Magnetic disk and method of manufacturing the same

Information

  • Patent Grant
  • 9005782
  • Patent Number
    9,005,782
  • Date Filed
    Friday, March 27, 2009
    15 years ago
  • Date Issued
    Tuesday, April 14, 2015
    9 years ago
Abstract
Provided is a magnetic disk that is excellent in durability, particularly in LUL durability and CFT properties, and thus has high reliability despite the low flying height of a magnetic head following the rapid increase in recording density in recent years and despite the very strict environmental resistance following the diversification of applications. A magnetic disk (10) has at least a magnetic layer (6), a carbon-based protective layer (7), and a lubricating layer (8) provided in this order over a substrate (1). The lubricating layer (8) contains a compound having a perfluoropolyether main chain in a structure thereof and having a polar group other than at ends of a molecule thereof.
Description
TECHNICAL FIELD

This invention relates to a magnetic disk adapted to be mounted in a magnetic disk device such as a hard disk drive (hereinafter abbreviated as a HDD).


BACKGROUND ART

Various information recording techniques have been developed following the increase in volume of information processing in recent years. Particularly, the areal recording density of HDDs using the magnetic recording technique has been increasing at an annual rate of about 100%. Recently, the information recording capacity exceeding 60 GB has been required per 2.5-inch magnetic disk adapted for use in a HDD or the like. In order to satisfy such a requirement, it is necessary to realize an information recording density exceeding 100 Gbits/inch2. In order to achieve the high recording density in a magnetic disk for use in a HDD or the like, it is necessary to reduce the size of magnetic crystal grains forming a magnetic recording layer serving to record information signals, and further, to reduce the thickness of the layer. However, in the case of conventionally commercialized magnetic disks of the in-plane magnetic recording type (also called the longitudinal magnetic recording type or the horizontal magnetic recording type), as a result of the advance in size reduction of magnetic crystal grains, there has been the occurrence of a thermal fluctuation phenomenon where the thermal stability of recorded signals is degraded due to superparamagnetism so that the recorded signals are lost. This has been an impeding factor for the increase in recording density of the magnetic disks.


In order to solve this impeding factor, magnetic recording media of the perpendicular magnetic recording type have been proposed in recent years. In the case of the perpendicular magnetic recording type, as is different from the case of the in-plane magnetic recording type, the easy magnetization axis of a magnetic recording layer is adjusted so as to be oriented in a direction perpendicular to the surface of a substrate. As compared with the in-plane recording type, the perpendicular magnetic recording type can suppress the thermal fluctuation phenomenon and thus is suitable for increasing the recording density. As such a perpendicular magnetic recording medium, there is known a so-called two-layer perpendicular magnetic recording disk comprising, over a substrate, a soft magnetic underlayer made of a soft magnetic substance and a perpendicular magnetic recording layer made of a hard magnetic substance, as is described in, for example, JP-A-2002-74648.


In the meantime, a conventional magnetic disk has a protective layer and a lubricating layer on a magnetic recording layer formed over a substrate, for the purpose of ensuring the durability and reliability of the magnetic disk. Particularly, the lubricating layer used at the outermost surface is required to have various properties such as long-term stability, chemical substance resistance, friction properties, and heat resistance.


In order to satisfy such a requirement, perfluoropolyether-based lubricants having hydroxyl groups in molecules have often been used conventionally as lubricants for magnetic disks. For example, according to JP-A-Sho-62-66417 (Patent Document 1) or the like, there is well known a magnetic recording medium or the like coated with a perfluoroalkylpolyether lubricant having a structure of HOCH2CF2O(C2F4O)p(CF2O)qCH2OH with hydroxyl groups at both ends of a molecule. It is known that when hydroxyl groups are present in molecules of a lubricant, the adhesion properties of the lubricant to a protective layer can be obtained by the interaction between the protective layer and the hydroxyl groups.

  • Patent Document 1: JP-A-S62-66417


DISCLOSURE OF THE INVENTION
Problem to be Solved by the Invention

As described above, the information recording density of 100 Gbits/inch2 or more has been required in recent HDDs. One reason for this is related to the fact that, in addition to the conventional need as storage devices for computers, the HDDs have been mounted in mobile phones, car navigation systems, digital cameras, and so on.


In the case of these new uses, since the housing space for mounting the HDD is extremely small as compared with that of the computer, it is necessary to miniaturize the HDD. For this, it is necessary to reduce the diameter of a magnetic disk to be mounted in the HDD. For example, a 3.5-inch or 2.5-inch magnetic disk can be used for the computer use, but in the case of the above-mentioned new uses, use is made of a small-diameter magnetic disk of, for example, 1.8 inches to 0.8 inches smaller in diameter than the magnetic disk for the computer use. It is necessary to store a certain or more information volume even when the magnetic disk is reduced in diameter as described above, thus resulting in acceleration of improvement in information recording density.


Further, in order to effectively use the limited disk area, use has been made of a HDD of the LUL (Load Unload) system instead of the conventional CSS (Contact Start and Stop) system. In the LUL system, a magnetic head is retreated to an inclined platform called a ramp located outside a magnetic disk while the HDD is stopped, then in a start-up operation, the magnetic head is caused to slide from the ramp, after the magnetic disk starts to rotate, so as to fly over the magnetic disk to perform recording/reproduction. In a stop operation, the magnetic head is retreated to the ramp outside the magnetic disk, then the rotation of the magnetic disk is stopped. This sequence of the operations is called a LUL operation. In the magnetic disk mounted in the HDD of the LUL system, it is not necessary to provide a contact sliding region (CSS region) for the magnetic head, which is required in the CSS system, thus it is possible to increase a recording/reproducing region and therefore the LUL system is preferable for increasing the information capacity.


In order to improve the information recording density under these circumstances, it is necessary to reduce a spacing loss as much as possible by reducing the flying height of the magnetic head. In order to achieve the information recording density of 100 Gbits/inch2 or more, it is necessary to set the flying height of the magnetic head to 10 nm or less. In the LUL system, as is different from the CSS system, since it is not necessary to provide an uneven shape for CSS on the surface of the magnetic disk, it is possible to significantly smooth the surface of the magnetic disk. Consequently, in the case of the magnetic disk mounted in the HDD of the LUL system, the flying height of the magnetic head can be further reduced as compared with the CSS system and therefore there is also an advantage that it is possible to increase the S/N ratio of a recording signal and thus to contribute to an increase in recording capacity of the magnetic disk device.


