Magnetic dendrometer

Information

  • Patent Grant
  • D1021580
  • Patent Number
    D1,021,580
  • Date Filed
    Thursday, December 2, 2021
    3 years ago
  • Date Issued
    Tuesday, April 9, 2024
    9 months ago
Abstract
Description

This application is supported by the USDA National Institute of Food and Agriculture, Hatch project NI18HFPXXXXXG055 and the National. Science Foundation award #1832170. The Government may have some interest in this application.



FIG. 1 illustrates a top isometric view of a magnetic dendrometer, showing a 3D view of the design.



FIG. 2 illustrates a top orthogonal view thereof.



FIG. 3 illustrates a bottom orthogonal view thereof.



FIG. 4 illustrates a back orthogonal view thereof.



FIG. 5 illustrates a side orthogonal view thereof; and,



FIG. 6 illustrates a front orthogonal view thereof.


The described article is a dendrometer for measuring and quantifying water stress in agricultural, horticultural and wild plants. The described dendrometer employs a movable magnet and a stationary magnetic sensor for determining plant stem expansion and contraction.


Claims
  • The ornamental design for a magnetic dendrometer, as shown and described.
US Referenced Citations (26)
Number Name Date Kind
466986 Van Roden Jan 1892 A
D30194 Bristol Feb 1899 S
911729 Jones Feb 1909 A
1385139 MacDougal Jul 1921 A
1978682 Marvin Oct 1934 A
2191808 Schramm Feb 1940 A
2236443 Oboler Mar 1941 A
2416664 Ruge Feb 1947 A
D158239 Wills Apr 1950 S
2815424 Painter Dec 1957 A
2924019 Verner Feb 1960 A
3303572 Vreeland, Jr. Feb 1967 A
3937212 Fletcher Feb 1976 A
4290311 Brewer Sep 1981 A
4549355 Sauer Oct 1985 A
5067246 Hesske Nov 1991 A
5774999 Smith Jul 1998 A
5809660 Bitterlich Sep 1998 A
6009631 Gensler Jan 2000 A
7398602 Cohen Amar Jul 2008 B2
9149009 Edgington Oct 2015 B2
9377288 DeLucia et al. Jun 2016 B2
20060123647 Amar Jun 2006 A1
20140360037 DeLucia Dec 2014 A1
20150116092 Yang Apr 2015 A1
20230175830 Clonch Jun 2023 A1
Non-Patent Literature Citations (22)
Entry
High precision zero-friction magnetic dendrometer; Cameron Clonch, et al.; sciencedirect.com; Jun. 2, 2021; Accessed Jun. 23, 2023; URL:<https://www.sciencedirect.com/science/article/pii/S246806722100078X> (Year: 2021).
“Dendrometers.” Edaphic Scientific. https://www.edaphic.com.au/products/Dendrometers/ (accessed Jun. 21, 2020).
“Dex Fruit Dendrometers” ICT International. https://ictinternational.com/products/dex-fruit-dendrometers/dex-fruit-dendrometers/ (accessed Nov. 2021).
“Home of the Point Dendrometers” Natkon. https://natkon.ch/ (accessed Jun. 20, 2020).
AS5311 High Resolution Magnetic Linear Encoder, 13th ed., AMS, Premstaetten, Austria. Available: https://www.mouser.com/datasheet/2/588/AS5311_DS000200_2-00-263458.pdf (33 pages).
“Coefficients of Linear Thermal Expansion.” Engineering Toolbox. https://www.engineeringtoolbox.com/linear-expansion-coefficients-d_95.html (accessed Dec. 12, 2020).
Conesa, M. et al., “Maximum daily trunk shrinkage and daily stem water potential reference equations for irrigation scheduling in table grapes,” in Agricultural Water Management vol. 172(1), pp. 51-61, Jul. 2016. Available: http://dx.doi.org/10.1016/j.agwat.2016.04.011.
Dong, C. et al., “Evaluation of thermal expansion coefficient of carbon fiber reinforced composites using electronic speckle interferometry,” Optics Express, vol. 25(1), pp. 531-543 (2018). Available: https://doi.org/10.1364/OE.26.000531.
