As explained later, when making the first part 110 and the second part 120 abut against each other in the X-axial direction (second direction), to prevent a gap from forming between two adjoining layers of grain-oriented electrical steel sheets forming the first part 110, the lengths in the longitudinal directions and width directions of the grain-oriented electrical steel sheets are determined so that the outer circumferential surface of the grain-oriented electrical steel sheet arranged at the inside and the inner circumferential surface of the grain-oriented electrical steel sheet arranged at the outside become equal in two adjoining layers of grain-oriented electrical steel sheets. Further, the grain-oriented electrical steel sheets are cut in accordance with the determined lengths in the longitudinal directions and lengths in the width directions of the grain-oriented electrical steel sheets so that the longitudinal directions become the rolling direction.
Next, as shown in
In the example shown in
The configuration of the work machine is not particularly limited, but for example as shown in
The method of making the radius of curvature “r” of the bent part over 1 mm and less than 3 mm in range is not particularly limited, but usually the distance between the die 502 and punch 504 and the shapes of the die 502 and punch 504 can be changed to thereby adjust the radius of curvature “r” of the bent part to a specific range.
The grain-oriented electrical steel sheets are worked setting the radii of curvature “r” at the bent parts of the grain-oriented steel sheets stacked in the sheet thickness direction to conform with each other, but sometimes error occurs in the radii of curvature of the worked grain-oriented electrical steel sheets due to the roughnesses or shapes of the surface layers of the steel sheets. It is preferable that the error, if the error occurs, be 0.1 mm or less.
As explained above, the method of measurement of the radius of curvature of the bent part is not particularly limited, but, for example, a commercially available microscope (Nikon ECLIPSE LV150) may be used to observe the part at 200X for measurement.
Further, the grain-oriented electrical steel sheets obtained by bending in this way are annealed to remove the strain at the bent parts.
After that, the grain-oriented electrical steel sheets are stacked so that the surfaces of the grain-oriented electrical steel sheets bent and annealed to relieve stress in the above way are superposed over each other so that the first part 110 and second part 120 are formed. In this way, the first part 110 and second part 120 are prepared. At this time, the grain-oriented electrical steel sheets forming the first part 110 and second part 120 may be fastened so as not to become offset in position. Further, the first part 110 and second part 120 may be formed at the time of the later explained assembly.
Next, the third part 130 will be explained. First, grain-oriented electrical steel sheets are cut so that the lengths in the width directions become the same as the lengths in the width directions of the grain-oriented electrical steel sheets forming the first part 110 and second part 120 and so that the lengths in the longitudinal directions become the length of the window part (region at inside of the first part 110 and second part 120) in the X-axial direction and the same as the lengths in the X-axial direction at the locations where the grain-oriented electrical steel sheets are arranged. At this time, the grain-oriented electrical steel sheets are cut so that the longitudinal directions become the rolling direction. Further, to enable the end parts in the longitudinal directions of the each grain-oriented electrical steel sheet to reliably contact the inner circumferential surface of the first part 110 and the inner circumferential surface of the second part 120, the minimum values in design of the lengths in the longitudinal directions of the grain-oriented electrical steel sheets forming the third part 130 may be made the length of the window part (region at inside of first part 110 and second part 120) in the X-axial direction and the same as the maximum values in design of the lengths in the X-axial direction at the positions where the grain-oriented electrical steel sheet is arranged.
Further, the cut grain-oriented electrical steel sheets may be stacked with the surfaces superposed over each other and the grain-oriented electrical steel sheets fastened so as not to move so that the shapes of the end parts in the longitudinal directions when viewed from the sheet width directions (Y-axial direction) of the third part 130 conform with the shapes of the inner circumferential surfaces of the first corner area 101 and third corner area 103. The grain-oriented electrical steel sheet can be fastened, for example, using a binder etc. The binder is preferably one having a magnetic property.
For example, at the time of design, as shown in
The shapes of the end parts in the longitudinal directions of the grain-oriented electrical steel sheets when viewed from the sheet width directions (Y-axial direction) can, for example, by confirmed by observation using a commercially available microscope (Nikon ECLIPSE LV150) at 200×.
The third part 130 is prepared in the above way. Further, it is possible to stack and fasten grain-oriented electrical steel sheets of the same shapes and same sizes, then work the grain-oriented electrical steel sheets so that the shapes of the end parts in the longitudinal directions conform to the shapes of the inner circumferential surfaces of the first corner area 101 and third corner area 103. Further, the third part 130 may be formed at the time of assembly explained later.
Furthermore, the coils set in the magnetic core 100 are prepared.
After preparing the grain-oriented electrical steel sheets for forming the first part 110 and second part 120, third part 130, and coils in the above way, these are assembled.
First, as shown in
Next, as shown in
Further, as shown in
Next, as shown in
In the above way, in this embodiment, in the region of the window part comprised of the region at the inside of the first part 110 and second part 120, a third part 130 with a length in the longitudinal direction (X-axial direction) the same as the length in the X-axial direction of the window part at the position where the third part 130 is arranged is arranged so as to contact the region of the inner circumferential surface between the first corner area 101 and third corner area 103. Therefore, when attaching the band 140, it is possible to keep the grain-oriented electrical steel sheets forming the first part 110 from entering between the grain-oriented electrical steel sheets forming the second part 120 and the grain-oriented electrical steel sheets forming the second part 120 from entering between the grain-oriented electrical steel sheets forming the first part 110. Accordingly, it is possible to keep the locations where the end parts in the longitudinal directions of the grain-oriented electrical steel sheets forming the first part 110 and the end parts in the longitudinal directions of the grain-oriented electrical steel sheets forming the second part 120 are made to abut in the X-axial direction (second direction) (joined parts) from becoming offset from the desired positions. Due to this, it is possible to keep the magnetic core 100 from deforming and failing to become the desired shape and to keep the core loss from increasing.
In this embodiment, the case where, when viewing the magnetic core 100 from the width direction (Y-axial direction) of the grain-oriented electrical steel sheets, the corner areas (first corner area 101 to fourth corner area 104) each have two bent parts having curved shapes was given as an example in the explanation. However, the number of the bent parts of the corner areas may be any number so long as one or more. In this case, the total of the bent angles of the bent parts present in one corner area is preferably 90°.
One example of a magnetic core in the case where each corner area has three bent parts having curved shapes will be explained.
In
The difference between the magnetic core 700 shown in
In
As explained above, one corner area is comprised of one or more bent parts. Therefore, a bent part continues after a parallelepiped part through a flat part and, after that bent part, flat parts and bent parts alternately continue in accordance with the number of bent parts in one corner area. At a final bent part in the corner area, that parallelepiped part and an adjoining parallelepiped part continue after each other through flat parts in a state sandwiching that corner area between them. In the example shown in
In
In
The third part 730 is arranged in the window part comprised of the region at the inside of the first part 710 and second part 720. Further, the surface of the third part 730 is arranged at a position in the inner circumferential surfaces of the first part 710 and second part 720 contacting the inner circumferential surface between the first corner area 701 and third corner area 703. The length of the third part 730 in the X-axial direction is the same as the length of the window part in the X-axial direction at the position where the third part 730 is arranged. That is, at least part of the surface (end face) of one end part (first end part) of the third part 730 in the longitudinal direction is made to contact the inner circumferential surface of the first part 710, while at least part of the surface (end face) of the other end part (second end part) of the third part 730 in the longitudinal direction is made to contact the inner circumferential surface of the second part 720.
For example, at the time of design, as shown in
Next, one example of a magnetic core in the case where each corner area has one bent part having a curved shape will be explained.
In
The difference between the magnetic core 900 shown in
In
As explained above, one corner area is comprised of one or more bent parts. Therefore, a bent part continues after a parallelepiped part through a flat part and, after that bent part, flat parts and bent parts alternately continue in accordance with the number of bent parts in one corner area. At a final bent part in the corner area, that parallelepiped part and an adjoining parallelepiped part continue after each other through flat parts in a state sandwiching that corner area between them. In the example shown in
In
In
As clear from
The third part 930 is arranged at a window part comprised of the region at the inside of the first part 910 and second part 920. Further, the surface of the third part 930 is arranged at a position contacting the inner circumferential surface between the first corner area 901 and third corner area 903 in the inner circumferential surfaces of the first part 910 and second part 920. The length of the third part 930 in the X-axial direction is the same as the length of the window part in the X-axial direction at the position where the third part 930 is arranged. That is, at least part of the surface (end face) of one end part (first end part) of the third part 930 in the longitudinal direction is made to contact the inner circumferential surface of the first part 910, while at least one part of the surface (end face) of the other end part (second end part) of the third part 930 in the longitudinal direction is made to contact the inner circumferential surface of the second part 920.