Because of the further reduction in magnetic head flying height following the recent introduction of the LUL system, it has become necessary that the magnetic disk stably operate even in the case of the low flying height of 10 nm or less. Especially, as described above, the magnetic disks have been shifted from the in-plane magnetic recording type to the perpendicular magnetic recording type in recent years, so that an increase in capacity of the magnetic disks and a reduction in flying height following it have been strongly demanded.


When the flying height of a magnetic head becomes a low flying height of, for example, 10 nm or less, the magnetic head repeatedly exerts adiabatic compression and adiabatic expansion on a lubricating layer on the surface of a magnetic disk through air molecules while flying, so that the lubricating layer tends to be repeatedly subjected to heating and cooling and therefore a reduction in molecular weight of a lubricant forming the lubricating layer tends to be promoted. If the molecular weight of the lubricant is reduced, its fluidity increases so that its adhesion to a protective layer decreases. Then, it is considered that the lubricant with the increased fluidity is transferred and deposited on the magnetic head located in the extremely close positional relationship to make the flying posture thereof unstable, thus causing a fly stiction failure. Particularly, a recently introduced magnetic head with a NPAB (negative pressure) slider is considered to promote the transfer deposition phenomenon because it tends to suck the lubricant due to a strong vacuum created at the bottom surface of the magnetic head. The transferred and deposited lubricant may produce an acid such as hydrofluoric acid to thereby corrode an element portion of the magnetic head. Particularly, a magnetic head mounted with a magnetoresistive effect element tends to be corroded.


Further, recently, in order to increase the response speed of a magnetic disk device, the rotational speed of a magnetic disk is increased. For example, a small-diameter 1.8-inch magnetic disk device suitable for a mobile application enhances its response characteristics by rotating a magnetic disk at a high speed of 5400 rpm or more. When the magnetic disk is rotated at such a high speed, a lubricating layer moves (migrates) due to a centrifugal force caused by the rotation so that the thickness of the lubricating layer becomes nonuniform in the plane of the magnetic disk, resulting in actualization of a failure due to a contact between the surface of the magnetic disk and a magnetic head at its low flying height.


As described before, recently, magnetic disk devices have started to be often used not only as conventional storage devices of personal computers, but also as storage devices for mobile applications such as mobile phones and car navigation systems and, therefore, due to diversification of use applications, the environmental resistance required for magnetic disks has become very strict. Therefore, in view of these circumstances, it is urgently necessary, more than conventional, to further improve the durability of magnetic disks and the heat resistance and durability of lubricants forming lubricating layers, and so on.


Following the rapid improvement in information recording density of magnetic disks in recent years, it is required to reduce the magnetic spacing between a magnetic head and a recording layer of a magnetic disk and, therefore, it has become necessary to further reduce the thickness of a lubricating layer present between the magnetic head and the recording layer of the magnetic disk. A lubricant used as the lubricating layer at the outermost surface of the magnetic disk largely affects the durability of the magnetic disk. Even if the thickness of the lubricating layer is reduced, the stability and reliability are essential for the magnetic disk.


As described above, it is required to realize a magnetic disk excellent in long-term stability of a lubricating layer and having high reliability despite the reduction in magnetic spacing and the low flying height of a magnetic head following the increase in recording density in recent years and, further, due to diversification of use applications and so on, the environmental resistance required for magnetic disks has become very strict. Therefore, it is required, more than conventional, to further improve the properties such as the durability of lubricants, forming lubricating layers, that largely affect the durability of magnetic disks, particularly the LUL durability and the fixed-point flying properties (CFT properties) of the lubricants.


This invention has been made in view of these conventional circumstances and has an object to provide a magnetic disk that is excellent in durability, particularly in LUL durability and CFT properties, and thus has high reliability despite the low flying height of a magnetic head following the rapid increase in recording density in recent years and despite the very strict environmental resistance following the diversification of applications.


Means for Solving the Problem

As a result of intensive studies on the durability of a lubricant that largely affects the durability of a magnetic disk, the present inventors have found that the above-mentioned problems can be solved by the following inventions, and have completed this invention.


Specifically, this invention has the following configurations.


(Configuration 1)


A magnetic disk having at least a magnetic layer, a protective layer, and a lubricating layer provided in this order over a substrate, wherein the lubricating layer contains a compound having a perfluoropolyether main chain in a structure thereof and having a polar group other than at ends of a molecule thereof.


(Configuration 2)


The magnetic disk according to configuration 1, wherein the compound is a compound having a polar group near the center of a molecule thereof.


(Configuration 3)


The magnetic disk according to configuration 1 or 2, wherein the polar group is a hydroxyl group.


(Configuration 4)


The magnetic disk according to any one of configurations 1 to 3, wherein a number-average molecular weight of the compound contained in the lubricating layer is in a range of 1000 to 10000.


(Configuration 5)


The magnetic disk according to any one of configurations 1 to 4, wherein the protective layer is a carbon-based protective layer formed by a plasma CVD method.


(Configuration 6)


The magnetic disk according to any one of configurations 1 to 5, wherein the magnetic disk is adapted to be mounted in a magnetic disk device of a load unload system.


(Configuration 7)


A method of manufacturing a magnetic disk having at least a magnetic layer, a protective layer, and a lubricating layer provided in this order over a substrate, wherein the lubricating layer is formed by forming on the protective layer a film of a lubricant containing a compound obtained by reacting 2 equivalents of a perfluoropolyether compound having a perfluoropolyether main chain in a molecule thereof and having a hydroxyl group only at one end of the molecule with 1 equivalent of an aliphatic compound having a structure capable of reacting with the perfluoropolyether compound to form a hydroxyl group.


(Configuration 8)


The method of manufacturing a magnetic disk according to configuration 7, comprising exposing the magnetic disk to an atmosphere at 50° C. to 150° C. after forming the lubricating layer.


According to the invention of Configuration 1, the magnetic disk has at least the magnetic layer, the protective layer, and the lubricating layer provided in this order over the substrate, wherein the lubricating layer contains the compound having the perfluoropolyether main chain in its structure and having the polar group other than at the ends of its molecule. Therefore, there is obtained the magnetic disk that is more excellent in properties such as LUL durability and CFT properties than conventional and thus has high reliability despite the low flying height of a magnetic head following the rapid increase in recording density in recent years and further despite the very strict environmental resistance following the diversification of applications.