Fernandez, J. et al., “Irrigation scheduling from stem diameter variations: A review,” in Agricultural and Forest Meteorology (Elsevier), vol. 150, Issue 2, Feb. 15, 2010, pp. 135-151. Nov. 2009. [Online]. Available: http://dx.doi.org/10.1016/j.agrformet.2009.11.006.
Gambetta et al., “The physiology of drought stress in grapevine: towards an integrative definition of drought tolerance,” Journal of Experimental Botany, vol. 71, Issue 16, Aug. 6, 2020, pp. 4658-4676, https://doi.org/10.1093/jxb/eraa245.
Global Tree Growth Project, “Dendrometer observations of short-term tree growth” Smithsonian Environmental Research Center. https://serc.si.edu/research/projects/global-tree-growth-project (accessed Feb. 19, 2021).
ICT International, Large Stem Point Dendrometer. Available: https://www.ictinternational.com/products/large-stem-point-dendrometer/large-stem-point-dendrometer/ Accessed Nov. 12, 2021, 4 pages.
Intrigliolo, D. et al., “Evaluation of grapevine water status from trunk diameter variations” in Irrigation Science, vol. 26, Issue 1, pp. 49-59, Sep. 2007. [Online]. Available: http://dx.doi.org/10.1007/s00271-007-0071-2.
Levin, A., “Re-evaluating pressure chamber methods of water status determination in field-grown grapevine (Vitis spp.)” in Agricultural Water Management vol. 221 pp. 422-429, Jul. 20, 2019. Available: doi: 10.1016/j.agwat.2019.03.026.
Matthews, M. et al., “Dependence of Wine Sensory Attributes on Vine Water Status”. 2019. Journal of the Science of Food and Agriculture, vol. Issue 3, pp. 321-335. Available: https://doi.org/10.1002/jsfa.2740510305.
McCutchan, H., et al. “Stem-water Potential as a Sensitive Indicator of Water Stress in Prune Trees (Prunus domestica L. cv. French)” in Journal of the American Society for Horticultural Science. vol. 117)4), pp. 607-611 (5 pages). 1992. Available: https://doi.org/10.21273/JASHS.117.4.607v.
Pearsall, K. et al., “Evaluating the potential of a novel dual heat-pulse sensor to measure volumetric water use in grapevines under a range of flow conditions”. 2014. Functional Plant Biology, vol. 41(8), pp. 874-883. Available: doi: 10.1071/FP13156.
Santesteban, L. et al., “Discrimination ability of leaf and stem water potential at different times of the day through a meta-analysis in grapevine (Vitis vinifera L.)” in Agricultural Water Management vol. 221, pp. 202-210, Jul. 20, 2019. Available: doi: 10.1016/j.agwat.2019.04.020.
Temnani, A. et al., “Irrigation Protocols in Different Water Availability Scenarios for ‘Crimson Seedless’ Table Grapes under Mediterranean Semi-Arid Conditions,” Water 2021, vol. 13, Issue 1, p. 22. Available: https://dx.doi.org/10.3390/w13010022.
Wang, J. et al., “New Inexpensive Dendrometers for Monitoring Crop Tree Growth” Irrigation Toolbox. Nov. 2008, 24 pages. Available: http://irrigationtoolbox.com/ReferenceDocuments/TechnicalPapers/IA/2008/2124translated.pdf.
Williams, L. et al., “Relationship among Ambient Temperature and Vapor Pressure Deficit and Leaf and Stem Water Potentials of Fully Irrigated, Field-Grown Grapevines” in American Journal of Enology and Viticulture, vol. 58(2), 10 pages. Jun. 2007.
WSL, (28) Point dendrometer. Available: https://www.wsl.ch/en/about-wsl/instrumented-field-sites-and-laboratories/lwf-demonstration-site/20-vegetation-and-biodiversity/28-point-dendrometer.html. Accessed Nov. 12, 2021. 2 pages.