For example, at the time of design, as shown in
Further, if, like in the present embodiment, configuring the third parts 130, 730, and 930 by grain-oriented electrical steel sheets (soft magnetic sheets), it is possible to reduce the core losses of the magnetic cores 100, 700, and 900, so this is preferable. However, it is not necessarily required to do this. For example, the third parts may also be made bulk type parts of the same shapes as the third parts 130, 730, and 930. Further, nonmetallic materials other than soft magnetic materials may also be used to form the third parts.
Further, the member for holding the state of the end parts in the longitudinal directions of the grain-oriented electrical steel sheets forming the first part 110 and the end parts in the longitudinal directions of the grain-oriented electrical steel sheets forming the second part 120 made to abut against each other in the X-axial direction (second direction) (that is, the member for fixing the relative positions of the first part 110 and second part 120) is not limited to the band 140. For example, two members may be used, that is, a member pressing the first part 110 from the negative direction side of the X-axis to the positive direction of the X-axis and a member pressing the second part 120 from the positive direction side of the X-axis to the negative direction of the X-axis may be used, to clamp the first part 110 and second part 120 in the X-axial direction.
Next, a second embodiment will be explained. In the first embodiment, the surface of the third part 130 was made to be arranged at a position contacting the inner circumferential surface between the first corner area 101 and third corner area 103. In this embodiment, furthermore, a third part with a surface contacting the inner circumferential surface between the second corner area 102 and fourth corner area 104 is further arranged. In this way, the present embodiment is one increasing the number of the third parts from the first embodiment by one. Therefore, in the explanation of the present embodiment, parts the same as the first embodiment will be assigned the same notations as the notations assigned to
In
The third part 1130 can be realized as one the same as the third part 130. One surface of the third part 130 in the Z-axial direction (surface of the grain-oriented electrical steel sheet positioned at the positive direction-most side of the Z-axis in the grain-oriented electrical steel sheets forming the third part 130) is arranged at a position contacting the inner circumferential surface between the first corner area 101 and third corner area 103 in the inner circumferential surfaces of the first part 110 and second part 120, but the other surface of the third part 130 in the Z-axial direction (surface of the grain-oriented electrical steel sheet positioned at the negative direction-most side of the Z-axis in the grain-oriented electrical steel sheets forming the third part 130) is not arranged at a position contacting the inner circumferential surface between the third corner area 103 and fourth corner area 104. As opposed to this, one surface of the third part 1130 in the Z-axial direction (surface of the grain-oriented electrical steel sheet positioned at the negative direction-most side of the Z-axis in the grain-oriented electrical steel sheets forming the third part 1130) is arranged at a position contacting the inner circumferential surface between the second corner area 102 and fourth corner area 104 in the inner circumferential surfaces of the first part 110 and second part 120, but the other surface of the third part 1130 in the Z-axial direction (surface of the grain-oriented electrical steel sheet positioned at the positive direction-most side of the Z-axis in the grain-oriented electrical steel sheets forming the third part 1130) is not arranged at a position contacting the inner circumferential surface between the first corner area 101 and second corner area 102. Further, the third parts 130 and 1130 are arranged in the Z-axial direction (first direction) in a state with an interval between them.
Further, in the same way as the third part 130, the length of the third part 1130 in the X-axial direction is the same as the length of the window part comprised of the region inside of the first part 110 and second part 120 in the X-axial direction at the position where the third part 1130 is arranged. That is, at least part of the surface (end face) of one end part (first end part) of the third part 1130 in the longitudinal direction is made to contact the inner circumferential surface of the first part 110, while at least one part of the surface (end face) of the other end part (second end part) of the third part 1130 in the longitudinal direction is made to contact the inner circumferential surface of the second part 120.
In the above way, in this embodiment, in the region of the window part comprised of the region at the inside of the first part 110 and second part 120, third parts 130 and 1130 with lengths in the longitudinal directions (X-axial direction) the same as the length in the X-axial direction of the window part at the positions where the third parts 130 and 1130 are arranged are arranged so as to contact the region of the inner circumferential surface between the first corner area 101 and third corner area 103 and the region of the inner circumferential surface between the second corner area 102 and fourth corner area 104. Therefore, it is possible to arrange the third parts 130 and 1130 at positions corresponding to the two locations respectively where the first part 110 and second part 120 are made to abut in the X-axial direction (second direction). Therefore, when attaching the band 140, it is possible to more reliably keep the grain-oriented electrical steel sheets forming the first part 110 from entering between the grain-oriented electrical steel sheets forming the second part 120 and the grain-oriented electrical steel sheets forming the second part 120 from entering between the grain-oriented electrical steel sheets forming the first part 110. Due to this, it is possible to keep the magnetic core 100 from deforming and failing to become the desired shape and to keep the core loss from increasing.
Further, in the present embodiment as well, it is possible to employ the various modifications explained in the first embodiment. For example, the number of the bent parts in one corner area is not limited to two. It may be three or more or may be one. Further, the third part 1130 need not be formed by grain-oriented electrical steel sheets (soft magnetic sheets). Further, the band 140 need not be used.
Next, a third embodiment will be explained. In the first embodiment, the case where the surface of the third part 130 was made to contact the inner circumferential surface between the first corner area 101 and third corner area 103 at the inner circumferential surfaces of the first part 110 and second part 120 was given as an example for the explanation. As opposed to this, in this embodiment, the surface of the third part is made to not contact the inner circumferential surfaces of the first part 110 and second part 120 but for at least parts of the surfaces of the end parts (end faces) in the longitudinal direction to contact the inner circumferential surfaces of the first part 110 and second part 120 between the first corner area 101 and second corner area 102 and the inner circumferential surfaces of the first part 110 and second part 120 between the third corner area 103 and fourth corner area 104. In this way, the present embodiment differs from the first embodiment mainly in the configuration of the third part. Therefore, in the explanation of the present embodiment, parts the same as the first embodiment will be assigned the same notations as the notations assigned to
In
The first part 110 and second part 120 are the same as those explained in the first embodiment.
The third part 1230 has a plurality of grain-oriented electrical steel sheets stacked so that the sheet surfaces are superposed over each other. The longitudinal directions of the grain-oriented electrical steel sheets (directions vertical to sheet width directions and sheet thickness directions) are the same as the rolling direction.
As shown in
Further, the surfaces of the third part 1230 in the Z-axial direction (surfaces of the grain-oriented electrical steel sheets positioned at the positive direction-most side in the Z-axis and at the negative direction-most side in the Z-axis among the grain-oriented electrical steel sheets forming the third part 1230) do not contact the inner circumferential surfaces of the first part 110 and second part 120. The length of the third part 1230 in the X-axial direction is the same as the length of the window part from the inner circumferential surface of the first parallelepiped part 105 to the inner circumferential surface of the second parallelepiped part 106 in the X-axial direction. Therefore, the shapes of the surfaces of the grain-oriented electrical steel sheets forming the third part 1230 are all the same rectangular shapes. At least part (preferably all) of the surface (end face) of one end part (first end part) of the third part 1230 in the longitudinal direction contacts the inner circumferential surface of the first part 110 (first parallelepiped part 105) and at least part (preferably all) of the surface (end face) of the other end part (second end part) of the third part 1230 in the longitudinal direction contacts the inner circumferential surface of the second part 120 (second parallelepiped part 106).
The third part 1230 is arranged at a position avoiding the space where the coils 610 and 620 are set at the time of the later explained assembly. For example, the third part 1230 is arranged so that the position of the third part 1230 at the center of the grain-oriented electrical steel sheets in the sheet thickness direction becomes a position between the inner circumferential surface of the third parallelepiped part 107 and the inner circumferential surface of the fourth parallelepiped part 108 (that is, the position at the center of the window part in the Z-axial direction).