A perfluoropolyether-based lubricant often used conventionally has hydroxyl groups at both ends of a molecule and obtains its adhesion properties to a protective layer by the interaction between the protective layer and the hydroxyl groups. However, it has been found that the LUL durability or the CFT properties that can ensure sufficient long-term reliability cannot be obtained with the low flying height of a magnetic head following the rapid increase in recording density in recent years and further with the very strict environmental resistance following the diversification of applications. According to studies of the present inventors, the reason for this is considered that, with the low flying height of the magnetic head, particularly under a recent requirement for an ultra-low flying height of about 5 nm, and further with the very strict environmental resistance following the diversification of applications, an impulsive force applied to a lubricating layer from the magnetic head is very large and thus, in the case of the conventional lubricant that achieves its adhesion to a protective layer by the interaction between hydroxyl groups at both ends of its molecule and the protective layer, the interaction between the hydroxyl groups at the ends of the lubricant molecule and the protective layer tends to be cut off by a large impulsive force from the magnetic head to free the ends of the lubricant molecule and, even if the interaction with the protective layer is maintained at one of the ends of the molecule, the moving space of the freed end of the lubricant molecule is large and further the interaction between the lubricant and the protective layer is largely reduced, so that, with the ultra-low flying height of about 5 nm as described above, transfer of the lubricant onto the magnetic head is accelerated and, as a result, the LUL durability or the CFT properties that can ensure sufficient long-term reliability cannot be obtained.


On the other hand, in this invention, the lubricant contained in the lubricating layer has the polar group other than at the ends of its molecule and thus the adhesion to the protective layer is achieved by the interaction between this polar group and the protective layer. Therefore, the ends of the lubricant molecule are in a free state from the beginning and thus are prevented from directly receiving a large impulsive force from a magnetic head so that the impulsive force can be relaxed and, further, the interaction with the protective layer is maintained at a portion other than at the ends of the lubricant molecule. Accordingly, even if the ends of the molecule are in the free state, the moving space thereof is small and, therefore, even with an ultra-low flying height of, for example, about 5 nm, transfer of the lubricant onto the magnetic head is difficult to occur. As a result, the LUL durability or the CFT properties that can ensure sufficient long-term reliability can be obtained.


According to the invention of Configuration 2, the compound contained in the lubricating layer is particularly preferably the compound having the polar group near the center of its molecule. This is because the operation and effect of this invention can be most suitably exhibited.


According to the invention of Configuration 3, the hydroxyl group is particularly preferable as the polar group possessed by the compound. This is because the hydroxyl group has a large interaction with the protective layer, particularly a carbon-based protective layer, and thus can enhance the adhesion between the lubricating layer and the protective layer.


According to the invention of Configuration 4, the number-average molecular weight of the compound contained in the lubricating layer is particularly preferably in the range of 1000 to 10000. This is because it can have recoverability with proper viscosity to exhibit suitable lubrication performance and further have excellent heat resistance.


According to the invention of Configuration 5, the protective layer is particularly preferably the carbon-based protective layer formed by the plasma CVD method. This is because the carbon-based protective layer with a uniform and dense surface can be formed by the plasma CVD method, which is suitable for this invention.


According to the invention of Configuration 6, the magnetic disk of this invention is suitable as a magnetic disk adapted to be mounted in a magnetic disk device of, particularly, the LUL system. Because of the further reduction in magnetic head flying height following the introduction of the LUL system, the magnetic disk is required to stably operate even in the case of the low flying height of 10 nm or less. Therefore, the magnetic disk of this invention having high reliability even with the low flying height is suitable.


According to the invention of Configuration 7, the magnetic disk of this invention having high reliability even with the low flying height is obtained by a method of manufacturing a magnetic disk having at least a magnetic layer, a protective layer, and a lubricating layer provided in this order over a substrate, wherein the lubricating layer is formed by forming on the protective layer a film of a lubricant containing a compound obtained by reacting 2 equivalents of a perfluoropolyether compound having a perfluoropolyether main chain in a molecule thereof and having a hydroxyl group only at one end of the molecule with 1 equivalent of an aliphatic compound having a structure capable of reacting with the perfluoropolyether compound to form a hydroxyl group.


According to the invention of Configuration 8, the magnetic disk is exposed to an atmosphere at 50° C. to 150° C. after forming the lubricating layer in the magnetic disk manufacturing method of Configuration 7. This makes it possible to further improve the adhesion of the formed lubricating layer to the protective layer.


Effect of the Invention

According to this invention, it is possible to provide a magnetic disk that is excellent in durability, particularly in LUL durability and CFT properties, and thus has high reliability despite the low flying height of a magnetic head following the rapid increase in recording density in recent years and further despite the very strict environmental resistance following the diversification of applications.


BEST MODE FOR CARRYING OUT THE INVENTION

Hereinbelow, this invention will be described in detail based on an embodiment thereof.


A magnetic disk of this invention is a magnetic disk having at least a magnetic layer, a protective layer, and a lubricating layer provided in this order over a substrate, wherein the lubricating layer contains a compound having a perfluoropolyether main chain in a structure thereof and having a polar group other than at ends of a molecule thereof.


The above-mentioned compound (hereinafter referred to as the lubricant according to this invention) contained in the lubricating layer in the magnetic disk of this invention is a compound having a perfluoropolyether main chain in its structure and having a polar group other than at ends of its molecule.


As described above, the lubricant according to this invention contained in the lubricating layer is, for example, a compound having a polar group other than at both ends of a chain molecule having a perfluoropolyether main chain in its structure, but for allowing the function and effect of this invention to be exhibited most suitably, it is particularly preferably a compound, for example, having a polar group near the center of a chain molecule having a perfluoropolyether main chain in its structure.


As the polar group in this case, it needs to be a polar group that causes the occurrence of suitable interaction between the lubricant and the protective layer when the lubricant is formed into a film on the protective layer. For example, there is cited a hydroxyl group (—OH), an amino group (—NH2), a carboxyl group (—COOH), an aldehyde group (—COH), a carbonyl group (—CO—), a sulfonic group (—SO3H), or the like. Among them, the hydroxyl group is particularly preferable as the polar group. This is because the hydroxyl group has a large interaction with the protective layer, particularly a carbon-based protective layer, and thus can enhance the adhesion between the lubricating layer and the protective layer.


Specifically, as the lubricant according to this invention, there is preferably cited, for example, a compound in which perfluoropolyether groups each having a perfluoropolyether main chain in a structure thereof are bonded to each other through a divalent or trivalent bonding group having a polar group such as a hydroxyl group in a structure thereof, wherein the compound has the polar group near the center of a chain molecule thereof.


A group represented by, for example, the following formula (I) is preferably cited as the above-mentioned perfluoropolyether group.

