Magnetic device formed with U-shaped core pieces and power converter employing the same

Information

  • Patent Grant
  • 9019061
  • Patent Number
    9,019,061
  • Date Filed
    Wednesday, March 31, 2010
    14 years ago
  • Date Issued
    Tuesday, April 28, 2015
    9 years ago
Abstract
A magnetic device formed with U-shaped core pieces employable in a power converter, and a method of forming the same. In one embodiment, the magnetic device includes a rectilinear core piece formed of a magnetic material, and first and second U-shaped core pieces positioned on the rectilinear core piece. The magnetic device also includes first and second conductive windings formed about the first and second U-shaped core pieces, respectively.
Description
TECHNICAL FIELD

The present invention is directed, in general, to power electronics and, more specifically, to a magnetic device employable in a power converter.


BACKGROUND

A switched-mode power converter (also referred to as a “power converter” or “regulator”) is a power supply or power processing circuit that converts an input voltage waveform into a specified output voltage waveform. DC-DC power converters convert a direct current (“dc”) input voltage into a dc output voltage. Controllers associated with the power converters manage an operation thereof by controlling the conduction periods of power switches employed therein. Generally, the controllers are coupled between an input and output of the power converter in a feedback loop configuration (also referred to as a “control loop” or “closed control loop”).


To produce a dc output voltage, power converters employ magnetic devices such as inductors and transformers. A high-frequency alternating current (“ac”) voltage is applied to a winding of the magnetic device that is typically converted to another voltage level by an inductive action of the magnetic device. The converted voltage level is rectified by a diode or an active semiconductor device to produce the dc output voltage.


To produce a high level of power conversion efficiency, magnetic devices are often formed with windings wound in a single layer to reduce the proximity effect produced by high-frequency currents flowing in a proximate winding turn. The proximity effect causes high-frequency currents to flow predominantly in only a portion of a conductive winding, thereby increasing the effective resistance of the winding.


Magnetic devices are conventionally constructed with rectilinear core pieces such as “E” and “I” core pieces employed to form a high-frequency transformer or inductor. From practical manufacturing considerations, such designs require that a single-layer winding be formed on the vertical walls of the “E” portion of the magnetic core. Designs with such winding structures do not utilize the horizontal walls of the “E” or the “I” core pieces of the magnetic core, and accordingly introduce a high level of power losses.


Accordingly, what is needed in the art is a physical structure for a magnetic device and related method that provides a configuration to enable a wider distribution of winding turns to avoid the deficiencies in the prior art.


SUMMARY OF THE INVENTION

These and other problems are generally solved or circumvented, and technical advantages are generally achieved, by advantageous embodiments of the present invention, including a magnetic device formed with U-shaped core pieces employable in a power converter, and a method of forming the same. In one embodiment, the magnetic device includes a rectilinear core piece formed of a magnetic material, and first and second U-shaped core pieces positioned on the rectilinear core piece. The magnetic device also includes first and second conductive windings formed about the first and second U-shaped core pieces, respectively.


The foregoing has outlined rather broadly the features and technical advantages of the present invention in order that the detailed description of the invention that follows may be better understood. Additional features and advantages of the invention will be described hereinafter, which form the subject of the claims of the invention. It should be appreciated by those skilled in the art that the conception and specific embodiment disclosed may be readily utilized as a basis for modifying or designing other structures or processes for carrying out the same purposes of the present invention. It should also be realized by those skilled in the art that such equivalent constructions do not depart from the spirit and scope of the invention as set forth in the appended claims.





BRIEF DESCRIPTION OF THE DRAWINGS

For a more complete understanding of the present invention, reference is now made to the following descriptions taken in conjunction with the accompanying drawings, in which:



FIG. 1 illustrates a block diagram of an embodiment of a power converter constructed according to the principles of the present invention;



FIGS. 2 to 4 illustrate schematic diagrams of exemplary power trains employable in a power converter constructed according to the principles of the present invention; and



FIGS. 5 to 9 illustrate diagrams of embodiments of magnetic devices constructed according to the principles of the present invention.





Corresponding numerals and symbols in the different figures generally refer to corresponding parts unless otherwise indicated, and may not be redescribed in the interest of brevity after the first instance. The FIGUREs are drawn to illustrate the relevant aspects of exemplary embodiments.


DETAILED DESCRIPTION OF ILLUSTRATIVE EMBODIMENTS

The making and using of the present exemplary embodiments are discussed in detail below. It should be appreciated, however, that the present invention provides many applicable inventive concepts that can be embodied in a wide variety of specific contexts. The specific embodiments discussed are merely illustrative of specific ways to make and use the invention, and do not limit the scope of the invention.


The present invention will be described with respect to exemplary embodiments in a specific context, namely, a magnetic device including a U-shaped core piece, and a method of forming the same. The magnetic device including a U-shaped core piece provides improved power conversion efficiency by accommodating a larger physical space for turns of a single-layer winding of a conductive material formed thereabout. While the principles of the present invention will be described in the environment of a magnetic device for a power converter, any application that may benefit from a magnetic device such as a power amplifier or a motor controller is well within the broad scope of the present invention.


Referring initially to FIG. 1, illustrated is a block diagram of an embodiment of a power converter including a magnetic device constructed according to the principles of the present invention. The power converter is coupled to a source of electrical power such as an ac mains represented by the ac power source providing an input voltage Vin. The power converter includes a power train 105 that is controlled by a controller 110. The controller 110 generally measures an operating characteristic of the power converter such as an output voltage Vc and controls a duty cycle D of one or more power switches therein in response to the measured operating characteristic to regulate the characteristic. The power converter may form a section of a power supply and provide power to another subsystem thereof, such as an isolating dc-dc power converter coupled to an output thereof that provides a regulated voltage to a load. The power train 105 may employ a boost topology as described herein. The power train 105 of the power converter includes a plurality of power switches coupled to a magnetic device to provide the power conversion function.


Turning now to FIG. 2, illustrated is a schematic diagram of an exemplary power train (including a boost topology) 201 employable in a power converter constructed according to the principles of the present invention. The power train 201 of the power converter receives an input voltage Vin (e.g., an unregulated ac input voltage) from a source of electrical power such as ac mains at an input thereof and provides a regulated output voltage VC at output terminals 205, 206 of the power converter. In keeping with the principles of a boost topology, the output voltage VC is generally higher than the input voltage Vin such that a switching operation thereof can regulate the output voltage VC. A main power switch S1, (e.g., an N-channel metal-oxide semiconductor (“NMOS”) active switch or switch) is enabled to conduct by a gate drive signal GD for a primary interval and couples the input voltage Vin through a rectifier bridge 203 to a boost inductor Lboost. During a primary interval D, an input current iin increases and flows through the boost inductor Lboost to local circuit ground. The boost inductor Lboost is generally formed with a single-layer winding to reduce the proximity effect to increase the efficiency of the power converter.


The duty cycle for the power train 201 depends in steady state on the ratio of the input and output voltages Vin, Vc, respectively, according to the equation:






D
=

1
-



V
in


V
c


.






During a complementary interval 1-D, the main power switch S1 is transitioned to a non-conducting state and an auxiliary power switch (e.g., the diode D1) conducts. In an alternative circuit arrangement, the auxiliary power switch D1 may include a second active power switch that is controlled to conduct by a complementary gate drive signal. The auxiliary power switch D1 provides a path to maintain the continuity of the input current iin flowing through the boost inductor Lboost. During the complementary interval 1-D, the input current iin, flowing through the boost inductor Lboost decreases, and may become zero and remain zero for a period of time resulting in a “discontinuous conduction mode” of operation.