Next, one example of the method of manufacture of the magnetic core 1200 of the present embodiment will be explained.
The first part 110, second part 120, and coils 610 and 620 are the same as those explained in the first embodiment.
Regarding the third part 1230, first, the grain-oriented electrical steel sheets are cut into rectangular shapes so that the lengths in the width directions become the same as the lengths in the width directions of the grain-oriented electrical steel sheets forming the first part 110 and second part 120 and the lengths in the longitudinal directions become the same as the length of the window part (region at the inside of the first part 110 and second part 120) in the X-axial direction, that is, the length at the position in the X-axial direction where the grain-oriented electrical steel sheet is arranged. The shapes and sizes of the grain-oriented electrical steel sheets forming the third part 130 are the same.
Further, the grain-oriented electrical steel sheets cut into rectangular shapes are stacked with their surfaces superposed over each other to form a parallelepiped shape. The grain-oriented electrical steel sheets are fastened so as not to move. The grain-oriented electrical steel sheets can be fastened, for example, using a binder etc. The binder is preferably one having a magnetic property.
In this above way, the third part 130 is prepared. Further, the third part 1230 may be formed at the time of the later explained assembly.
First, as shown in
Further, one end part (first end part) of the first part 110 and one end part (first end part) of the second part 120 are made to abut against each other in the X-axial direction (second direction) while the surface (end face) of the other end part (second end part) of the first part 110 and the surface (end face) of the other end part (second end part) of the second part 120 are made to abut against each other in the X-axial direction (second direction). At this time, at least one of the surface of the end part (end face) of the third part 1230 in the longitudinal direction and the regions of the inner circumferential surfaces of the first part 110 and second part 120 contacting the surface of the end part (end face) of the third part 1230 in the longitudinal direction is preferably coated with a binder in advance. This is because it is possible to more reliably fasten the third part 1230 to the first part 110 and second part 120. The binder is preferably one having a magnetic property.
Further, as shown in
Next, as shown in
In the above way, in this embodiment, the third part 1230 is arranged at a position where its surfaces do not contact the inner circumferential surfaces of the first part 110 and second part 120 and at least parts of the surfaces of the end parts (end faces) in its longitudinal direction contact the inner circumferential surface of the first part 110 between the first corner area 101 and second corner area 102 and the inner circumferential surface of the second part 120 between the third corner area 103 and fourth corner area 104. Therefore, when attaching the band 140, it is possible to keep the grain-oriented electrical steel sheets forming the first part 110 from entering between the grain-oriented electrical steel sheets forming the second part 120 and the grain-oriented electrical steel sheets forming the second part 120 from entering between the grain-oriented electrical steel sheets forming the first part 110. Accordingly, it is possible to keep the locations where the end parts in the longitudinal directions of the grain-oriented electrical steel sheets forming the first part 110 and the end parts in the longitudinal directions of the grain-oriented electrical steel sheets forming the second part 120 are made to abut in the X-axial direction (second direction) (joined parts) from becoming offset from the desired positions. Due to this, it is possible to keep the magnetic core 1200 from deforming and failing to become the desired shape and to keep the core loss from increasing.
Further, in the present embodiment as well, it is possible to employ the various modifications explained in the first and second embodiments. For example, the number of the bent parts in one corner area is not limited to two. It may be three or more or may be one. Further, the third part 1230 need not be formed by grain-oriented electrical steel sheets (soft magnetic sheets). Further, the band 140 need not be used.
Next, a fourth embodiment will be explained. In the first to third embodiments, the cases where flat grain-oriented electrical steel sheets (grain-oriented electrical steel sheets not bent at their surfaces) were stacked so that the surfaces were superposed over each other to thereby form the third parts 130, 1130, and 1230 were given as examples in the explanation. As opposed to this, in this embodiment, the outer circumferential surface of the third part is made to fit with the inner circumferential surfaces of the first part 110 and second part 120. In this way, the present embodiment differs from the first to third embodiments mainly in the configuration of the third part. Therefore, in the explanation of the present embodiment, parts the same as the first to third embodiments will be assigned the same notations as the notations assigned to
In
The first part 110 and second part 120 are the same as those explained in the first embodiment.
The third part 1530 has a first small part 1531 and a second small part 1532.
The first small part 1531 has a plurality of grain-oriented electrical steel sheets which are respectively shaped bent at positions corresponding to the first corner area 101 and second corner area 102 and which plurality of grain-oriented electrical steel sheets are stacked so that the sheet surfaces are superposed over each other. The second small part 1532 has a plurality of grain-oriented electrical steel sheets which are respectively shaped bent at positions corresponding to the third corner area 103 and fourth corner area 104 and which plurality of grain-oriented electrical steel sheets are stacked so that the sheet surfaces are superposed over each other. The longitudinal directions of the grain-oriented electrical steel sheets (directions vertical to sheet width directions and sheet thickness directions) are the same as the rolling direction.
The outer circumferential surface of the first small part 1531 is configured so as to fit with the inner circumferential surface of the first part 110. Further, the lengths in the width directions of the grain-oriented electrical steel sheets forming the first small part 1531 are the same as the lengths in the width directions of the grain-oriented electrical steel sheets forming the first part 110 and second part 120.
Similarly, the outer circumferential surface of the second small part 1532 is configured so as to fit with the inner circumferential surface of the second part 120. Further, the lengths in the width directions of the grain-oriented electrical steel sheets forming the second small part 1532 are the same as the lengths in the width directions of the grain-oriented electrical steel sheets forming the first part 110 and second part 120.
As shown in
Therefore, without the surfaces in the longitudinal directions of the grain-oriented electrical steel sheets forming the first small part 1531 and the surfaces in the longitudinal directions of the grain-oriented electrical steel sheets forming the second small part 1532 being superposed, the surfaces of the end parts (end faces) in the longitudinal directions of the grain-oriented electrical steel sheets forming the first small part 1531 and the surfaces of the end parts (end faces) in the longitudinal directions of the grain-oriented electrical steel sheets forming the second small part 1532 are made to abut against each other in the X-axial direction (second direction).
In this way, the grain-oriented electrical steel sheets forming the third part 1530 are bent at positions corresponding to the first corner area 101, second corner area 102, third corner area 103, and fourth corner area 104. The outer circumferential surface of the third part 1530 is arranged in the state contacting the inner circumferential surfaces of the first part 110 and second part.
Further, as shown in
Next, one example of the method of manufacture of the magnetic core 1200 of the present embodiment will be explained.
The first part 110, second part 120, and coils 610 and 620 are the same as those explained in the first embodiment.
Regarding the third part 1530, when assembling the first small part 1531 and the second small part 1532, the length in the longitudinal direction, length in the width direction, regions forming the corner areas, positions of bent parts, and bent angles of the grain-oriented electrical steel sheet positioned at the outermost circumference of the grain-oriented electrical steel sheets forming the first small part 1531 and the length in the longitudinal direction, length in the width direction, regions forming the corner areas, and positions of bent parts, and bent angles of the grain-oriented electrical steel sheet positioned at the outermost circumference of the grain-oriented electrical steel sheets forming the second small part 1532 are respectively determined so that their outer circumferential surfaces become the same as the inner circumferential surfaces of the first part 110 and second part 120.
Further, to prevent the formation of gaps between two adjoining layers of grain-oriented electrical steel sheets forming the first small part 1531 and second small part 1532, the lengths in the longitudinal direction, lengths in the width direction, regions forming the corner areas, and positions and bent angles of bent parts of the grain-oriented electrical steel sheets are determined so that, at the two adjoining layers of grain-oriented electrical steel sheets, the outer circumferential surface of the grain-oriented electrical steel sheet arranged at the inside and the inner circumferential surface of the grain-oriented electrical steel sheet arranged at the outside are made to become equal.