Formula (I)
CF3CF2(OC2F4)m(OCF2)nOCF2CH2O—  [Chemical Formula 1]


In the formula, m and n are each an integer of 1 or more.


According to the lubricant of this invention described above, it has the polar group other than at the ends of its molecule and thus the adhesion to the protective layer is achieved by the interaction between this polar group and the protective layer. Therefore, the ends of the lubricant molecule are in a free state from the beginning and thus are prevented from directly receiving a large impulsive force from a magnetic head so that the impulsive force can be relaxed. Further, the interaction with the protective layer is maintained at a portion other than at the ends of the lubricant molecule. Accordingly, even if the ends of the molecule are in the free state, the moving space thereof is small and, therefore, even with an ultra-low flying height of, for example, about 5 nm, transfer of the lubricant onto the magnetic head is difficult to occur. As a result, the LUL durability or the CFT properties that can ensure sufficient long-term reliability can be obtained.


As described above, by providing the lubricating layer containing the lubricant according to this invention, the magnetic disk is excellent in durability, particularly in LUL durability and CFT properties, even with the magnetic head ultra-low flying height of, for example, about 5 nm following the increase in recording density in recent years and with the very strict environmental resistance following the diversification of applications. Therefore, this invention is suitable for realizing a magnetic disk having high reliability (capable of ensuring stable operation) even under severe use conditions.


As a method of manufacturing the lubricant according to this invention, there is preferably cited, for example, a manufacturing method in which 2 equivalents of a perfluoropolyether compound having a perfluoropolyether main chain in a molecule thereof and having, for example, a hydroxyl group only at one end of the molecule are reacted with 1 equivalent of an aliphatic compound having a structure capable of reacting with the perfluoropolyether compound to form, for example, a hydroxyl group.


In order to form, for example, the hydroxyl group, there is preferably cited, as the above-mentioned aliphatic compound, a diepoxy compound having epoxide structures at ends of a molecule thereof. Using such a compound, it is possible to obtain the lubricant of this invention with high purity and high yield. Specific examples of such a diepoxy compound are given below, but this invention is not limited thereto.




embedded image


Specifically, under a base condition, perfluoropolyether compounds each having a hydroxyl group only at one end of its molecule are reacted with bases to form alkoxides, then these alkoxides perform a nucleophilic ring-opening reaction with an aliphatic compound having epoxide structures at ends thereof, thereby obtaining a dimer or trimer compound in which the perfluoropolyether compounds are bonded to each other through a bonding group changed from the aliphatic compound.


As the above-mentioned perfluoropolyether compound, there is cited, for example, a perfluorodiol compound having a hydroxyl group at one end of its molecule, represented by the following formula (II).

Formula (II)
CF3CF2(OC2F4)m(OCF2)nOCF2CH2OH  [Chemical Formula 3]


In the formula, m and n are each an integer of 1 or more.


According to the lubricant manufacturing method of this invention described above, the perfluoropolyether compounds are bonded to each other to be dimerized or trimerized so that it is possible to obtain a magnetic disk lubricant with at least two hydroxyl groups introduced approximately at the center of a molecule thereof. For example, when the perfluorodiol compound represented by the above-mentioned formula (II) is used as the above-mentioned perfluoropolyether compound and the first-cited diepoxy compound (having one hydroxyl group in its structure) among the examples given above is used as the above-mentioned aliphatic compound, there is obtained a lubricant compound having three hydroxyl groups as polar groups approximately at the center of a molecule thereof.


An exemplified compound of the lubricant according to this invention is given below, but this invention is not limited thereto.




embedded image


The molecular weight of the lubricant according to this invention is not particularly limited, but, for example, the number-average molecular weight (Mn) is preferably in the range of 1000 to 10000 and more preferably in the range of 1000 to 6000. This is because it can have recoverability with proper viscosity to exhibit suitable lubrication performance and further have excellent heat resistance.


Further, since the lubricant according to this invention comprises the compound in which the above-mentioned perfluoropolyether compounds are bonded to each other through the above-mentioned bonding group, there is obtained the high molecular weight lubricant by dimerization or trimerization of the above-mentioned perfluoropolyether and thus it is possible to suppress a reduction in molecular weight due to thermal decomposition. Therefore, when a magnetic disk is manufactured by the use of such a lubricant, it is possible to improve the heat resistance thereof. Because of the further reduction in magnetic head flying height (10 nm or less) following the increase in recording density in recent years, the possibility becomes high that contact or friction between a magnetic head and the surface of a magnetic disk frequently occurs. When the magnetic head is brought in contact with the surface of the magnetic disk, it may happen that the magnetic head does not immediately go out of contact with the surface of the magnetic disk, but slides with friction for a while. Further, because of recording/reproduction performed by the high-speed rotation of a magnetic disk in recent years, heat due to contact or friction is generated more than conventional. Therefore, it is concerned that the possibility becomes higher than conventional that a material of a lubricating layer on the surface of the magnetic disk is thermally decomposed due to the generation of such heat, so that data read/write is subjected to failure due to adhesion, to a magnetic head, of the lubricant thermally decomposed to decrease in molecular weight and increase in fluidity. Further, in consideration of data recording/reproduction in the state where a magnetic head and a magnetic disk are in contact with each other in near future, the influence of heat generation due to the constant contact is further concerned. Taking this situation into account, it is desired that heat resistance required for a lubricating layer be further improved, and thus the lubricant of this invention is exactly suitable.


By carrying out molecular weight fractionation of the lubricant according to this invention by an appropriate method, the molecular weight dispersion (ratio of weight-average molecular weight (Mw)/number-average molecular weight (Mn)) is preferably set to 1.3 or less.


In this invention, it is not necessary to particularly limit a method for molecular weight fractionation, but, for example, use can be made of molecular weight fractionation by a gel permeation chromatography (GPC) method, molecular weight fractionation by a supercritical fluid extraction method, or the like.


When forming the lubricating layer by the use of the lubricant according to this invention, it can be formed by using a solution in which the lubricant is dispersed and dissolved in an appropriate solvent and coating the solution by, for example, a dipping method. As the solvent, use can be preferably made of, for example, a fluorine-based solvent (trade name Vertrel XF manufactured by DuPont-Mitsui Fluorochemicals Co., Ltd., or the like). A film forming method for the lubricating layer is, of course, not limited to the above-mentioned dipping method and use may be made of a film forming method such as a spin coating method, a spray method, or a paper coating method.