During the complementary interval 1-D, the input current iin flowing through the boost inductor Lboost flows through the diode D1 (i.e., the auxiliary power switch) into an output filter capacitor C. In general, the duty cycle of the main power switch S1 (and the complementary duty cycle of the auxiliary power switch D1) may be adjusted to maintain a regulation of the output voltage VC of the power converter. Those skilled in the art understand that conduction periods for the main and auxiliary power switches S1, D1 may be separated by a small time interval by the use of “snubber” circuit elements (not shown) or by control circuit timing to avoid cross conduction current therebetween, and beneficially to reduce the switching losses associated with the power converter. Circuit and control techniques to avoid cross conduction currents between power switches are well understood in the art and will not be described further in the interest of brevity. The boost inductor Lboost is preferably formed with a single-layer winding as described previously hereinabove to reduce power loss associated with the proximity effect.


Turning now to FIG. 3, illustrated is a schematic diagram of an exemplary power train (including a boost topology) 300 employable in a power converter constructed according to the principles of the present invention. The power train 300 includes a first boost regulator subcircuit including a first boost inductor Lboost1, a first diode D1, and a first power switch S1 that receives a first drive signal GDS1. The power train 300 includes a second boost regulator subcircuit including a second boost inductor Lboost2, a second diode D2, and a second power switch S2 that receives a second drive signal GDS2. The first and second boost regulator subcircuits are generally controlled to operate roughly 180 degrees out of phase with respect to each other. Out-of-phase operation of the boost regulator subcircuits provides an interleaving effect that doubles the ripple frequency and reduces the ripple magnitude for the current drawn from a rectifier bridge 303 and hence an ac input current iin. A similar effect is achieved for the current supplied to the output filter capacitor C. The reduction of switching ripple magnitude in the input current iin helps reduce filtering requirements for an input filter (not shown) to reduce undesirable high-frequency components that may be conducted back to a source of electrical power such as an ac mains. Substantial benefits accrue from the interleaving effects between the two boost regulator subcircuits. The first and second boost inductors Lboost1, Lboost2 are formed with single-layer windings in a magnetic structure. Remaining circuit elements in FIG. 3 and in following FIGUREs that are similar to those in FIG. 2 and will not be described again in the interest of brevity.


Turning now to FIG. 4, illustrated is a schematic diagram of an exemplary power train employable in a power converter constructed according to the principles of the present invention. More specifically, the power train employs a boost topology with two interleaved boost regulator subcircuits and a boost inductor Lboost formed by a magnetic device. The magnetic device includes a common conductive winding or winding NC (coupled between terminals 1 and 2 of the magnetic device), a first conductive winding or winding NS1 (coupled between terminals 2 and 3), and a second conductive winding or winding NS2 (coupled between terminals 2 and 4). The first and second windings NS1, NS2 are electrically and magnetically coupled to the common winding NC. In an exemplary embodiment, the first and second windings NS1, NS2 have equal numbers of turns and will hereinafter be represented with a reference symbol NS. Dots are illustrated in FIG. 4 adjacent to the windings to indicate the sense of each winding (i.e., the winding direction and the sense of the magnetically induced voltage therein).


In an exemplary embodiment, the interleaved boost regulator subcircuits are controlled by a control circuit or controller (not shown) to provide an input current with high-power factor. One boost regulator subcircuit includes a first diode D1 and a first power switch S1, and a portion of the magnetic device that includes the common winding Nc and the first winding NS1. The other boost regulator subcircuit includes a second diode D2 and a second power switch S2, and a portion of the magnetic device that includes the common winding Nc and the second winding NS2. The output currents i1, i2 from the boost regulator subcircuits of the power train are interleaved and flow through the first and second diodes D1, D2, respectively, into an output filter capacitor C. Similarly, the input currents to the boost regulator subcircuits are interleaved and form the input current iin, through the common winding Nc. The first and second power switches S1, S2 are controlled by first and second control signals GDS, GDS2, respectively, to provide duty-cycle control for each of the two interleaved boost regulator subcircuits. The first and second control signals GDS1, GDS2 may be controlled 180 degrees out of phase with respect to each other, and provide a common duty cycle D for each boost regulator subcircuit. A load, represented by current source 408 is coupled to output terminals 405, 406 of the power converter and draws an output current io.


A common winding NC with selected turns has been described herein as being formed around a center leg of a magnetic core of the magnetic device. In an alternative embodiment, the common winding NC with selected turns may be formed around a common leg of a magnetic core that is not geometrically a center leg. Thus, the terms “center” and “common” as illustrated and used herein with reference to a leg of a magnetic core have a similar meaning, and include a leg of a magnetic core that may not be geometrically located as a center leg.


Turning now to FIG. 5, illustrated is a diagram of an embodiment of a magnetic device constructed according to the principles of the present invention. The magnetic device is a boost inductor Lboost with rectilinear construction and with single-layer windings. The magnetic device includes the common winding Nc wound around a common leg 505 of the magnetic core, which may be a center leg of the magnetic core, and be electrically and magnetically coupled to first and second windings NS1, NS2, each formed in a single layer, and each wound around separate legs (e.g., first and second outer legs 510, 515, respectively) of the magnetic core. A common flux φc flows through the common leg 505 of the magnetic core. First and second fluxes φ1, φ2 flow through the first and second outer legs 510, 515, respectively, of the magnetic core. The first and second windings NS1, NS2 are each conventionally formed as a single layer on the vertical walls of the “E” portion of the magnetic core, which limits the electrical conductivity of these windings.


Terminals 1, 2, 3, and 4 of the magnetic device illustrated in FIG. 5 correspond to terminals similarly numbered and described with reference to FIG. 4. In the embodiment of the magnetic device illustrated in FIG. 5, a gap 520 (e.g., an air gap or a gap of other substantially nonmagnetic material) is formed between an upper surface of the common leg 505 and a lower surface of an upper cross-member 525 of the magnetic core. In an alternative embodiment, gaps, preferably of equal length, can be formed between the upper surfaces of the first and second outer legs 510, 515 and/or the lower surface of the upper cross-member 525. In further embodiments, gaps, not all necessarily of equal length, can be formed between upper surfaces of all the legs 505, 510, 515 and the lower surface of the upper cross-member 525. The sense of the winding directions is illustrated by the drawings of the windings NC, NS1, NS2 in FIG. 5. Of course, the sense of all the windings NC, NS1, NS2 can be reversed to produce the same result, but with magnetic fluxes flowing in opposite directions. In a further alternative embodiment of a magnetic device, the first and second windings NS1, NS2 can be electrically coupled together external to the magnetic device. In a further alternative embodiment of a magnetic device, the common winding NC can be separated into two winding parts that can be electrically coupled together external to the magnetic device.


Turning now to FIG. 6, illustrated is a diagram of an embodiment of a magnetic device constructed according to the principles of the present invention. The magnetic device includes first and second U-shaped core pieces 602, 603, separated by a rectilinear core piece or central rectilinear core piece 601 (formed of a magnetic material). The first and second U-shaped core pieces 602, 603 form a portion of a toroidal core and are preferably formed of high permeability magnetic material, such as a soft ferrite. The conductive windings, such as first and second conductive windings or windings Ns1, Ns2, are each formed about, along substantially the full span or substantially an entire curved length of the first and second U-shaped core pieces 602, 603, respectively. A third conductive winding or winding (e.g., a common or center conductive winding) Nc is formed about the rectilinear core piece 601, and is electrically coupled to said first and second conductive windings Ns1, Ns2. The magnetic device illustrated herein integrates and couples three inductors into one magnetic device.


