Not applicable.
The disclosure relates to the field of devices that utilize magnetic attraction force to hold to a ferromagnetic member, or members; such as steel parts. More particularly, the device disclosed herein, by its design, focuses the magnetic attraction force in a certain direction, and minimizes magnetic field leakage in the surroundings to eliminate magnetic interference with magnetically sensitive electronic or magnetic devices proximate the device.
Magnetic holding devices are an application of magnetic attraction force between a device and a ferromagnetic member or ferromagnetic members. The magnetic attraction force can be generated by permanent magnets or electromagnets. The magnetic attraction force can be fairly strong, as a result of high magnetic field strength and high magnetic field gradient. Therefore many such devices present a strong magnetic field in the surrounding environment.
Such strong magnetic field in the proximity of magnetic holding devices may interfere with certain magnetically sensitive electronic or other magnetically sensitive devices, and as a result the use of such magnetic holding devices is regulated in certain areas. Because the magnetic attraction force is directly related to the magnitude of the magnetic field, the magnetic attraction force is reduced when the magnetic field strength in any particular holding device is reduced. The magnetic attraction or “pull” force is a critical specification of such magnetic holding devices, and high pull force in a compact package is desired in many circumstances. It is desirable that a design for magnetic holding devices meets the following criteria:
Magnet cup assemblies have been used to obtain high pull force by intensifying the magnetic field strength and gradient in the location where the lip of the cup magnet assembly is either close to or contacts the ferromagnetic member the cup magnet assembly is to hold to. As a byproduct of such design, magnetic field leakage is reduced in the proximity of the cup magnet assembly. However, the leakage field can still prove to be too high to satisfy certain application requirements.
There exists a need for improved magnetic cup assemblies having reduced magnetic field leakage.
One aspect of the disclosure is magnetic cup assembly comprising multiple magnetic poles disposed inside a ferromagnetic cup, wherein the magnetic poles are arranged such that a net magnetic sum of the cup assembly on a cup opening side is substantially magnetically neutral.
Other aspects and advantages will be apparent from the description and claims which follow.
Magnetic flux lines of a magnet cup assembly as described further herein are for the most part self-contained. As magnetic flux lines form closed loops, they originate from a magnet's North pole, travel through a medium—for example, air, a steel part, or another permanent magnet—and return to the magnet's South pole. Within the magnet, the flux lines return to the North pole to close the loop.
In the present example, the magnetic flux loops flow in two generally definable regions. One region is the in the locality of the cup lip, shown at 303, where the loop links the cup lip to the magnet 101 circumference. The other region is at the boundaries of two opposite magnet poles, 304.
In both regions, if the sizing is appropriate, the magnetic flux line loops link the magnetic cup assembly 100 to the corresponding ferromagnetic member 200, thus forming a strong bond between the two, and creates high pull force. Due to the equality of the magnetic flux surrounding the North and South poles of the magnet 101, the magnet cup assembly 100 exhibits substantial magnetic neutrality at a short distance away from the cup opening, 305. The magnetic neutrality distance may be determined by the magnet size and the amplitude of the magnetic field generated by the magnet. The magnet should therefore have a size and field amplitude suitable for the particular application of the magnet cup. The magnetic flux line self-containment and the magnetic neutrality keep the leakage field to the surroundings low, and thus may substantially eliminate interference with electronics or magnetic sensors located away from the magnet cup assembly 100 in the area 301 below the cup assembly 100.
The magnetic field magnitude inside the cup wall and the cup bottom is not uniform, and can affect the leakage field in the surroundings. The magnetic field near the bottom corner of the cup, shown at 302, is high. The other area where the internal magnetic field is high is in the area below the boundaries between opposite magnet poles, shown at 306. It is important to keep the magnetic field in these regions, 302, 306 below the saturation level of the ferromagnetic material from which the cup 102 is made, so the magnetic flux lines do not leak out of the cup 102 into the surrounding environment, thereby contributing to the surrounding leakage field.
While the invention has been described with respect to a limited number of embodiments, those skilled in the art, having benefit of this disclosure, will appreciate that other embodiments can be devised which do not depart from the scope of the invention as disclosed herein. Accordingly, the scope of the invention should be limited only by the attached claims.
Priority is claimed from U.S. Provisional Application No. 61/501,833 filed on Jun. 28, 2011, which application is hereby incorporated by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
61501833 | Jun 2011 | US |