The grain-oriented electrical steel sheets are cut in accordance with the thus determined lengths in the longitudinal directions and lengths in the width directions of the grain-oriented electrical steel sheets so that the longitudinal directions become the rolling direction. Further, the cut grain-oriented electrical steel sheets are bent in accordance with the above determined positions and bent angles of the bent parts. The method of bending is the same as the method of bending the grain-oriented electrical steel sheets forming the first part 110 and second part 120, so here, detailed explanations will be omitted. In the same way as the first part 110 and second part 120, in the third part 1530 (first small part 1531 and second small part 1532) as well, the radii of curvature “r” at the bent parts of the grain-oriented electrical steel sheets stacked in the sheet thickness direction are set to match and worked, but the radii of curvature of the worked grain-oriented electrical steel sheets sometimes suffer from error due to the roughnesses and shapes of the surfaces of the steel sheets. Even if error occurs, the error is preferably 0.1 mm or less.
Further, the thus bent grain-oriented electrical steel sheets are relieved of stress of the bent parts by annealing.
The grain-oriented electrical steel sheets are stacked so that the surfaces of the grain-oriented electrical steel sheets bent and annealed for stress relief are superposed over each other so that the first small part 1531 and second small part 1532 are formed. In this way, the third part 1530 (first small part 1531 and second small part 1532) is prepared. At this time, the grain-oriented electrical steel sheets forming the first small part 1510 and second small part 1532 may be fixed in positions so as not to become offset. Further, the first small part 1510 and second small part 1532 may be formed at the time of assembly explained later.
After the grain-oriented electrical steel sheets forming the first part 110, second part 120, and third part 1530 and coils 610 and 620 are prepared in this way, they are assembled.
First, as shown in
Further, single end parts (first end parts) of the first part 110 and first small part 1531 and single end parts (first end parts) of the second part 120 and second small part 1532 are made to abut against each other in the X-axial direction (second direction) and other end parts (second end parts) of the first part 110 and first small part 1531 and other end parts (second end parts) of the second part 120 and second small part 1532 are made to abut against each other in the X-axial direction (second direction).
Next, as shown in
In this way, in this embodiment, the third part 1530 is formed into a ring shape by combining the first small part 1531 and second small part 1532 so that their outer circumferential surfaces fit with the inner circumferential surfaces of the first part 110 and second part 120. Therefore, the length of the third part 1530 in the X-axial direction is the same as the length in the X-axial direction of the window part comprised of the region at the inside of the first part 110 and second part 120 so that the third part 1530 contacts the region of the inner circumferential surface of the window part. Therefore, when attaching the band 140, it is possible to keep the grain-oriented electrical steel sheets forming the first part 110 from entering between the grain-oriented electrical steel sheets forming the second part 120 and the grain-oriented electrical steel sheets forming the second part 120 from entering between the grain-oriented electrical steel sheets forming the first part 110. Accordingly, it is possible to keep the locations where the end parts in the longitudinal directions of the grain-oriented electrical steel sheets forming the first part 110 and the end parts in the longitudinal directions of the grain-oriented electrical steel sheets forming the second part 120 are made to abut against each other in the X-axial direction (second direction) (joined parts) from becoming offset from the desired positions. Due to this, it is possible to keep the magnetic core 1200 from deforming and failing to become the desired shape and to keep the core loss from increasing.
Further, in this embodiment, the sides where the first part 110 and second part 120 abut and the sides where the first small part 1531 and second small part 1532 abut can be made the same. Therefore, the work of assembling the magnetic core 1500 becomes easy.
However, the surfaces of the end parts (end faces) of the grain-oriented electrical steel sheets forming the third part 1530 may be made to abut against each other at least at one of between the first corner area 101 and third corner area 103 and between the second corner area 102 and fourth corner area 104. For example, the surfaces of the end parts (end faces) of the grain-oriented electrical steel sheets forming the third part 1530 can be made to abut against each other only between the first corner area 101 and third corner area 103.
In
Next, as shown in
Next, as shown in
Further, as shown in
Next, as shown in
By doing the above, the locations where the surfaces of the end parts (end faces) of the grain-oriented electrical steel sheets forming the third part 1830 are made to abut against each other in the X-axial direction (second direction) become single locations in the same layers (same stacking positions). Therefore, compared with the third part 1530, the core loss can be reduced. Further, as shown in
When fitting together the first part 110 and the second part 120, if the relative positions of the first part 110 and second part 120 become offset in the Z-axial direction, the surfaces of the end parts (end faces) in the longitudinal directions of the grain-oriented electrical steel sheets forming the first part 110 and the surfaces of the end parts (end faces) in the longitudinal directions of the grain-oriented electrical steel sheets forming the second part 120 cannot be accurately fit together.
According to the magnetic core 1800 shown in
Further, the surfaces of the end parts (end faces) of the grain-oriented electrical steel sheets forming the third part 1530 may also be made to abut against each other only between the second corner area 102 and fourth corner area 104 in the X-axial direction (second direction).
Further, in the present embodiment as well, it is possible to employ the various modifications explained in the first to the third embodiments. For example, the number of the bent parts in one corner area is not limited to two. It may be three or more or may be one. Further, the third parts 1530 and 1830 need not be formed by grain-oriented electrical steel sheets (soft magnetic sheets). Further, the band 140 need not be used.
Next, a fifth embodiment will be explained. In the fourth embodiment, the case where the surfaces of the end parts (end faces) of the grain-oriented electrical steel sheets forming the third part were made to abut against each other between the first corner area 101 and third corner area 103 and/or between the second corner area 102 and fourth corner area 104 in the X-axial direction (second direction) was given as an example in the explanation. As opposed to this, in this embodiment, the case where the surfaces of the end parts (end faces) of the grain-oriented electrical steel sheets forming the third part are made to abut against each other between the first corner area 101 and second corner area 102 and/or between the third corner area 103 and fourth corner area 104 in the Z-axial direction (first direction) will be explained. In this way, the present embodiment mainly differs from the first to fourth embodiments in the configuration of the third part. Therefore, in the explanation of the present embodiment, parts the same as the first to fourth embodiments will be assigned the same notations as the notations assigned to
In
The first part 110 and second part 120 are the same as those explained in the first embodiment.
The third part 2030 has a plurality of grain-oriented electrical steel sheets which are shaped bent at positions corresponding to the first corner area 101, second corner area 102, third corner area 103, and fourth corner area 104 and which plurality of grain-oriented electrical steel sheets are stacked so that their surfaces are superposed over each other. The longitudinal directions of the grain-oriented electrical steel sheets (directions vertical to sheet width directions and sheet thickness directions) are the same as the rolling direction.
The outer circumferential surface of the third part 2030 is configured so as to fit with the inner circumferential surfaces of the first part 110 and second part 120. Further, the lengths in the width directions of the grain-oriented electrical steel sheets forming the third part 2030 are the same as lengths in the width directions of the grain-oriented electrical steel sheets forming the first part 110 and second part 120. The surfaces (end faces) of single end parts (first end parts) and the surfaces (end faces) of the other end parts (second end parts) in the longitudinal directions of the grain-oriented electrical steel sheets forming the third part 2030 are made to abut against each other in the Z-axial direction (first direction) in the region between the third corner area 103 and fourth corner area 104. At this time, the surfaces (end faces) of single end parts (first end parts) and surfaces (end faces) of the other end parts (second end parts) in the longitudinal directions of the grain-oriented electrical steel sheets forming the third part 2030 are made to abut against each other in the Z-axial direction (first direction) so that the surfaces of the grain-oriented electrical steel sheets forming the third part 2030 are superposed over each other.
Furthermore, as shown in
Furthermore, the method of offset in the X-axial direction (second direction) of the positions in the circumferential direction of the magnetic core 2000 of the locations where the surfaces of the end parts (end faces) in the longitudinal directions of the grain-oriented electrical steel sheets forming the first part 110 and the surfaces of the end parts (end faces) in the longitudinal directions of the grain-oriented electrical steel sheets forming the second part 120 are made to abut against each other in the X-axial direction (second direction) (joined parts) becomes the same as the method of offset in the Z-axial direction (first direction) of the positions in the circumferential direction of the magnetic core 2000 of the locations where the surfaces of single end parts (first end faces) and the surfaces of the other end parts (second end faces) in the longitudinal directions of the grain-oriented electrical steel sheets forming the third part 2030 are made to abut against each other in the Z-axial direction (first direction) (joined parts).