Turning now to FIG. 7, illustrated is a diagram of an embodiment of a magnetic device constructed according to the principles of the present invention. The magnetic device includes first and second U-shaped core pieces 702, 703. The first and second U-shaped core pieces 702, 703 are now positioned on a common surface of a rectilinear core piece or central rectilinear core piece 701. The first and second U-shaped core pieces 702, 703 are again preferably formed of high permeability magnetic material, such as a magnetic material with a relative permeability greater than 50. For example, and without limitation, the first and second U-shaped core pieces 702, 703 may be formed of a soft ferrite. The first and second conductive windings or windings Ns1, Ns2, may each be formed about or along substantially the full span of the first and second U-shaped core pieces 702, 703, respectively. To simplify the drawing illustrated in FIG. 7, the first and second conductive windings Ns1, Ns2 are illustrated spanning only a portion of the first and second U-shaped core pieces 702, 703, respectively. A third conductive winding or winding (e.g., a common or center conductive winding) Nc, which may be formed as a staple, is again formed about the rectilinear core piece 701.


As indicated illustrated in FIG. 5, the center leg 505 of the magnetic device includes a gap or low-permeability “spacer” 520 in which a substantial portion of the magnetic energy of the magnetic device is stored. In order to reduce mismatch of magnetic flux in the first and second U-shaped core pieces of FIGS. 6 and 7 due to currents flowing in the first and second conductive windings Ns1, Ns2, respectively, gaps may be included in the flux paths of the outer legs formed by the first and second U-shaped core pieces. A gap can be formed, without limitation, of a nonmagnetic material or a magnetic material of low permeability such as air, a plastic material, or a powdered soft ferrite distributed in a nonmagnetic matrix such as a resin or an epoxy.


Turning now to FIG. 8, illustrated is a diagram of an embodiment of a magnetic device constructed according to the principles of the present invention. The magnetic device includes first and second U-shaped core pieces 802, 803 positioned on a common surface of the rectilinear core piece or central rectilinear core piece 801. First and second gaps 804, 805, which may be formed of nonmagnetic spacers, are positioned between the first and second U-shaped core pieces 802, 803, respectively, and the rectilinear core piece 801 to reduce mismatch of magnetic flux in the first and second U-shaped core pieces 802, 803 due to currents flowing in first and second conductive windings Ns1, Ns2. Again, a third conductive winding or winding (e.g., a common or center conductive winding) Nc is formed about the rectilinear core piece 801.


Turning now to FIG. 9, illustrated is a diagram of an embodiment of a magnetic device constructed according to the principles of the present invention. The magnetic device includes first and second U-shaped core pieces 902, 903 positioned on a common surface of a rectilinear core piece or central rectilinear core piece 901. The rectilinear core piece 901 is constructed of magnetic material with a distributed gap. In other words, it is constructed of a magnetic material with a lower relative permeability than the relative permeability of the first and second U-shaped core pieces 902, 903, such as a powdered soft ferrite distributed in a nonmagnetic matrix such as a resin or an epoxy. In this manner, a gap is formed in series with flux flowing in a common or center leg (e.g., the rectilinear core piece 901) of the magnetic structure, as well as gaps formed in series with flux flowing in the outer legs (e.g., the first and second U-shaped core pieces 902, 903). Such use of disparate magnetic materials, such as a higher relative magnetic permeability of the first and second U-shaped core pieces 902, 903 compared to the relative magnetic permeability of the rectilinear core piece 901, enables construction of a magnetic structure without the need to insert physical spacers to produce series low-permeability gaps, and without the need to accurately shorten the center or common leg of an “E” core piece to produce a series air gap for a flux flowing therein, thereby reducing a manufacturing cost.


Thus, a magnetic device including a U-shaped core piece, and a method of forming the same has been introduced herein. In one embodiment, the magnetic device includes a rectilinear core piece formed of a magnetic material. The rectilinear core piece may be formed with a distributed air gap. The magnetic device also includes first and second U-shaped core pieces formed of a high relative permeability magnetic material and positioned on the rectilinear core piece. The first and second U-shaped core pieces may be positioned on a common surface of the rectilinear core piece, and may form a portion of a toroidal core. A nonmagnetic spacer may be positioned between one of the first and second U-shaped core pieces and a surface of the rectilinear core piece. Typically, a relative permeability of the rectilinear core piece is substantially lower than the relative permeability of the first and second U-shaped core pieces.


The magnetic device also includes first and second conductive windings formed about the first and second U-shaped core pieces, respectively. The first and second conductive windings may be formed over substantially an entire curved length of the first and second U-shaped core pieces, respectively. The magnetic device may also include a third conductive winding (e.g., a common or center conductive winding, or as a staple) formed about the rectilinear core piece, and electrically coupled to the first and second conductive windings.


Those skilled in the art should understand that the previously described embodiments of a power converter including a magnetic device including U-shaped core pieces positioned on a rectilinear core piece and related methods of forming the same are submitted for illustrative purposes only. While a magnetic structure has been described in the environment of a power converter, the magnetic structure may also be applied to other systems such as, without limitation, a power amplifier and a motor controller.


For a better understanding of power converters, see “Modern DC-to-DC Power Switch-mode Power Converter Circuits,” by Rudolph P. Severns and Gordon Bloom, Van Nostrand Reinhold Company, New York, N.Y. (1985) and “Principles of Power Electronics,” by J. G. Kassakian, M. F. Schlecht and G. C. Verghese, Addison-Wesley (1991). The aforementioned references are incorporated herein by reference in their entirety.


Also, although the present invention and its advantages have been described in detail, it should be understood that various changes, substitutions and alterations can be made herein without departing from the spirit and scope of the invention as defined by the appended claims. For example, many of the processes discussed above can be implemented in different methodologies and replaced by other processes, or a combination thereof.


Moreover, the scope of the present application is not intended to be limited to the particular embodiments of the process, machine, manufacture, composition of matter, means, methods, and steps described in the specification. As one of ordinary skill in the art will readily appreciate from the disclosure of the present invention, processes, machines, manufacture, compositions of matter, means, methods, or steps, presently existing or later to be developed, that perform substantially the same function or achieve substantially the same result as the corresponding embodiments described herein may be utilized according to the present invention. Accordingly, the appended claims are intended to include within their scope such processes, machines, manufacture, compositions of matter, means, methods, or steps.