In this invention, in order to further improve the adhesion of the formed lubricating layer to the protective layer, the magnetic disk may be exposed to an atmosphere at 50° C. to 150° C. after the film formation.


In this invention, the thickness of the lubricating layer is preferably set to 4 to 18 Å. If it is less than 4 Å, there is a case where the lubrication performance as the lubricating layer is lowered. If it exceeds 18 Å, it is not preferable in terms of a reduction in film thickness, there is a case where the fly stiction failure occurs, and there is a case where the LUL durability is lowered.


As the protective layer in this invention, a carbon-based protective layer can be preferably used. Particularly, an amorphous carbon protective layer is preferable. With the protective layer being particularly the carbon-based protective layer, the interaction between the polar groups (particularly the hydroxyl groups) of the lubricant according to this invention and the protective layer is further enhanced so that the operation and effect of this invention are further exhibited, which is thus a preferable mode. The adhesion between the carbon-based protective layer and the lubricating layer can be controlled by forming the carbon-based protective layer of hydrogenated carbon and/or nitrogenated carbon and adjusting the content of hydrogen and/or nitrogen. In this case, the content of hydrogen is preferably set to 3 to 20 at % when measured by hydrogen forward scattering (HFS). The content of nitrogen is preferably set to 4 to 12 at % when measured by X-ray photoelectron spectroscopy (XPS).


In this invention, the carbon-based protective layer does not need to contain hydrogen and/or nitrogen uniformly over its entirety and is preferably a composition gradient layer containing, for example, nitrogen on its lubricating layer side and hydrogen on its magnetic layer side.


When using the carbon-based protective layer in this invention, it can be formed by, for example, a DC magnetron sputtering method, but it is preferably an amorphous carbon protective layer particularly formed by a plasma CVD method. Being formed by the plasma CVD method, the surface of the protective layer becomes uniform and dense. Therefore, it is preferable that the lubricating layer by this invention be formed on the protective layer with a smaller roughness formed by the CVD method.


In this invention, the thickness of the protective layer is preferably set to 20 to 70 Å. If it is less than 20 Å, there is a case where the performance as the protective layer is lowered. If it exceeds 70 Å, it is not preferable in terms of a reduction in film thickness.


In the magnetic disk of this invention, the substrate is preferably a glass substrate. The glass substrate is rigid and excellent in smoothness and thus is suitable for an increase in recording density. As the glass substrate, an aluminosilicate glass substrate, for example, is cited and, particularly, a chemically strengthened aluminosilicate glass substrate is preferable.


In this invention, the main surface of the substrate is preferably ultra-smooth with Rmax of 6 nm or less and Ra of 0.6 nm or less. The surface roughness Rmax and Ra herein referred to are based on the JIS B0601 standard.


The magnetic disk of this invention has at least the magnetic layer, the protective layer, and the lubricating layer provided over the substrate. In this invention, the magnetic layer is not particularly limited and may be an in-plane recording type magnetic layer or a perpendicular recording type magnetic layer. However, the perpendicular recording type magnetic layer is preferable for realizing the rapid increase in recording density in recent years. Particularly, if it is a CoPt-based magnetic layer, high coercive force and high reproduction output can be achieved, which is thus preferable.


In the magnetic disk of this invention, an underlayer may be provided between the substrate and the magnetic layer if necessary. Further, an adhesive layer, a soft magnetic layer, and so on may be provided between the underlayer and the substrate. In this case, as the underlayer, there is cited, for example, a Cr layer, a Ta layer, a Ru layer, a CrMo, CoW, CrW, CrV, or CrTi alloy layer, or the like and, as the adhesive layer, there is cited, for example, a CrTi, NiAl, or AlRu alloy layer or the like. Further, as the soft magnetic layer, there is cited, for example, a CoZrTa alloy film or the like.


The magnetic disk of this invention is suitable as a magnetic disk adapted to be mounted in a magnetic disk device of, particularly, the LUL system. Because of the further reduction in magnetic head flying height following the introduction of the LUL system, the magnetic disk is required to stably operate even in the case of a low flying height of 10 nm or less. Therefore, the magnetic disk of this invention having high reliability even with the low flying height is suitable.







EXAMPLE

Hereinbelow, this invention will be described in further detail with reference to an Example.


Example 1


FIG. 1 shows a magnetic disk 10 according to one Example of this invention.


The magnetic disk 10 has an adhesive layer 2, a soft magnetic layer 3, a first underlayer 4, a second underlayer 5, a magnetic layer 6, a carbon-based protective layer 7, and a lubricating layer 8 which are formed in this order on a substrate 1.


(Manufacture of Lubricant)


The above-exemplified lubricant compound was prepared by reacting 2 equivalents of the perfluorodiol compound represented by the above-mentioned formula (II) with 1 equivalent of the above-exemplified diepoxy compound under a base condition. Specifically, both of the compounds were agitated in acetone and then refluxed, with sodium hydroxide added thereto. The conditions such as reaction temperature and time were suitably set, respectively.


A lubricant comprising the compound thus obtained was properly subjected to molecular weight fractionation by the supercritical fluid extraction method.


(Manufacture of Magnetic Disk)


A 2.5-inch glass disk (outer diameter 65 mm, inner diameter 20 mm, disk thickness 0.635 mm) made of a chemically strengthened aluminosilicate glass was prepared as the disk substrate 1. The main surface of the disk substrate 1 was mirror-polished to Rmax of 2.13 nm and Ra of 0.20 nm.


On the disk substrate 1, the Ti-based adhesive layer 2, the Fe-based soft magnetic layer 3, the first underlayer 4 of NiW, the second underlayer 5 of Ru, and the magnetic layer 6 of CoCrPt were formed in this order in an Ar gas atmosphere by the DC magnetron sputtering method. This magnetic layer was a perpendicular magnetic recording type magnetic layer.


Subsequently, the diamond-like carbon protective layer 7 was formed to a thickness of 50 Å by the plasma CVD method.


Then, the lubricating layer 8 was formed in the following manner.


There was prepared a solution in which a lubricant (Mn measured by the NMR method was 4,000 and the molecular weight dispersion was 1.25) comprising the lubricant (the above-exemplified lubricant compound) of this invention manufactured as described above and subjected to the molecular weight fractionation by the supercritical fluid extraction method was dispersed and dissolved in a fluorine-based solvent, Vertrel XF (trade name) manufactured by DuPont-Mitsui Fluorochemicals Co., Ltd., at a concentration of 0.2 wt %. Using this solution as a coating solution, a magnetic disk formed with the layers up to the protective layer 7 was immersed therein and coated therewith by the dipping method, thereby forming the lubricating layer 8.