That is, as shown in
Furthermore, the period of offset in the X-axial direction (second direction) of the positions in the circumferential direction of the magnetic core 100 of the locations where the surfaces of the end parts (end faces) in the longitudinal directions of the grain-oriented electrical steel sheets forming the first part 110 and the surfaces of the end parts (end faces) in the longitudinal directions of the grain-oriented electrical steel sheets forming the second part 120 are made to abut against each other in the X-axial direction (second direction) (joined parts) is made the same as the period of offset in the Z-axial direction (first direction) of the positions in the circumferential direction of the magnetic core 100 of the locations where the surfaces (end faces) of single end parts (first end parts) and the surfaces (end faces) of the other end parts (second end parts) in the longitudinal directions of the grain-oriented electrical steel sheets forming the third part 2030 are made to abut against each other in the Z-axial direction (first direction) (joined parts).
In the example shown in
Further, in
Next, one example of the method of manufacture of the magnetic core 2000 of the present embodiment will be explained.
The first part 110, second part 120, and coils 610 and 620 are the same as those explained in the first embodiment.
Regarding the third part 2030, the length in the longitudinal direction, length in the width direction, regions forming the corner areas, and positions and bent angles of bent parts of the grain-oriented electrical steel sheet positioned at the outermost circumference of the grain-oriented electrical steel sheets forming the third part 2030 are determined so that their outer circumferential surfaces become the same as the inner circumferential surfaces of the first part 110 and second part 120.
Next, as shown in
Further, when the surfaces (end faces) of single end parts (first end parts) and surfaces (end faces) of the other end parts (second end parts) in the longitudinal directions of the grain-oriented electrical steel sheets forming the third part 2030 are made to abut against each other in the Z-axial direction (first direction), to prevent a gap from forming between two adjoining layers of the grain-oriented electrical steel sheets forming the third part 2030, the lengths in the longitudinal directions, lengths in the width directions, regions forming the corner areas, and positions and bent angles of bent parts of the grain-oriented electrical steel sheets are determined so that in the two adjoining layers of the grain-oriented electrical steel sheets, the outer circumferential length of a grain-oriented electrical steel sheet arranged at the inside and the inner circumferential length of a grain-oriented electrical steel sheet arranged at the outside become equal.
Together with the above such determined lengths in the longitudinal directions and lengths in the width directions of the grain-oriented electrical steel sheets, the grain-oriented electrical steel sheets are cut so that the longitudinal directions become the rolling direction. Further, the cut grain-oriented electrical steel sheets are bent in accordance with the above such determined positions and bent angles of the bent parts. The method of bending is the same as the method of bending of the grain-oriented electrical steel sheets forming the first part 110 and second part 120, so here the detailed explanation will be omitted. In the same way as the first part 110 and second part 120, in the third part 2030 as well, the radii of curvature “r” at the bent parts of the grain-oriented electrical steel sheets stacked in the sheet thickness direction are set to match in working the sheets, but the radii of curvature of the worked grain-oriented electrical steel sheets sometimes suffer from error due to the roughnesses and shapes of the surfaces of the steel sheets. Even if error occurs, the error is preferably 0.1 mm or less.
Further, the thus bent grain-oriented electrical steel sheets are relieved of stress of the bent parts by annealing.
The thus grain-oriented electrical steel sheets are stacked so that the surfaces of the grain-oriented electrical steel sheets bent and annealed for stress relief are superposed over each other so that the third part 2030 is formed. In this way, the third part 2030 is prepared. At this time, the grain-oriented electrical steel sheets forming the third part 2030 may be fixed in positions so as not to become offset. Further, the third part 2030 may be formed at the time of assembly explained later.
After the grain-oriented electrical steel sheets forming the first part 110, second part 120, and third part 3030 and coils 610 and 620 are prepared in this way, they are assembled.
As shown in
Next, as shown in
As shown in
Further, as shown in
Next, as shown in
In the above way, in this embodiment, the surfaces of the end parts (end faces) of the grain-oriented electrical steel sheets forming the third part 2030 are made to abut against each other between third corner area 103 and fourth corner area 104 in the Z-axial direction (first direction). Further, third part 2030 is formed into a ring shape so that the outer circumferential surface fits with the inner circumferential surfaces of the first part 110 and second part 120. Therefore, the length of the third part 2030 in the X-axial direction is the same as the length in the X-axial direction of the window part comprised of the region at the inside of the first part 110 and second part 120 so that the third part 2030 contacts the region of the inner circumferential surface of the window part. Therefore, when attaching the band 140, it is possible to keep the grain-oriented electrical steel sheets forming the first part 110 from entering between the grain-oriented electrical steel sheets forming the second part 120 and the grain-oriented electrical steel sheets forming the second part 120 from entering between the grain-oriented electrical steel sheets forming the first part 110. Accordingly, it is possible to keep the locations where the end parts in the longitudinal directions of the grain-oriented electrical steel sheets forming the first part 110 and the end parts in the longitudinal directions of the grain-oriented electrical steel sheets forming the second part 120 are made to abut against each other in the X-axial direction (second direction) (joined parts) from becoming offset from the desired positions. Due to this, it is possible to keep the magnetic core 2000 from deforming and failing to become the desired shape and to keep the core loss from increasing.
Further, as shown in
When fitting together the first part 110 and the second part 120, if the relative positions of the first part 110 and second part 120 become offset in the Z-axial direction, the surfaces of the end parts (end faces) in the longitudinal directions of the grain-oriented electrical steel sheets forming the first part 110 and the surfaces of the end parts (end faces) in the longitudinal directions of the grain-oriented electrical steel sheets forming the second part 120 cannot be accurately fit together.
According to the present embodiment, when fitting together the first part 110 and the second part 120, the third part 2030 functions as a guide positioning the first part 110 and the second part 120 in the Z-axial direction. Therefore, when fitting together the first part 110 and the second part 120, the relative positions of the first part 110 and the second part 120 are kept from ending up becoming offset in the Z-axial direction and the surfaces of the end parts (end faces) in the longitudinal directions of the grain-oriented electrical steel sheets forming the first part 110 and the surfaces of the end parts (end faces) in the longitudinal directions of the grain-oriented electrical steel sheets forming the second part 120 can be fit together with the correct positions in the Z-axial direction. Therefore, the end faces of the grain-oriented electrical steel sheets forming the first part 110 and the second part 120 can be made to reliably contact each other.
Further, in this embodiment, the positions in the circumferential direction of the magnetic core 2000 of the locations where the surfaces (end faces) of single end parts (first end parts) and surfaces (end faces) of the other end parts (second end parts) in the longitudinal directions of the grain-oriented electrical steel sheets forming third part 2030 are made to abut against each other in the Z-axial direction (first direction) (joined parts) are offset in the Z-axial direction (first direction). Therefore, compared to when not offsetting the positions of the parts in the circumferential direction of the magnetic core 2000 in the Z-axial direction (first direction), the core loss can be reduced.
In this embodiment, the surfaces of the end parts (end faces) of the grain-oriented electrical steel sheet forming the third part 2030 are made to abut against each other in the Z-axial direction (first direction) between the third corner area 103 and fourth corner area 104. However, like in the magnetic core 2400 shown in
As shown in
Further, if offsetting the positions in the circumferential direction of the surfaces of the end parts (end faces) of the grain-oriented electrical steel sheets forming the third part 2030 in the Z-axial direction (first direction), it is possible to reduce the core loss, so this is preferred. However, the positions in the circumferential direction of the surfaces of the end parts (end faces) of the grain-oriented electrical steel sheet forming the third part 2030 in the Z-axial direction (first direction) may also be the same.
Further, in the present embodiment as well, it is possible to employ the various modifications explained in the first to the fourth embodiments. For example, the number of the bent parts in one corner area is not limited to two. It may be three or more or may be one. Further, the third parts 2030, 2430, and 2530 need not be formed by grain-oriented electrical steel sheets (soft magnetic sheets). Further, the band 140 need not be used.