Claims
  • 1. A magnetic device, comprising: a rectilinear core piece formed of a magnetic material;first and second U-shaped core pieces with a bottom surface of ends thereof positioned on a common surface of said rectilinear core piece, a relative permeability of said rectilinear core piece being substantially lower than a relative permeability of said first and second U-shaped core pieces;first and second conductive windings formed about said first and second U-shaped core pieces, respectively; anda third conductive winding formed about said rectilinear core piece and electrically coupled to said first and second conductive windings at a common terminal.
  • 2. The magnetic device as recited in claim 1 wherein said first and second conductive windings are formed over substantially an entire curved length of said first and second U-shaped core pieces, respectively.
  • 3. The magnetic device as recited in claim 1 wherein said first and second U-shaped core pieces are formed with a soft ferrite.
  • 4. The magnetic device as recited in claim 1 further comprising a nonmagnetic spacer positioned between said bottom surface of said ends of at least one of said first and second U-shaped core pieces and said common surface of said rectilinear core piece.
  • 5. The magnetic device as recited in claim 1 wherein said first and second U-shaped core pieces are separated by a portion of said common surface of said rectilinear core piece.
  • 6. The magnetic device as recited in claim 1 wherein said third conductive winding is formed as a staple.
  • 7. The magnetic device as recited in claim 1 wherein said first and second conductive windings are formed as a single layer about said first and second U-shaped core pieces, respectively.
  • 8. The magnetic device as recited in claim 1 wherein said rectilinear core piece is formed with a distributed gap.
  • 9. The magnetic device as recited in claim 1 wherein said first and second conductive windings are first and second secondary windings and said third conductive winding is a common winding coupled thereto.
  • 10. The magnetic device as recited in claim 1 wherein said first and the second U-shaped core pieces are each formed as a portion of a toroidal core.
  • 11. A method of forming a magnetic device, comprising: providing a rectilinear core piece of a magnetic material;positioning a bottom surface of ends of first and second U-shaped core pieces on a common surface of said rectilinear core piece, a relative permeability of said rectilinear core piece being substantially lower than a relative permeability of said first and second U-shaped core pieces;forming first and second conductive windings about said first and second U-shaped core pieces, respectively; andforming a third conductive winding about said rectilinear core piece and electrically coupled to said first and second conductive windings at a common terminal.
  • 12. The method as recited in claim 11 wherein said first and second conductive windings are formed over substantially an entire curved length of said first and second U-shaped core pieces, respectively.
  • 13. The method as recited in claim 11 wherein said first and second U-shaped core pieces formed with a soft ferrite.
  • 14. The method as recited in claim 11 further comprising positioning a nonmagnetic spacer between said bottom surface of said ends of at least one of said first and second U-shaped core pieces and said common surface of said rectilinear core piece.
  • 15. The method as recited in claim 11 wherein said first and second U-shaped core pieces are separated by a portion of said common surface of said rectilinear core piece.
  • 16. The method as recited in claim 11 wherein said third conductive winding is formed as a staple.
  • 17. The method as recited in claim 11 wherein said first and second conductive windings are formed as a single layer about said first and second U-shaped core pieces, respectively.
  • 18. The method as recited in claim 11 wherein said rectilinear core piece is formed with a distributed gap.
  • 19. The method as recited in claim 11 wherein said first and second conductive windings are first and second secondary windings and said third conductive winding is a common winding coupled thereto.
  • 20. The method as recited in claim 11 wherein said first and the second U-shaped core pieces are each formed as a portion of a toroidal core.
Parent Case Info

This application claims the benefit of U.S. Provisional Application No. 61/165,184, entitled “Magnetic Device Formed With U-Shaped Core Pieces and Power Converter Employing The Same,” filed on Mar. 31, 2009, which application is incorporated herein by reference.