After the film formation, the magnetic disk was heat-treated in a vacuum furnace at 130° C. for 90 minutes. The thickness of the lubricating layer 8 was measured by a Fourier transform infrared spectrophotometer (FTIR) and it was 12 Å. In this manner, the magnetic disk 10 of Example 1 was obtained.


Then, the magnetic disk of Example 1 was evaluated by the following test methods.


(Evaluation of Magnetic Disk)


(1) First, a CFT property evaluation test (fixed-position flying test) was performed.


The fixed-point position was set to the disk inner peripheral side (disk radius 15 mm position). The CFT test was performed in an environment at a temperature of 70° C. and a relative humidity of 80% for the purpose of being performed in a severe environment.


As a result, it was seen that the magnetic disk of Example 1 was able to endure fixed-point continuous flying for continuous four weeks and thus was extremely excellent in CFT properties even under the severe conditions. The surface of a magnetic head and the surface of the magnetic disk after the CFT test were examined in detail using an optical microscope and an electron microscope and no damage or corrosion phenomenon was observed.


(2) Then, a LUL (Load Unload) durability test was performed for evaluating the LUL durability of the magnetic disk.


A LUL-system HDD (5400 rpm rotation type) was prepared and a magnetic head with a flying height of 5 nm and the magnetic disk of the Example were mounted therein. A slider of the magnetic head was a NPAB (negative pressure) slider and was mounted with a magnetoresistive effect element (GMR element) as a reproducing element. A shield portion was made of a FeNi-based permalloy alloy. By causing the LUL-system HDD to continuously repeat the LUL operations, the number of LUL times endured by the magnetic disk up to the occurrence of failure was measured.


As a result, the magnetic disk of Example 1 endured the LUL operations of 900,000 times with no failure at an ultra-low flying height of 5 nm. In a normal HDD using environment, use for about 10 years is generally required for the number of LUL times to exceed 400,000 times. Since a magnetic disk is currently judged to be preferable if it endures 600,000 times or more, it can be said that the magnetic disk of Example 1 has very high reliability.


The surface of the magnetic disk after the LUL durability test was observed in detail using an optical microscope and an electron microscope and was found to be excellent, i.e. no abnormality such as damage or dirt was observed. Further, the surface of the magnetic head after the LUL durability test was observed in detail using an optical microscope and an electron microscope and was found to be excellent, i.e. no abnormality such as damage or dirt was observed and, further, no lubricant adhesion to the magnetic head or no corrosion failure was observed.


For evaluating the thermal properties, the LUL durability test was performed in atmospheres of −20° C. to 50° C. With the magnetic disk of this Example, no particular failure occurred and the good results were obtained.


Comparative Example

As a lubricant, use was made of a conventional perfluoropolyether-based lubricant, Fomblin Z-DOL (trade name) manufactured by Solvay Solexis, Inc., having been subjected to molecular weight fractionation by the GPC method to have Mw of 3000 and a molecular weight dispersion of 1.08. Then, a solution in which this lubricant was dispersed and dissolved in a fluorine-based solvent, Vertrel XF (trade name) manufactured by DuPont-Mitsui Fluorochemicals Co., Ltd., was used as a coating solution and a magnetic disk formed with layers up to a protective layer was immersed therein and coated therewith by the dipping method, thereby forming a lubricating layer. Herein, the concentration of the coating solution was properly adjusted so that the lubricating layer was formed to a thickness in the range of 10 to 12 Å. A magnetic disk was manufactured in the same manner as in Example 1 except the above-mentioned point and was used as a Comparative Example.


Then, as a result of performing a CFT property evaluation test in the same manner as in the Example, a failure occurred before the lapse of continuous four weeks. That is, the magnetic disk of this Comparative Example is inferior in CFT properties under the severe conditions.


Further, as a result of performing a LUL durability test in the same manner as in the Example, the magnetic disk of this Comparative Example failed at 600,000 times with an ultra-low flying height of 5 nm. The surface of the magnetic disk after the LUL durability test was observed in detail using an optical microscope and an electron microscope and, as a result, damage or the like was slightly observed. Further, the surface of a magnetic head after the LUL durability test was observed in detail using an optical microscope and an electron microscope and, as a result, lubricant adhesion to the magnetic head and corrosion failure were observed.


BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is an exemplary cross-sectional view of a magnetic disk according to one Example of this invention.