In the example explained above, the lengths in the width directions of the grain-oriented electrical steel sheets forming the third part were made the same as the lengths in the width directions of the grain-oriented electrical steel sheets forming the first part 110 and second part 120. On the other hand, the lengths in the width directions of the grain-oriented electrical steel sheets forming the third part may be longer than the lengths in the width directions of the grain-oriented electrical steel sheets forming the first part 110 and second part 120. According to such a configuration, by the lengths in the width directions of the third part becoming longer, for example, in the steps shown in
Next, a sixth embodiment will be explained. In this embodiment, the case where the surfaces of the end parts (end faces) of the grain-oriented electrical steel sheets forming the third part are made to abut against each other in the X-axial direction (second direction) at only one of between the first corner area 101 and third corner area 103 and between the second corner area 102 and fourth corner area 104 will be explained. In this way, the present embodiment differs from the first to the fifth embodiments mainly in the configuration of the third part. Therefore, in the explanation of the present embodiment, parts the same as the first to the fifth embodiments are assigned notations the same as the notations assigned to
In
The first part 110 and second part 120 are the same as those explained in the first embodiment.
The third part 2630 differs from the third part 2030 explained in the fifth embodiment only in the positions of the locations where the surfaces (end faces) of single end parts (first end parts) and surfaces (end faces) of the other end parts (second end parts) in the longitudinal directions of the grain-oriented electrical steel sheets forming the third part 2630 are made to abut against each other (joined parts). That is, in the third part 2030 explained in the fifth embodiment, the surfaces (end faces) of single end parts (first end parts) and surfaces (end faces) of the other end parts (second end parts) in the longitudinal directions of the grain-oriented electrical steel sheets forming the third part 2030 are made to abut against each other in the region between the third corner area 103 and fourth corner area 104 in the Z-axial direction (first direction). As opposed to this, in the third part 2630 of the present embodiment, the surfaces (end faces) of single end parts (first end parts) and surfaces (end faces) of the other end parts (second end parts) in the longitudinal directions of the grain-oriented electrical steel sheets forming the third part 2630 are made to abut against each other in the region between the first corner area 101 and third corner area 103 in the X-axial direction (second direction).
Further, the method of offset in the X-axial direction (second direction) of the positions in the circumferential direction of the magnetic core 2600 of the locations where the surfaces of the end parts (end faces) in the longitudinal directions of the grain-oriented electrical steel sheets forming the first part 110 and the surfaces of the end parts (end faces) in the longitudinal directions of the grain-oriented electrical steel sheets forming the second part 120 are made to abut against each other in the X-axial direction (second direction) (joined parts) and the method of offset in the X-axial direction (second direction) of the positions in the circumferential direction of the magnetic core 2600 of the locations where the surfaces (end faces) of single end parts (first end parts) and the surfaces (end faces) of the other end parts (second end parts) in the longitudinal directions of the grain-oriented electrical steel sheets forming the third part 2630 are made to abut against each other in the X-axial direction (second direction) (joined parts) become the same.
Furthermore, as shown in
When manufacturing the magnetic core 2600 of the present embodiment, the third part 2630 is prepared so that the shapes of one end part (first end part) and the other end part (second end part) of the third part 1830 explained in the fourth embodiment become the shapes of one end part (first end part) and the other end part (second end part) of the third part 2030 explained in the fifth embodiment. Further, as explained while referring to
In the above way, in this embodiment, the surfaces of the end parts (end faces) of the grain-oriented electrical steel sheets forming the third part 2630 are made to abut against each other between the first corner area 101 and third corner area 103 in the X-axial direction (second direction). At this time, the positions in the circumferential direction of the magnetic core 2600 of the locations where the surfaces (end faces) of single end parts (first end parts) and the surfaces (end faces) of the other end parts (second end parts) in the longitudinal directions of the grain-oriented electrical steel sheets forming the third part 2630 are made to abut against each other in the X-axial direction (second direction) (joined parts) are offset in the X-axial direction (second direction). Further, the third part 2630 is formed into a ring shape so that the outer circumferential surface fits with the inner circumferential surfaces of the first part 110 and second part 120. Therefore, the length of the third part 2630 in the X-axial direction is the same as the length of the window part comprised of the region at the inside of the first part 110 and second part 120 in the X-axial direction so that the third part 2630 contacts the region of the inner circumferential surface of the window part. Therefore, when attaching the band 140, it is possible to keep the grain-oriented electrical steel sheets forming the first part 110 from entering between the grain-oriented electrical steel sheets forming the second part 120 and the grain-oriented electrical steel sheets forming the second part 120 from entering between the grain-oriented electrical steel sheets forming the first part 110. Accordingly, it is possible to keep the locations where the end parts in the longitudinal directions of the grain-oriented electrical steel sheets forming the first part 110 and the end parts in the longitudinal directions of the grain-oriented electrical steel sheets forming the second part 120 are made to abut in the X-axial direction (second direction) (joined parts) from becoming offset from the desired positions. Due to this, it is possible to keep the magnetic core 2600 from deforming and failing to become the desired shape and to keep the core loss from increasing. Further, it is possible to reduce the core loss compared with the magnetic core 1800 (third part 1830) explained in the fourth embodiment.
Further, according to the present embodiment, in the same way as the fourth embodiment and the fifth embodiment, when fitting together the first part 110 and second part 120, the third part 2630 functions as a guide positioning the first part 110 and the second part 120 in the Z-axial direction. Therefore, when fitting together the first part 110 and second part 120, it is possible to keep the relative positions of the first part 110 and second part 120 from ending up becoming offset in the Z-axial direction and the surfaces of the end parts (end faces) in the longitudinal directions of the grain-oriented electrical steel sheets forming the first part 110 and the surfaces of the end parts (end faces) in the longitudinal directions of the grain-oriented electrical steel sheets forming the second part 120 can be correctly fit together. Therefore, the end faces of the first part 110 and second part 120 can be made to reliably contact each other.
In this embodiment, the surfaces of the end parts (end faces) of the grain-oriented electrical steel sheet forming the third part 2630 were made to abut against each other between the first corner area 101 and third corner area 103 in the X-axial direction (second direction). However, as in the magnetic core 2800 shown in
Further, in the present embodiment as well, it is possible to employ the various modifications explained in the first to the fifth embodiments. For example, the number of the bent parts in one corner area is not limited to two. It may be three or more or may be one. Further, the third parts 2630 and 2830 need not be formed by grain-oriented electrical steel sheets (soft magnetic sheets). Further, the band 140 need not be used.
Next, a seventh embodiment will be explained. This embodiment relates to a configuration where, in the above-mentioned fourth to sixth embodiments, in each of the first corner area 101, second corner area 102, third corner area 103, and fourth corner area 104, a gap is provided between the third part 2730 and the first part 110 or second part 120.
The first part 110 and the second part 120 are the same as those explained in the first embodiment.
The third part 2730 has a plurality of grain-oriented electrical steel sheets which are respectively shaped bent at positions corresponding to the first corner area 101, second corner area 102, third corner area 103, and fourth corner area 104 and which plurality of grain-oriented electrical steel sheets are stacked so that the sheet surfaces are superposed. The longitudinal directions of the grain-oriented electrical steel sheets (directions vertical to sheet width directions and sheet thickness directions) are the same as the rolling direction.
In the same way as the fourth to sixth embodiments, the outer circumferential surface of the third part 2730 is configured by fitting together the inner circumferential surfaces of the first part 110 and second part 120. However, in the seventh embodiment, the third part 2730 does not contact the first part and second part 120 across the entire outer circumferential surface. A gap 2732 is provided between the third part 2730 and the first part 110 or second part 120.
Specifically, as shown in
In the example shown in
Therefore, in this embodiment, the third part 2730 is formed in a ring shape so that part of its outer circumferential surface fits with the inner circumferential surfaces of the first part 110 and second part 120. In the third part 2730, in the X-axial direction (second direction), the region D1 shown in
The length of the third part 2730 in the X-axial direction is the same as the length in the X-axial direction of the window part comprised of the region at the inside of the first part 110 and second part 120 so that the third part 2730 contacts the region of the inner circumferential surface of the window part. Therefore, when attaching the band 140, it is possible to keep the grain-oriented electrical steel sheets forming the first part 110 from entering between the grain-oriented electrical steel sheets forming the second part 120 and the grain-oriented electrical steel sheets forming the second part 120 from entering between the grain-oriented electrical steel sheets forming the first part 110. Accordingly, it is possible to keep the locations where the end parts in the longitudinal directions of the grain-oriented electrical steel sheets forming the first part 110 and the end parts in the longitudinal directions of the grain-oriented electrical steel sheets forming the second part 120 are made to abut against each other in the X-axial direction (second direction) (joined parts) from becoming offset from the desired positions. Due to this, it is possible to keep the magnetic core 2700 from deforming and failing to become the desired shape and to keep the core loss from increasing.