US Referenced Citations (400)
Number Name Date Kind
1376978 Stoekle May 1921 A
2473662 Pohm Jun 1949 A
3007060 Guenther Oct 1961 A
3142809 Remenyik Jul 1964 A
3346798 Dinger Oct 1967 A
3358210 Grossoehme Dec 1967 A
3433998 Woelber Mar 1969 A
3484562 Kronfeld Dec 1969 A
3546571 Fletcher et al. Dec 1970 A
3553620 Cielo et al. Jan 1971 A
3602795 Gunn Aug 1971 A
3622868 Todt Nov 1971 A
3659191 Spreadbury Apr 1972 A
3681679 Chung Aug 1972 A
3708742 Gunn Jan 1973 A
3708744 Stephens et al. Jan 1973 A
4019122 Ryan Apr 1977 A
4075547 Wroblewski Feb 1978 A
4202031 Hesler et al. May 1980 A
4257087 Cuk Mar 1981 A
4274071 Pfarre Jun 1981 A
4327348 Hirayama Apr 1982 A
4393157 Roberge et al. Jul 1983 A
4471423 Hase Sep 1984 A
4499481 Greene Feb 1985 A
4570174 Huang et al. Feb 1986 A
4577268 Easter et al. Mar 1986 A
4581691 Hock Apr 1986 A
4613841 Roberts Sep 1986 A
4636823 Margalit et al. Jan 1987 A
4660136 Montorefano Apr 1987 A
4770667 Evans et al. Sep 1988 A
4770668 Skoultchi et al. Sep 1988 A
4785387 Lee et al. Nov 1988 A
4799138 Chahabadi et al. Jan 1989 A
4803609 Gillett et al. Feb 1989 A
4823249 Garcia, II Apr 1989 A
4837496 Erdi Jun 1989 A
4853668 Bloom Aug 1989 A
4866367 Ridley et al. Sep 1989 A
4876638 Silva et al. Oct 1989 A
4887061 Matsumura Dec 1989 A
4899271 Seiersen Feb 1990 A
4903089 Hollis et al. Feb 1990 A
4922400 Cook May 1990 A
4962354 Visser et al. Oct 1990 A
4964028 Spataro Oct 1990 A
4999759 Cavagnolo et al. Mar 1991 A
5003277 Sokai et al. Mar 1991 A
5027264 DeDoncker et al. Jun 1991 A
5068756 Morris et al. Nov 1991 A
5106778 Hollis et al. Apr 1992 A
5126714 Johnson Jun 1992 A
5132888 Lo et al. Jul 1992 A
5134771 Lee et al. Aug 1992 A
5172309 DeDoncker et al. Dec 1992 A
5177460 Dhyanchand et al. Jan 1993 A
5182535 Dhyanchand Jan 1993 A
5204809 Andresen Apr 1993 A
5206621 Yerman Apr 1993 A
5208739 Sturgeon May 1993 A
5223449 Morris et al. Jun 1993 A
5225971 Spreen Jul 1993 A
5231037 Yuan et al. Jul 1993 A
5244829 Kim Sep 1993 A
5262930 Hua et al. Nov 1993 A
5282126 Husgen Jan 1994 A
5285396 Aoyama Feb 1994 A
5291382 Cohen Mar 1994 A
5303138 Rozman Apr 1994 A
5305191 Loftus, Jr. Apr 1994 A
5335163 Seiersen Aug 1994 A
5336985 McKenzie Aug 1994 A
5342795 Yuan et al. Aug 1994 A
5343140 Gegner Aug 1994 A
5353001 Meinel et al. Oct 1994 A
5369042 Morris et al. Nov 1994 A
5374887 Drobnik Dec 1994 A
5399968 Sheppard et al. Mar 1995 A
5407842 Morris et al. Apr 1995 A
5450307 Yasumura Sep 1995 A
5459652 Faulk Oct 1995 A
5461555 Kitajima et al. Oct 1995 A
5468661 Yuan et al. Nov 1995 A
5477175 Tisinger et al. Dec 1995 A
5508903 Alexndrov Apr 1996 A
5523673 Ratliff et al. Jun 1996 A
5539630 Pietkiewicz et al. Jul 1996 A
5554561 Plumton Sep 1996 A
5555494 Morris Sep 1996 A
5572079 Pinkerton Nov 1996 A
5581224 Yamaguchi Dec 1996 A
5610085 Yuan et al. Mar 1997 A
5624860 Plumton et al. Apr 1997 A
5663876 Newton et al. Sep 1997 A
5700703 Huang et al. Dec 1997 A
5712189 Plumton et al. Jan 1998 A
5719544 Vinciarelli et al. Feb 1998 A
5731666 Folker et al. Mar 1998 A
5734564 Brkovic Mar 1998 A
5736842 Jovanovic Apr 1998 A
5742491 Bowman et al. Apr 1998 A
5747842 Plumton May 1998 A
5756375 Celii et al. May 1998 A
5760671 Lahr et al. Jun 1998 A
5783984 Keuneke Jul 1998 A
5784266 Chen Jul 1998 A
5804943 Kollman et al. Sep 1998 A
5815383 Lei Sep 1998 A
5815386 Gordon Sep 1998 A
5864110 Moriguchi et al. Jan 1999 A
5870299 Rozman Feb 1999 A
5880942 Leu Mar 1999 A
5886508 Jutras Mar 1999 A
5889298 Plumton et al. Mar 1999 A
5889373 Fisher et al. Mar 1999 A
5889660 Taranowski et al. Mar 1999 A
5900822 Sand et al. May 1999 A
5907231 Watanabe et al. May 1999 A
5907481 Svärdsjö May 1999 A
5909110 Yuan et al. Jun 1999 A
5910665 Plumton et al. Jun 1999 A
5920475 Boylan et al. Jul 1999 A
5925088 Nasu Jul 1999 A
5929665 Ichikawa et al. Jul 1999 A
5933338 Wallace Aug 1999 A
5940287 Brkovic Aug 1999 A
5946207 Schoofs Aug 1999 A
5956245 Rozman Sep 1999 A
5956578 Weitzel et al. Sep 1999 A
5959850 Lim Sep 1999 A
5977853 Ooi et al. Nov 1999 A
5999066 Saito et al. Dec 1999 A
5999429 Brown Dec 1999 A
6003139 McKenzie Dec 1999 A
6008519 Yuan et al. Dec 1999 A
6011703 Boylan et al. Jan 2000 A
6038154 Boylan et al. Mar 2000 A
6046664 Weller et al. Apr 2000 A
6055166 Jacobs Apr 2000 A
6060943 Jansen May 2000 A
6067237 Nguyen May 2000 A
6069798 Liu May 2000 A
6069799 Bowman et al. May 2000 A
6078510 Spampinato et al. Jun 2000 A
6084792 Chen et al. Jul 2000 A
6094038 Lethellier Jul 2000 A
6097046 Plumton Aug 2000 A
6125046 Jang et al. Sep 2000 A
6144187 Bryson Nov 2000 A
6147886 Wittenbreder Nov 2000 A
6156611 Lan et al. Dec 2000 A
6160721 Kossives et al. Dec 2000 A
6163466 Davila, Jr. et al. Dec 2000 A
6181231 Bartilson Jan 2001 B1
6188586 Farrington et al. Feb 2001 B1
6191964 Boylan et al. Feb 2001 B1
6208535 Parks Mar 2001 B1
6215290 Yang et al. Apr 2001 B1
6218891 Lotfi et al. Apr 2001 B1
6229197 Plumton et al. May 2001 B1
6262564 Kanamori Jul 2001 B1
6288501 Nakamura et al. Sep 2001 B1
6288920 Jacobs et al. Sep 2001 B1
6295217 Yang et al. Sep 2001 B1
6304460 Cuk Oct 2001 B1
6309918 Huang et al. Oct 2001 B1
6317021 Jansen Nov 2001 B1
6317337 Yasumura Nov 2001 B1
6320490 Clayton Nov 2001 B1
6323090 Zommer Nov 2001 B1
6325035 Codina et al. Dec 2001 B1
6344986 Jain et al. Feb 2002 B1
6345364 Lee Feb 2002 B1
6348848 Herbert Feb 2002 B1
6351396 Jacobs Feb 2002 B1
6356462 Jang et al. Mar 2002 B1
6362986 Schultz et al. Mar 2002 B1
6373727 Hedenskog et al. Apr 2002 B1
6373734 Martinelli Apr 2002 B1
6380836 Matsumoto et al. Apr 2002 B2
6388898 Fan et al. May 2002 B1
6392902 Jang et al. May 2002 B1
6400579 Cuk Jun 2002 B2
6414578 Jitaru Jul 2002 B1
6438009 Assow Aug 2002 B2
6462965 Uesono Oct 2002 B1
6466461 Mao et al. Oct 2002 B2
6469564 Jansen Oct 2002 B1
6477065 Parks Nov 2002 B2
6483724 Blair et al. Nov 2002 B1
6489754 Blom Dec 2002 B2
6498367 Chang et al. Dec 2002 B1
6501193 Krugly Dec 2002 B1
6504321 Giannopoulos et al. Jan 2003 B2
6512352 Qian Jan 2003 B2
6525603 Morgan Feb 2003 B1
6539299 Chatfield et al. Mar 2003 B2
6545453 Glinkowski et al. Apr 2003 B2
6548992 Alcantar et al. Apr 2003 B1
6549436 Sun Apr 2003 B1