DESCRIPTION OF SYMBOLS






    • 1 substrate


    • 2 adhesive layer


    • 3 soft magnetic layer


    • 4 first underlayer


    • 5 second underlayer


    • 6 magnetic layer


    • 7 carbon-based protective layer


    • 8 lubricating layer


    • 10 magnetic disk




Claims
  • 1. A magnetic disk comprising: a substrate, anda magnetic layer, a protective layer, and a lubricating layer provided in this order over the substrate,wherein said lubricating layer contains a compound having a perfluoropolyether main chain in a structure thereof and having at least three hydroxyl groups other than at ends of a molecule thereof, and wherein the ends of the molecule of the compound do not contain polar groups such that the ends are in a free state,wherein the compound having a perfluoropolyether main chain is obtained by reacting a perfluorodiol compound represented by the following formula (II) and a diepoxy compound: CF3CF2(OC2F4)m(OCF2)nOCF2CH2OH  formula (II)wherein m and n are each an integer of 1 or more, andwherein the diepoxy compound is represented by one of the following formulas:
  • 2. A magnetic disk according to claim 1, wherein a number-average molecular weight of said compound contained in said lubricating layer is in a range of 1000 to 10000.
  • 3. A magnetic disk according to claim 1, wherein said protective layer is a carbon-based protective layer formed by a plasma CVD method.
  • 4. A magnetic disk according to claim 1, wherein said magnetic disk is adapted to be mounted in a magnetic disk device of a load unload system.
  • 5. A magnetic disk according to claim 2, wherein said protective layer is a carbon-based protective layer formed by a plasma CVD method.
  • 6. A magnetic disk according to claim 2, wherein said magnetic disk is adapted to be mounted in a magnetic disk device of a load unload system.
  • 7. A magnetic disk according to claim 3, wherein said magnetic disk is adapted to be mounted in a magnetic disk device of a load unload system.
  • 8. A magnetic disk according to claim 1, wherein the diepoxy compound is represented by the following formula:
  • 9. A magnetic disk according to claim 1, wherein the diepoxy compound is represented by the following formula:
  • 10. A magnetic disk according to claim 1, wherein the diepoxy compound is represented by the following formula:
  • 11. A magnetic disk according to claim 1, wherein the diepoxy compound is represented by the following formula:
Priority Claims (1)
Number Date Country Kind
2008-088951 Mar 2008 JP national
PCT Information
Filing Document Filing Date Country Kind 371c Date
PCT/JP2009/056244 3/27/2009 WO 00 5/26/2010
Publishing Document Publishing Date Country Kind
WO2009/123037 10/8/2009 WO A
US Referenced Citations (328)
Number Name Date Kind
5374480 Nishikawa et al. Dec 1994 A
6013161 Chen et al. Jan 2000 A
6063248 Bourez et al. May 2000 A
6068891 O'Dell et al. May 2000 A
6086730 Liu et al. Jul 2000 A
6099981 Nishimori Aug 2000 A
6103404 Ross et al. Aug 2000 A
6117499 Wong et al. Sep 2000 A
6136403 Prabhakara et al. Oct 2000 A
6143375 Ross et al. Nov 2000 A
6145849 Bae et al. Nov 2000 A
6146737 Malhotra et al. Nov 2000 A
6149696 Jia Nov 2000 A
6150015 Bertero et al. Nov 2000 A
6156404 Ross et al. Dec 2000 A
6159076 Sun et al. Dec 2000 A
6164118 Suzuki et al. Dec 2000 A
6200441 Gornicki et al. Mar 2001 B1
6204995 Hokkyo et al. Mar 2001 B1
6206765 Sanders et al. Mar 2001 B1
6210819 Lal et al. Apr 2001 B1
6216709 Fung et al. Apr 2001 B1
6221119 Homola Apr 2001 B1
6248395 Homola et al. Jun 2001 B1
6261681 Suekane et al. Jul 2001 B1
6270885 Hokkyo et al. Aug 2001 B1
6274063 Li et al. Aug 2001 B1
6283838 Blake et al. Sep 2001 B1
6287429 Moroishi et al. Sep 2001 B1
6290573 Suzuki Sep 2001 B1
6299947 Suzuki et al. Oct 2001 B1
6303217 Malhotra et al. Oct 2001 B1
6309765 Suekane et al. Oct 2001 B1
6358636 Yang et al. Mar 2002 B1
6362452 Suzuki et al. Mar 2002 B1
6363599 Bajorek Apr 2002 B1
6365012 Sato et al. Apr 2002 B1
6381090 Suzuki et al. Apr 2002 B1
6381092 Suzuki Apr 2002 B1
6387483 Hokkyo et al. May 2002 B1
6391213 Homola May 2002 B1
6395349 Salamon May 2002 B1
6403919 Salamon Jun 2002 B1
6408677 Suzuki Jun 2002 B1
6426157 Hokkyo et al. Jul 2002 B1
6429984 Alex Aug 2002 B1
6482330 Bajorek Nov 2002 B1
6482505 Bertero et al. Nov 2002 B1
6500567 Bertero et al. Dec 2002 B1
6528124 Nguyen Mar 2003 B1
6548821 Treves et al. Apr 2003 B1
6552871 Suzuki et al. Apr 2003 B2
6565719 Lairson et al. May 2003 B1
6566674 Treves et al. May 2003 B1
6571806 Rosano et al. Jun 2003 B2
6628466 Alex Sep 2003 B2
6664503 Hsieh et al. Dec 2003 B1
6670055 Tomiyasu et al. Dec 2003 B2
6682807 Lairson et al. Jan 2004 B2
6683754 Suzuki et al. Jan 2004 B2
6730420 Bertero et al. May 2004 B1
6743528 Suekane et al. Jun 2004 B2
6759138 Tomiyasu et al. Jul 2004 B2
6778353 Harper Aug 2004 B1
6795274 Hsieh et al. Sep 2004 B1
6855232 Jairson et al. Feb 2005 B2
6857937 Bajorek Feb 2005 B2
6893748 Bertero et al. May 2005 B2
6899959 Bertero et al. May 2005 B2
6916558 Umezawa et al. Jul 2005 B2
6939120 Harper Sep 2005 B1
6946191 Morikawa et al. Sep 2005 B2
6967798 Homola et al. Nov 2005 B2
6972135 Homola Dec 2005 B2
7004827 Suzuki et al. Feb 2006 B1
7006323 Suzuki Feb 2006 B1
7016154 Nishihira Mar 2006 B2
7019924 McNeil et al. Mar 2006 B2
7045215 Shimokawa May 2006 B2
7070870 Bertero et al. Jul 2006 B2
7090934 Hokkyo et al. Aug 2006 B2
7099112 Harper Aug 2006 B1