Further, according to the present embodiment, in the same way as the fourth to sixth embodiments, when fitting together the first part 110 and second part 120, the third part 2730 functions as a guide positioning the first part 110 and the second part 120 in the Z-axial direction. Therefore, when fitting together the first part 110 and second part 120, it is possible to keep the relative positions of the first part 110 and second part 120 from ending up becoming offset in the Z-axial direction and the surfaces of the end parts (end faces) in the longitudinal directions of the grain-oriented electrical steel sheets forming the first part 110 and the surfaces of the end parts (end faces) in the longitudinal directions of the grain-oriented electrical steel sheets forming the second part 120 can be correctly fit together. Therefore, the end faces of the first part 110 and second part 120 can be made to reliably contact each other.
In this regard, if the core loss generated at the bent parts of the grain-oriented electrical steel sheets increase, since the bent parts are provided at the first corner area 101, second corner area 102, third corner area 103, and fourth corner area 104, these corner areas and their vicinities easily rise in temperature.
In this embodiment, in each of the first corner area 101, second corner area 102, third corner area 103, and fourth corner area 104, a gap 2732 is provided between the third part 2730 and the first part 110 or second part 120. Therefore, the heat generated at the bent parts of the corner areas is discharged to the gap 2732.
Therefore, by the heat generated due to the core loss of the bent parts being discharged to the gap 2732, the magnetic core 2700 is kept from rising in temperature.
As shown in
Further, the relationship of the following formula (2) stands among the thickness “a” of the first part 110 (or second part 120), the width “b” of the gap 2732, and the thickness “c” of the third part 2730:
a+c≥b≥(a+c)/285 (2)
That is, the width “b” of the gap 2732 is not greater than the total of the thickness “a” of the first part 110 (or second part 120) and the thickness “c” of the third part 2730. Here, if the width “b” of the gap 2732 is greater than the total of the thickness “a” of the first part 110 (or second part 120) and the thickness “c” of the third part 2730, the noise becomes greater. Therefore, the width “b” of the gap 2732 preferably is not more than the total of the thickness “a” of the first part 110 (or second part 120) and the thickness “c” of the third part 2730.
Further, if b<(a+c)/285, the heat generated due to core loss of the bent parts cannot be discharged from the gap 2732. Therefore, preferably b≥(a+c)/285. For example, if the thickness of the grain-oriented electrical steel sheets forming the first part 110 (or second part 120) and third part 2730 is 0.3 mm, if the winding thickness (a+c) is 100 mm, a gap 2732 of a width “b” of 0.35 mm or more is ensured. Further, if the thickness of the grain-oriented electrical steel sheets forming the first part 110 (or second part 120) and third part 2730 is “t”, preferably b>t, that is, the width “b” of the gap 2732 is larger than the thickness “t” of the grain-oriented electrical steel sheets. Due to this, the heat generated at the bent parts is reliably discharged.
Furthermore, as explained later, it was learned that, as a result of providing the gap 2732, not only is there an effect of discharging the heat generated at the magnetic core 2700, but it is also possible to keep the temperature of the oil of the transformer from rising. That is, by providing the gap 2732, due to the formation of a gap through which a cooling medium is passed near the windings (coils), not only is the heat generated at the magnetic core 2700 discharged, but also a large effect is obtained as a result for discharge of the heat generated at the coil of the transformer.
Note that, in the example shown in
Further, as explained in the fourth to sixth embodiments, if the outer circumferential surface of the third part is made to fit with the inner circumferential surfaces of the first part 110 and second part 120 over its entire circumference, the shape of the outer circumferential surface of the third part and the shape of the inner circumferential surface of the first part 110 or second part 120 are required to match. In particular, in each of the first corner area 101, second corner area 102, third corner area 103, and fourth corner area 104, if the shape of the outer circumferential surface of the third part and the shape of the inner circumferential surface of the first part 110 or the second part 120 do not match, sometimes the outer circumferential surface of the third part will not contact the inner circumferential surfaces of the first part 110 or second part 120 over its entire circumference. Therefore, in particular, in the first corner area 101, second corner area 102, third corner area 103, and fourth corner area 104, a certain degree of precision is sought in the shape of the outer circumferential surface of the third part and the shape of the inner circumferential surface of the first part 110 or the second part 120.
On the other hand, according to the example of the configuration shown in
In other words, according to the seventh embodiment, if precision of the length of the third part 2730 is obtained in the X-axial direction and Z-axial direction, in each of the first corner area 101, second corner area 102, third corner area 103, and fourth corner area 104, precision is not demanded from the shape of the outer circumferential surface of the third part 2730. In this case as well, when attaching a band 140, it is possible to keep the grain-oriented electrical steel sheets forming the first part 110 from entering between the grain-oriented electrical steel sheets forming the second part 120 and keep the grain-oriented electrical steel sheets forming the second part 120 from entering between the grain-oriented electrical steel sheets forming the first part 110. Further, when fitting together the first part 110 and second part 120, the relative positions of the first part 110 and second part 120 are kept from ending up becoming offset in the Z-axial direction.
Therefore, at the first corner area 101, second corner area 102, third corner area 103, and fourth corner area 104, precision of the dimensions of the outer circumferential surface of the third part 2730 is not required, so it is possible to reduce the manufacturing cost when manufacturing the third part 2730.
In
The outer circumferential surface of the third part 2730 is configured to fit with the inner circumferential surfaces of the first part 110 and second part 120. In the same way as the configuration shown in
As shown in
In the example shown in
In the example shown in
The length of the third part 2730 in the longitudinal direction (X-axial direction) is the same as the length in the X-axial direction of the window part comprised of the region at the inside of the first part 110 and second part 120 so as to contact the region of the inner circumferential surface of the window part. Therefore, when attaching the band 140, it is possible to keep the grain-oriented electrical steel sheets forming the first part 110 from entering between the grain-oriented electrical steel sheets forming the second part 120 and the grain-oriented electrical steel sheets forming the second part 120 from entering between the grain-oriented electrical steel sheets forming the first part 110. Accordingly, it is possible to keep the locations where the end parts in the longitudinal directions of the grain-oriented electrical steel sheets forming the first part 110 and the end parts in the longitudinal directions of the grain-oriented electrical steel sheets forming the second part 120 are made to abut in the X-axial direction (second direction) (joined parts) from becoming offset from the desired positions. Due to this, it is possible to keep the magnetic core 2700 from deforming and failing to become the desired shape and to keep the core loss from increasing.
Further, in the configuration shown in
Note that, in the example of configuration shown in
According to the configuration shown in
Further, in the same way as the fourth to sixth embodiments, the third part 2730 plays the role of a guide at the time of core manufacture, so the production efficiency is improved. Further, the positional offset of the joined parts which becomes a problem in a core of a type configured by bending in advance a part forming a corner area of the core for each electrical steel sheet or other soft magnetic sheet, cutting the soft magnetic sheets into predetermined lengths, then superposing the soft magnetic sheets in the sheet thickness direction is eliminated. Furthermore, by providing the third part 2730 in a ring shape, the core strength is improved and the shape after forming the transformer becomes easily held.