6552917 Bourdillon Apr 2003 B1
6563725 Carsten May 2003 B2
6570268 Perry et al. May 2003 B1
6580627 Toshio Jun 2003 B2
6597592 Carsten Jul 2003 B2
6608768 Sula Aug 2003 B2
6611132 Nakagawa et al. Aug 2003 B2
6614206 Wong et al. Sep 2003 B1
6654259 Koshita et al. Nov 2003 B2
6661276 Chang Dec 2003 B1
6668296 Dougherty et al. Dec 2003 B1
6674658 Mao et al. Jan 2004 B2
6683797 Zaitsu et al. Jan 2004 B2
6687137 Yasumura Feb 2004 B1
6696910 Nuytkens et al. Feb 2004 B2
6731486 Holt et al. May 2004 B2
6741099 Krugly May 2004 B1
6753723 Zhang Jun 2004 B2
6765810 Perry Jul 2004 B2
6775159 Webb et al. Aug 2004 B2
6784644 Xu et al. Aug 2004 B2
6804125 Brkovic Oct 2004 B2
6813170 Yang Nov 2004 B2
6831847 Perry Dec 2004 B2
6856149 Yang Feb 2005 B2
6862194 Yang et al. Mar 2005 B2
6867678 Yang Mar 2005 B2
6867986 Amei Mar 2005 B2
6873237 Chandrasekaran et al. Mar 2005 B2
6882548 Jacobs et al. Apr 2005 B1
6906934 Yang et al. Jun 2005 B2
6943553 Zimmermann Sep 2005 B2
6944033 Xu et al. Sep 2005 B1
6977824 Yang et al. Dec 2005 B1
6980077 Chandrasekaran et al. Dec 2005 B1
6982887 Batarseh et al. Jan 2006 B2
7009486 Goeke et al. Mar 2006 B1
7012414 Mehrotra et al. Mar 2006 B1
7016204 Yang et al. Mar 2006 B2
7026807 Anderson et al. Apr 2006 B2
7034586 Mehas et al. Apr 2006 B2
7034647 Yan et al. Apr 2006 B2
7046523 Sun et al. May 2006 B2
7061358 Yang Jun 2006 B1
7072189 Kim et al. Jul 2006 B2
7075799 Qu Jul 2006 B2
7076360 Ma Jul 2006 B1
7095638 Uusitalo Aug 2006 B2
7098640 Brown Aug 2006 B2
7099163 Ying Aug 2006 B1
7136293 Petkov et al. Nov 2006 B2
7148669 Maksimovic et al. Dec 2006 B2
7170268 Kim Jan 2007 B2
7176662 Chandrasekaran Feb 2007 B2
7209024 Nakahori Apr 2007 B2
7269038 Shekhawat et al. Sep 2007 B2
7280026 Chandrasekaran et al. Oct 2007 B2
7285807 Brar et al. Oct 2007 B2
7295092 Elliott et al. Nov 2007 B2
7298118 Chandrasekaran Nov 2007 B2
7301785 Yasumura Nov 2007 B2
7312686 Bruno Dec 2007 B2
7321283 Mehrotra et al. Jan 2008 B2
7332992 Iwai Feb 2008 B2
7339208 Brar et al. Mar 2008 B2
7339801 Yasumura Mar 2008 B2
7348612 Sriram et al. Mar 2008 B2
7360004 Dougherty et al. Apr 2008 B2
7362592 Yang et al. Apr 2008 B2
7362593 Yang et al. Apr 2008 B2
7375607 Lee et al. May 2008 B2
7385375 Rozman Jun 2008 B2
7386404 Cargonja et al. Jun 2008 B2
7417875 Chandrasekaran et al. Aug 2008 B2
7427910 Mehrotra et al. Sep 2008 B2
7431862 Mehrotra et al. Oct 2008 B2
7439556 Brar et al. Oct 2008 B2
7439557 Brar et al. Oct 2008 B2
7443274 Lee et al. Oct 2008 B2
7446512 Nishihara et al. Nov 2008 B2
7447049 Garner et al. Nov 2008 B2
7462891 Brar et al. Dec 2008 B2
7468649 Chandrasekaran Dec 2008 B2
7471523 Yang Dec 2008 B2
7489225 Dadafshar Feb 2009 B2
7499295 Indika de Silva et al. Mar 2009 B2
7554430 Mehrotra et al. Jun 2009 B2
7558037 Gong et al. Jul 2009 B1
7558082 Jitaru Jul 2009 B2
7567445 Coulson et al. Jul 2009 B2
7630219 Lee Dec 2009 B2
7633369 Chandrasekaran et al. Dec 2009 B2
7663183 Brar et al. Feb 2010 B2
7667986 Artusi et al. Feb 2010 B2
7675758 Artusi et al. Mar 2010 B2
7675759 Artusi et al. Mar 2010 B2
7675764 Chandrasekaran et al. Mar 2010 B2
7715217 Manabe et al. May 2010 B2
7733679 Luger et al. Jun 2010 B2
7746041 Xu et al. Jun 2010 B2
7778050 Yamashita Aug 2010 B2
7778051 Yang Aug 2010 B2
7787264 Yang et al. Aug 2010 B2
7791903 Zhang et al. Sep 2010 B2
7795849 Sohma Sep 2010 B2
7813101 Morikawa Oct 2010 B2
7847535 Meynard et al. Dec 2010 B2
7876191 Chandrasekaran et al. Jan 2011 B2
7889517 Artusi et al. Feb 2011 B2
7889521 Hsu Feb 2011 B2
7906941 Jayaraman et al. Mar 2011 B2
7940035 Yang May 2011 B2
7965528 Yang et al. Jun 2011 B2
7983063 Lu et al. Jul 2011 B2
8004112 Koga et al. Aug 2011 B2
8125205 Chandrasekaran et al. Feb 2012 B2
8134443 Chandrasekaran et al. Mar 2012 B2
8179699 Tumminaro et al. May 2012 B2
20020057080 Telefus et al. May 2002 A1
20020114172 Webb et al. Aug 2002 A1
20020167385 Ackermann Nov 2002 A1
20030026115 Miyazaki Feb 2003 A1
20030197585 Chandrasekaran et al. Oct 2003 A1
20030198067 Sun et al. Oct 2003 A1
20040017689 Zhang et al. Jan 2004 A1
20040034555 Dismukes et al. Feb 2004 A1
20040148047 Dismukes et al. Jul 2004 A1
20040156220 Kim et al. Aug 2004 A1
20040200631 Chen Oct 2004 A1
20040217794 Strysko Nov 2004 A1
20050024179 Chandrasekaran et al. Feb 2005 A1
20050052224 Yang et al. Mar 2005 A1
20050245658 Mehrotra et al. Nov 2005 A1
20050254268 Reinhard et al. Nov 2005 A1
20050281058 Batarseh et al. Dec 2005 A1
20060006975 Jitaru et al. Jan 2006 A1
20060038549 Mehrotra et al. Feb 2006 A1
20060038649 Mehrotra et al. Feb 2006 A1
20060038650 Mehrotra et al. Feb 2006 A1
20060109698 Qu May 2006 A1
20060187684 Chandrasekaran et al. Aug 2006 A1
20060197510 Chandrasekaran Sep 2006 A1
20060198173 Rozman Sep 2006 A1
20060226477 Brar et al. Oct 2006 A1
20060226478 Brar et al. Oct 2006 A1
20060237968 Chandrasekaran Oct 2006 A1
20060255360 Brar et al. Nov 2006 A1
20070007945 King et al. Jan 2007 A1
20070045765 Brar et al. Mar 2007 A1
20070069286 Brar et al. Mar 2007 A1
20070114979 Chandrasekaran May 2007 A1
20070120953 Koga et al. May 2007 A1
20070121351 Zhang et al. May 2007 A1
20070159857 Lee Jul 2007 A1
20070222463 Qahouq et al. Sep 2007 A1
20070241721 Weinstein et al. Oct 2007 A1
20070296028 Brar et al. Dec 2007 A1
20070298559 Brar et al. Dec 2007 A1
20070298564 Brar et al. Dec 2007 A1
20080024259 Chandrasekaran et al. Jan 2008 A1
20080054874 Chandrasekaran et al. Mar 2008 A1
20080074227 Chen et al. Mar 2008 A1
20080111657 Mehrotra et al. May 2008 A1
20080130321 Artusi et al. Jun 2008 A1
20080130322 Artusi et al. Jun 2008 A1
20080137381 Beasley Jun 2008 A1
20080150666 Chandrasekaran et al. Jun 2008 A1
20080205104 Lev et al. Aug 2008 A1
20080224812 Chandrasekaran Sep 2008 A1
20080232141 Artusi et al. Sep 2008 A1
20080298106 Tataeishi Dec 2008 A1
20080310190 Chandrasekaran et al. Dec 2008 A1
20080315852 Jayaraman et al. Dec 2008 A1
20080316779 Jayaraman et al. Dec 2008 A1
20090002054 Tsunoda et al. Jan 2009 A1
20090046486 Lu et al. Feb 2009 A1
20090097290 Chandrasekaran Apr 2009 A1
20090257250 Liu Oct 2009 A1
20090273957 Feldtkeller Nov 2009 A1
20090284994 Lin et al. Nov 2009 A1