In the example of configuration shown in
As shown in
Further, in the example of configuration shown in
As shown in
Furthermore, as shown in
The third parts 2730a and 2730b are formed into ring shapes so that parts of their outer circumferential surfaces fit with the inner circumferential surfaces of the first part 110 and second part 120. In the third parts 2730a and 2730b, in the X-axial direction (second direction), the region D1 shown in
The lengths in the longitudinal directions (X-axial direction) of the third parts 2730a and 2730b are the same as the length in the X-axial direction of the window part comprised of the regions at the inside of the first part 110 and second part 120 so as to contact the region of the inner circumferential surface of the window part. Therefore, when attaching the band 140, it is possible to keep a grain-oriented electrical steel sheet forming the first part 110 from entering between the grain-oriented electrical steel sheets forming the second part 120 and keep a grain-oriented electrical steel sheet forming the second part 120 from entering between the grain-oriented electrical steel sheets forming the first part 110. Accordingly, it is possible to keep the locations where the end parts in the longitudinal direction of the grain-oriented electrical steel sheets forming the first part 110 and the end parts in the longitudinal direction of the grain-oriented electrical steel sheets forming the second part 120 are made to abut against each other in the X-axial direction (second direction) (joined parts) from becoming offset from the desired positions. Due to this, it is possible to keep the magnetic core 2700 from deforming and the desired shape not being obtained and the core loss from increasing.
Further, in the configuration shown in
According to the example of the configuration shown in
Further, a gap 2732b is provided between the third parts 2730a and 2730b and the first part 110 and second part 120. Therefore, heat is discharged from the gap 2732b as well. Therefore, the heat generated due to core loss of the bent parts is discharged from the gaps 2732a and 2732b whereby the magnetic core 2700 is kept from rising in temperature and a transformer including the magnetic core 2700 is effectively kept from rising in temperature.
According to the example of configuration shown in
As shown in
Furthermore, as shown in
The third parts 2730b, . . . , 2730n are formed into ring shapes so that parts of their outer circumferential surfaces fit with the inner circumferential surfaces of the first part 110 and second part 120. In the third parts 2730b, . . . , 2730n, in the X-axial direction (second direction), the region D1 shown in
The lengths in the longitudinal directions (X-axial direction) of the third parts 2730a, . . . , 2730n are the same as the length in the X-axial direction of the window part comprised of the region at the inside of the first part 110 and second part 120 so as to contact the region of the inner circumferential surface of the window part. Therefore, when attaching the band 140, it is possible to keep the grain-oriented electrical steel sheets forming the first part 110 from entering between the grain-oriented electrical steel sheets forming the second part 120 and the grain-oriented electrical steel sheets forming the second part 120 from entering between the grain-oriented electrical steel sheets forming the first part 110. Accordingly, it is possible to keep the locations where the end parts in the longitudinal directions of the grain-oriented electrical steel sheets forming the first part 110 and the end parts in the longitudinal directions of the grain-oriented electrical steel sheets forming the second part 120 are made to abut in the X-axial direction (second direction) (joined parts) from becoming offset from the desired positions. Due to this, it is possible to keep the magnetic core 2700 from deforming and failing to become the desired shape and to keep the core loss from increasing.
Further, in the configuration shown in
According to the example of the configuration shown in
Further, gaps 2732b are provided between the third parts 2730a, 2730b, . . . , 2730n and first part 110 or second part 120. Therefore, heat is discharged from the gaps 2732b as well. Therefore, the heat generated due to core loss of the bent parts is discharged from the gaps 2732a and 2732b, whereby the temperature of the magnetic core 2700 is kept from rising and the rise in temperature of the transformer formed from the core 2700 is effectively suppressed.
According to the example of configuration shown in
Below, examples in which the above-mentioned relationship of formula (2) stands will be explained. The inventors prepared several examples changed in thickness of material of the grain-oriented electrical steel sheets, the stacked thickness (a+b), and the thickness of the gaps c and evaluated them for noise and the effect of improvement of the cooling efficiency. The following Table 1 to Table 6 show the results. Note that, the cores were all made single-phase cores.
In Example 1, as shown in
In Example 2, there are two or three third parts. Example 2 corresponds to the configurations of
Note that, the method of evaluation of noise is as follows: The magnetic cores described in Tables 1 to 5 were prepared, excited, and measured for noise. Each magnetic core was set with the primary and secondary coils and measured using the excitation current method under conditions of a frequency of 50 Hz and a magnetic flux density of 1.7 T. This noise measurement was conducted in an anechoic chamber with a dark noise of 16 dBA while positioning a noise meter at a position of 0.3 m from the core surface. The vibration noise was recorded, then was corrected for A scale as hearing correction. The noise was expressed in units of dBA.
Regarding the effect of improvement of noise (dBA), if the ratio between a difference As−A0, from the noise A0 using a magnetic core 2700 with a width “b” of the gap 2732 of 0 as a reference, of the noise As (dBA) of a magnetic core 2700 with the gap “b”=s (s>0) and A0 (=100×(As−A0)/A0) is less than −3%, it was evaluated that there was an effect of improvement (“Good” in Tables 1 to 5). Further, if the ratio (=100×(As−A0)/A0) is −3% or more, it was evaluated that there was a remarkable effect of improvement (“Very good” in Tables 1 to 5). Note that, compared with the magnetic core 2700 with a width “b” of the gap 2732 of 0 used as a reference, the magnetic core 2700 with the gap “b”=s (s>0) was made completely the same in conditions other than the width “b” (in table, thickness of material, stacked thickness (a+b), length in the width direction of grain-oriented electrical steel sheets, etc.)
Further, for evaluation of the effect of improvement of the cooling efficiency, the magnetic core 2700 was set with windings to form a transformer, the transformer was placed in a tank filled with insulating oil, and the efficiency was measured and evaluated in that state. Defining the temperature rise of insulating oil when operating a transformer using a magnetic core 2700 with a width “b” of the gap 2730 of 0 at a load of 50% of the rated capacity for 1 hour (including heat generated at windings and temperature rise of core) as ΔT0 and defining the temperature rise of insulating oil when operating a transformer using a magnetic core 2700 with the gap b=s (s>0) of the gap 2732 at a load of 50% for 1 hour (including heat generated at windings and temperature rise of core) as ΔTb, the cooling efficiency of the insulating oil was found by the following formula (3) while measuring the temperature of the insulating oil at the tank surface using a contact type thermometer. Note that, in the same way as above, compared with the magnetic core 2700 with a width “b” of the gap 2732 of 0 used as a reference, the magnetic core 2700 with the gap “b”=s (s>0) was made completely the same in conditions other than the width “b”:
Cooling efficiency=100×(ΔTb−ΔT0)/ΔT0 (3)
The cooling efficiency was calculated in the above way. If the cooling efficiency was less than −3%, it was deemed there was an effect of improvement (in Tables 1 to 5, “Good”), while if it was −3% or more, it was deemed there was a remarkable effect of improvement (in Tables 1 to 5, “Very good”). The case where the cooling efficiency became 0 or a positive value was deemed as there being no effect (in Tables 1 to 5, “Poor”).
In Example 1 and Example 2, according to the results of Table 1 to Table 5, when formula (2) was satisfied, there were effects in both noise suppression and improvement of the cooling efficiency. On the other hand, when formula (2) was not satisfied, no effect was obtained in at least one of noise and effect of improvement of cooling.
From the above, it is learned that by satisfying b≥(a+c)/285, a cooling effect is obtained by the width “b” of the gap 2732. Further, it is learned that by satisfying a+c≥b, a noise suppression effect is obtained by the width “b” of the gap 2732. Note that, it may be that by the width “b” of the gap 2732 increasing, the magnetic resistance of the third part becomes lower, the difference in magnetic resistance with the first part 110 or the second part 120 becomes greater, and magnetic flux concentrates at the third part, whereby the flux density at the third part becomes too high and therefore the noise becomes worse.
Further, the embodiments of the present invention explained above all just show specific examples in working the present invention. The technical scope of the present invention must not be interpreted in a limited manner due to these. That is, the present invention can be worked in various ways without departing from its technical idea or main features.
Number | Date | Country | Kind |
---|---|---|---|
2018-187341 | Oct 2018 | JP | national |
This application is a Continuation of copending application Ser. No. 17/282,291, filed on Apr. 1, 2021, which is the National Phase under 35 U.S.C. § 371 of International Application No. PCT/JP2019/039015, filed on Oct. 2, 2019, and under 35 U.S.C. § 119(a) to Application No. 2018-187341, filed in Japan on Oct. 2, 2018, all of which are hereby expressly incorporated by reference into the present application.
Number | Date | Country | |
---|---|---|---|
Parent | 17282291 | Apr 2021 | US |
Child | 18521221 | US |