20090302986 Bedea Dec 2009 A1
20090315530 Baranwal Dec 2009 A1
20100091522 Chandrasekaran et al. Apr 2010 A1
20100123486 Berghegger May 2010 A1
20100149838 Artusi et al. Jun 2010 A1
20100182806 Garrity et al. Jul 2010 A1
20100188876 Garrity et al. Jul 2010 A1
20100254168 Chandrasekaran Oct 2010 A1
20100321958 Brinlee et al. Dec 2010 A1
20100321964 Brinlee et al. Dec 2010 A1
20110038179 Zhang Feb 2011 A1
20110134664 Berghegger Jun 2011 A1
20110149607 Jungreis et al. Jun 2011 A1
20110182089 Genannt Berghegger Jul 2011 A1
20110239008 Lam et al. Sep 2011 A1
20110241738 Tamaoka Oct 2011 A1
20110305047 Jungreis et al. Dec 2011 A1
20120243271 Berghegger Sep 2012 A1
20120294048 Brinlee Nov 2012 A1
Foreign Referenced Citations (16)
Number Date Country
1735948 Feb 2006 CN
101141099 Mar 2008 CN
101335488 Dec 2008 CN
201252294 Jun 2009 CN
10310361 Sep 2004 DE
0665634 Sep 1995 EP
57097361 Jun 1982 JP
58-161308 Sep 1983 JP
3-215911 Sep 1991 JP
2000-68132 Mar 2000 JP
WO8700991 Feb 1987 WO
2004042754 May 2004 WO
WO 2010083511 Jul 2010 WO
WO 2010083514 Jul 2010 WO
WO 2010114914 Oct 2010 WO
WO 2011116225 Sep 2011 WO
Non-Patent Literature Citations (60)
Entry
Ajram, S., et al., “Ultrahigh Frequency DC-to-DC Converters Using GaAs Power Switches,” IEEE Transactions on Power Electronics, Sep. 2001, pp. 594-602, vol. 16, No. 5, IEEE, Los Alamitos, CA.
“AN100: Application Note using Lx100 Family of High Performance N-Ch JFET Transistors,” AN100.Rev 1.01, Sep. 2003, 5 pp., Lovoltech, Inc., Santa Clara, CA.
“AN101A: Gate Drive Network for a Power JFET”, AN101A.Rev 1.2, Nov. 2003, 2 pp., Lovoltech, Inc., Santa Clara, CA.
“AN108: Applications Note: How to Use Power JFETs® and MOSFETs Interchangeably in Low-Side Applications,” Rev. 1.0.2, Feb. 14, 2005, 4 pp., Lovoltech, Inc., Santa Clara, CA.
Balogh, L., et al., “Power-Factor Correction with Interleaved Boost Converters in Continuous-Inductor-Current Mode,” IEEE Proceedings of APEC, pp. 168-174, 1993, IEEE, Los Alamitos, CA.
Biernacki, J., et al., “Radio Frequency DC-DC Flyback Converter,” Proceedings of the 43rd IEEE Midwest Symposium on Circuits and Systems, Aug. 8-11, 2000, pp. 94-97, vol. 1, IEEE, Los Alamitos, CA.
Chen, W., et al., “Design of High Efficiency, Low Profile, Low Voltage Converter with Integrated Magnetics,” Proceedings of 1997 IEEE Applied Power Electronics Conference (APEC '97), 1997, pp. 911-917, IEEE, Los Alamitos, CA.
Chen, W., et al., “Integrated Planar Inductor Scheme for Multi-module Interleaved Quasi-Square-Wave (QSW) DC/DC Converter,” 30th Annual IEEE Power Electronics Specialists Conference (PESC '99), 1999, pp. 759-762, vol. 2, IEEE, Los Alamitos, CA.
Chhawchharia, P., et al., “On the Reduction of Component Count in Switched Capacitor DC/DC Convertors,” Hong Kong Polytechnic University, IEEE, 1997, Hung Hom, Kowloon, Hong King, pp. 1395-1401.
Curtis, K., “Advances in Microcontroller Peripherals Facilitate Current-Mode for Digital Power Supplies,” Digital Power Forum '06, 4 pp., Sep. 2006, Darnell Group, Richardson, TX.
Eisenbeiser, K., et al., “Manufacturable GaAs VFET for Power Switching Applications,” IEEE Electron Device Letters, Apr. 2000, pp. 144-145, vol. 21, No. 4, IEEE.
Gaye, M., et al., “A 50-100MHz 5V to -5V, 1W Cuk Converter Using Gallium Arsenide Power Switches,” ISCAS 2000—IEEE International Symposium on Circuits and Systems, May 28-31, 2000, pp. I-264-I-267, vol. 1, IEEE, Geneva, Switzerland.
Goldberg, A.F., et al., “Issues Related to 1-10-MHz Transformer Design,” IEEE Transactions on Power Electronics, Jan. 1989, pp. 113-123, vol. 4, No. 1, IEEE, Los Alamitos, CA.
Goldberg, A.F., et al., “Finite-Element Analysis of Copper Loss in 1-10-MHz Transformers,” IEEE Transactions on Power Electronics, Apr. 1989, pp. 157-167, vol. 4, No. 2, IEEE, Los Alamitos, CA.
Jitaru, I.D., et al., “Quasi-integrated Magnetic an Avenue for Higher Power Density and Efficiency in Power Converters” 12th Annual Applied Power Electronics Conference and Exposition, Feb. 23-27, 1997, pp. 395-402, vol. 1, IEEE, Los Alamitos, CA.
Kollman, R., et al., “10 MHz PWM Converters With GaAs VFETs,” IEEE 11th Annual Applied Power Electronics Conference and Exposition, Mar. 1996, pp. 264-269, vol. 1, IEEE.
Kuwabara, K., et al., “Switched-Capacitor DC-DC Converters,” Fujitsu Limited, IEEE, 1988, Kawasaki, Japan, pp. 213-218.
Lee, P.-W., et al., “Steady-State Analysis of an Interleaved Boost Converter with Coupled Inductors” IEEE Transactions on Industrial Electronics, Aug. 2000, pp. 787-795, vol. 47, No. 4, IEEE, Los Alamitos, CA.
Lenk, R., “Introduction to the Tapped Buck Converter,” PCIM 2000, HFPC 2000 Proceedings, Oct. 2000, pp. 155-166.
Liu, W., “Fundamentals of III-V Devices: HBTs, MESFETs, and HFETs/HEMTs,” §5-5: Modulation Doping, 1999, pp. 323-330, John Wiley & Sons, New York, NY.
Maksimović, D., et al., “Switching Converters with Wide DC Conversion Range,” IEEE Transactions on Power Electronics, Jan. 1991, pp. 151-157, vol. 13, No. 1, IEEE, Los Alamitos, CA.
Maxim, Application Note 725, www.maxim-ic.com/an725, Maxim Integrated Products, Nov. 29, 2001, 8 pages.
Middlebrook, R.D., “Transformerless DC-to-DC Converters with Large Conversion Ratios,” IEEE Transactions on Power Electronics, Oct. 1988, pp. 484-488, vol. 3, No. 4, IEEE, Los Alamitos, CA.
Miwa, B.A., et al., “High Efficiency Power Factor Correction Using Interleaving Techniques,” IEEE Proceedings of APEC, 1992, pp. 557-568, IEEE, Los Alamitos, CA.
National Semiconductor Corporation, “LMC7660 Switched Capacitor Voltage Converter,” www.national.com, Apr. 1997, 12 pages.
National Semiconductor Corporation, “LM2665 Switched Capacitor Voltage Converter,” www.national.com, Sep. 2005, 9 pages.
Nguyen, L.D., et al., “Ultra-High-Speed Modulation-Doped Field-Effect Transistors: A Tutorial Review,” Proceedings of the IEEE, Apr. 1992, pp. 494-518, vol. 80, No. 4, IEEE.
Niemela, V.A., et al., “Comparison of GaAs and Silicon Synchronous Rectifiers in a 3.3V Out, 50W DC-DC Converter,” 27th Annual IEEE Power Electronics Specialists Conference, Jun. 1996, pp. 861-867, vol. 1, IEEE.
Ninomiya, I., et al., “Static and Dynamic Analysis of Zero-Voltage-Switched Half-Bridge Converter with PWM Control,” Proceedings of 1991 IEEE Power Electronics Specialists Conference (PESC '91), 1991, pp. 230-237, IEEE, Los Alamitos, CA.
O'Meara, K., “A New Output Rectifier Configuration Optimized for High Frequency Operation,” Proceedings of 1991 High Frequency Power Conversion (HFPC '91) Conference, Jun. 1991, pp. 219-225, Toronto, CA.
Peng, C., et al., “A New Efficient High Frequency Rectifier Circuit,” Proceedings of 1991 High Frequency Power Conversion (HFPC '91) Conference, Jun. 1991, pp. 236-243, Toronto, CA.
Pietkiewicz, A., et al., “Coupled-Inductor Current-Doubler Topology in Phase-Shifted Full-Bridge DC-DC Converter,” 20th International Telecommunications Energy Conference (INTELEC), Oct. 1998, pp. 41-48, IEEE, Los Alamitos, CA.
Plumton, D.L., et al., “A Low On-Resistance High-Current GaAs Power VFET,” IEEE Electron Device Letters, Apr. 1995, pp. 142-144, vol. 16, No. 4, IEEE.
Rajeev, M., “An Input Current Shaper with Boost and Flyback Converter Using Integrated Magnetics,” Power Electronics and Drive Systems, 5th International Conference on Power Electronics and Drive Systems, 2003, Nov. 17-20, 2003, pp, 327-331, vol. 1, IEEE, Los Alamitos, CA.
Rico, M., et al., “Static and Dynamic Modeling of Tapped-Inductor DC-to-DC Converters,” 1987, pp. 281-288, IEEE, Los Alamitos, CA.
Severns, R., “Circuit Reinvention in Power Electronics and Identification of Prior Work,” Proceedings of 1997 IEEE Applied Power Electronics Conference (APEC '97), 1997, pp. 3-9, IEEE, Los Alamitos, CA.
Severns, R., “Circuit Reinvention in Power Electronics and Identification of Prior Work,” IEEE Transactions on Power Electronics, Jan. 2001, pp. 1-7, vol. 16, No. 1, IEEE, Los Alamitos, CA.
Sun, J., et al., “Unified Analysis of Half-Bridge Converters with Current-Doubler Rectifier,” Proceedings of 2001 IEEE Applied Power Electronics Conference, 2001, pp. 514-520, IEEE, Los Alamitos, CA.
Sun, J., et al., “An Improved Current-Doubler Rectifier with Integrated Magnetics,” 17th Annual Applied Power Electronics Conference and Exposition (APEC), 2002, pp. 831-827, vol. 2, IEEE, Dallas, TX.
Texas Instruments Incorporated, “LT1054, LT1054Y Switched-Capacitor Voltage Converters With Regulators,” SLVS033C, Feb. 1990—Revised Jul. 1998, 25 pages.
Thaker, M., et al., “Adaptive/Intelligent Control and Power Management Reduce Power Dissipation and Consumption,” Digital Power Forum '06, 11 pp., Sep. 2006, Darnell Group, Richardson, TX.
Vallamkonda, S., “Limitations of Switching Voltage Regulators,” A Thesis in Electrical Engineering, Texas Tech University, May 2004, 89 pages.
Wei, J., et al., “Comparison of Three Topology Candidates for 12V VRM,” IEEE APEC, 2001, pp. 245-251, IEEE, Los Alamitos, CA.
Weitzel, C.E., “RF Power Devices for Wireless Communications” 2002 IEEE MTT-S CDROM, 2002, pp. 285-288, paper TU4B-1, IEEE, Los Alamitos, CA.
Williams, R., “Modern GaAs Processing Methods,” 1990, pp. 66-67, Artech House, Inc., Norwood, MA.
Wong, P.-L., et al., “Investigating Coupling Inductors in the Interleaving QSW VRM,” 15th Annual Applied Power Electronics Conference and Exposition (APEC 2000), Feb. 2000, pp. 973-978, vol. 2, IEEE, Los Alamitos, CA.
Xu, M., et al., “Voltage Divider and its Application in the Two-stage Power Architecture,” Center for Power Electronics Systems, Virginia Polytechnic Institute and State University, IEEE, 2006, Blacksburg, Virginia, pp. 499-505.
Xu, P., et al., “Design and Performance Evaluation of Multi-Channel Interleaved Quasi-Square-Wave Buck Voltage Regulator Module,” HFPC 2000 Proceedings, Oct. 2000, pp. 82-88.
Xu, P., et al., “Design of 48 V Voltage Regulator Modules with a Novel Integrated Magnetics,” IEEE Transactions on Power Electronics, Nov. 2002, pp. 990-998, vol. 17, No. 6, IEEE, Los Alamitos, CA.
Xu, P., et al., “A Family of Novel Interleaved DC/DC Converters for Low-Voltage High-Current Voltage Regulator Module Applications,” IEEE Power Electronics Specialists Conference, Jun. 2001, pp. 1507-1511, IEEE, Los Alamitos, CA.
Xu, P., et al., “A Novel Integrated Current Doubler Rectifier,” IEEE 2000 Applied Power Electronics Conference, Mar. 2000, pp. 735-740, IEEE, Los Alamitos, CA.
Yan, L., et al., “Integrated Magnetic Full Wave Converter with Flexible Output Inductor,” 17th Annual Applied Power Electonics Conference and Exposition (APEC), 2002, pp. 824-830, vol. 2, IEEE, Dallas, TX.
Yan, L., et al., “Integrated Magnetic Full Wave Converter with Flexible Output Inductor,” IEEE Transactions on Power Electronics, Mar. 2003, pp. 670-678, vol. 18, No. 2, IEEE, Los Alamitos, CA.
Zhou, X., et al., “A High Power Density, High Efficiency and Fast Transient Voltage Regulator Module with a Novel Current Sensing and Current Sharing Technique,” IEEE Applied Power Electronics Conference, Mar. 1999, pp. 289-294, IEEE, Los Alamitos, CA.
Zhou, X., et al., “Investigation of Candidate VRM Topologies for Future Microprocessors,”IEEE Applied Power Electronics Conference, Mar. 1998, pp. 145-150, IEEE, Los Alamitos, CA.
Freescale Semiconductor, “Implementing a Digital AC/DC Switched-Mode Power Supply using a 56F8300 Digital Signal Controller,” Application Note AN3115, Aug. 2005, 24 pp., Chandler, AZ.
Freescale Semiconductor, “Design of a Digital AC/DC SMPS using the 56F8323 Device, Designer Reference Manual, 56800E 16-bit Digital Signal Controllers”, DRM074, Rev. 0, Aug. 2005 (108 pages).
Freescale Semiconductor, “56F8323 Evaluation Module User Manual, 56F8300 16-bit Digital Signal Controllers”, MC56F8323EVMUM, Ref. 2, Jul. 2005 (72 pages).
Freescale Semiconductor, “56F8323/56F8123 Data Sheet Preliminary Technical Data, 56F8300 16-bit Digital Signal Controllers,” MC56F8323 Rev. 17, Apr. 2007 (140 pages).
Power Integrations, Inc., “TOP200-4/14 TOPSwitch® Family Three-terminal Off-line PWM Switch,” Internet Citation http://www.datasheet4u.com/.download.php?id=311769, Jul. 1996, XP002524650, pp. 1-16.
Related Publications (1)
Number Date Country
20100254168 A1 Oct 2010 US
Provisional Applications (1)
Number Date Country
61165184 Mar 2009 US