7105241 Shimokawa et al. Sep 2006 B2
7119990 Bajorek et al. Oct 2006 B2
7147790 Wachenschwanz et al. Dec 2006 B2
7161753 Wachenschwanz et al. Jan 2007 B2
7166319 Ishiyama Jan 2007 B2
7166374 Suekane et al. Jan 2007 B2
7169487 Kawai et al. Jan 2007 B2
7174775 Ishiyama Feb 2007 B2
7179549 Malhotra et al. Feb 2007 B2
7184139 Treves et al. Feb 2007 B2
7196860 Alex Mar 2007 B2
7199977 Suzuki et al. Apr 2007 B2
7208236 Morikawa et al. Apr 2007 B2
7220500 Tomiyasu et al. May 2007 B1
7229266 Harper Jun 2007 B2
7239970 Treves et al. Jul 2007 B2
7252897 Shimokawa et al. Aug 2007 B2
7277254 Shimokawa et al. Oct 2007 B2
7281920 Homola et al. Oct 2007 B2
7292329 Treves et al. Nov 2007 B2
7301726 Suzuki Nov 2007 B1
7302148 Treves et al. Nov 2007 B2
7305119 Treves et al. Dec 2007 B2
7314404 Singh et al. Jan 2008 B2
7320584 Harper et al. Jan 2008 B1
7329114 Harper et al. Feb 2008 B2
7375362 Treves et al. May 2008 B2
7420886 Tomiyasu et al. Sep 2008 B2
7425719 Treves et al. Sep 2008 B2
7471484 Wachenschwanz et al. Dec 2008 B2
7498062 Calcaterra et al. Mar 2009 B2
7531485 Hara et al. May 2009 B2
7537846 Ishiyama et al. May 2009 B2
7549209 Wachenschwanz et al. Jun 2009 B2
7569490 Staud Aug 2009 B2
7597792 Homola et al. Oct 2009 B2
7597973 Ishiyama Oct 2009 B2
7608193 Wachenschwanz et al. Oct 2009 B2
7632087 Homola Dec 2009 B2
7656615 Wachenschwanz et al. Feb 2010 B2
7682546 Harper Mar 2010 B2
7684152 Suzuki et al. Mar 2010 B2
7686606 Harper et al. Mar 2010 B2
7686991 Harper Mar 2010 B2
7695833 Ishiyama Apr 2010 B2
7722968 Ishiyama May 2010 B2
7733605 Suzuki et al. Jun 2010 B2
7736768 Ishiyama Jun 2010 B2
7755861 Li et al. Jul 2010 B1
7758732 Calcaterra et al. Jul 2010 B1
7833639 Sonobe et al. Nov 2010 B2
7833641 Tomiyasu et al. Nov 2010 B2
7910159 Jung Mar 2011 B2
7911736 Bajorek Mar 2011 B2
7924519 Lambert Apr 2011 B2
7944165 O'Dell May 2011 B1
7944643 Jiang et al. May 2011 B1
7955723 Umezawa et al. Jun 2011 B2
7983003 Sonobe et al. Jul 2011 B2
7993497 Moroishi et al. Aug 2011 B2
7993765 Kim et al. Aug 2011 B2
7998912 Chen et al. Aug 2011 B2
8002901 Chen et al. Aug 2011 B1
8003237 Sonobe et al. Aug 2011 B2
8012920 Shimokawa Sep 2011 B2
8038863 Homola Oct 2011 B2
8057926 Ayama et al. Nov 2011 B2
8062778 Suzuki et al. Nov 2011 B2
8064156 Suzuki et al. Nov 2011 B1
8076013 Sonobe et al. Dec 2011 B2
8092931 Ishiyama et al. Jan 2012 B2
8100685 Harper et al. Jan 2012 B1
8101054 Chen et al. Jan 2012 B2
8125723 Nichols et al. Feb 2012 B1
8125724 Nichols et al. Feb 2012 B1
8137517 Bourez Mar 2012 B1
8142916 Umezawa et al. Mar 2012 B2
8163093 Chen et al. Apr 2012 B1
8171949 Lund et al. May 2012 B1
8173282 Sun et al. May 2012 B1
8178480 Hamakubo et al. May 2012 B2
8206789 Suzuki Jun 2012 B2
8218260 Iamratanakul et al. Jul 2012 B2
8247095 Champion et al. Aug 2012 B2
8257783 Suzuki et al. Sep 2012 B2
8298609 Liew et al. Oct 2012 B1
8298689 Sonobe et al. Oct 2012 B2
8309239 Umezawa et al. Nov 2012 B2
8316668 Chan et al. Nov 2012 B1
8331056 O'Dell Dec 2012 B2
8354618 Chen et al. Jan 2013 B1
8367228 Sonobe et al. Feb 2013 B2
8383209 Ayama Feb 2013 B2
8394243 Jung et al. Mar 2013 B1
8397751 Chan et al. Mar 2013 B1
8399809 Bourez Mar 2013 B1
8402638 Treves et al. Mar 2013 B1
8404056 Chen et al. Mar 2013 B1
8404369 Ruffini et al. Mar 2013 B2
8404370 Sato et al. Mar 2013 B2
8406918 Tan et al. Mar 2013 B2
8414966 Yasumori et al. Apr 2013 B2
8425975 Ishiyama Apr 2013 B2
8431257 Kim et al. Apr 2013 B2
8431258 Onoue et al. Apr 2013 B2
8453315 Kajiwara et al. Jun 2013 B2
8488276 Jung et al. Jul 2013 B1
8491800 Dorsey Jul 2013 B1
8492009 Homola et al. Jul 2013 B1
8492011 Itoh et al. Jul 2013 B2
8496466 Treves et al. Jul 2013 B1
8517364 Crumley et al. Aug 2013 B1
8517657 Chen et al. Aug 2013 B2
8524052 Tan et al. Sep 2013 B1
8530065 Chernyshov et al. Sep 2013 B1
8546000 Umezawa Oct 2013 B2
8551253 Na'im et al. Oct 2013 B2
8551627 Shimada et al. Oct 2013 B2
8556566 Suzuki et al. Oct 2013 B1
8559131 Masuda et al. Oct 2013 B2
8562748 Chen et al. Oct 2013 B1
8565050 Bertero et al. Oct 2013 B1
8570844 Yuan et al. Oct 2013 B1
8580410 Onoue Nov 2013 B2
8584687 Chen et al. Nov 2013 B1
8591709 Lim et al. Nov 2013 B1
8592061 Onoue et al. Nov 2013 B2
8596287 Chen et al. Dec 2013 B1
8597723 Jung et al. Dec 2013 B1
8603649 Onoue Dec 2013 B2
8603650 Sonobe et al. Dec 2013 B2
8605388 Yasumori et al. Dec 2013 B2
8605555 Chernyshov et al. Dec 2013 B1
8608147 Yap et al. Dec 2013 B1
8609263 Chernyshov et al. Dec 2013 B1
8619381 Moser et al. Dec 2013 B2
8623528 Umezawa et al. Jan 2014 B2
8623529 Suzuki Jan 2014 B2
8634155 Yasumori et al. Jan 2014 B2
8658003 Bourez Feb 2014 B1
8658292 Mallary et al. Feb 2014 B1
8665541 Saito Mar 2014 B2
8668953 Buechel-Rimmel Mar 2014 B1
8674327 Poon et al. Mar 2014 B1
8685214 Moh et al. Apr 2014 B1
8696404 Sun et al. Apr 2014 B2
8711499 Desai et al. Apr 2014 B1
8743666 Bertero et al. Jun 2014 B1
8758912 Srinivasan et al. Jun 2014 B2
8787124 Chernyshov et al. Jul 2014 B1
8787130 Yuan et al. Jul 2014 B1
8791391 Bourez Jul 2014 B2
8795765 Koike et al. Aug 2014 B2
8795790 Sonobe et al. Aug 2014 B2
8795857 Ayama et al. Aug 2014 B2
20010009729 Liu et al. Jul 2001 A1
20020048693 Tanahashi et al. Apr 2002 A1
20020060883 Suzuki May 2002 A1
20030022024 Wachenschwanz Jan 2003 A1
20040022387 Weikle Feb 2004 A1
20040132301 Harper et al. Jul 2004 A1
20040202793 Harper et al. Oct 2004 A1
20040202865 Homola et al. Oct 2004 A1
20040209123 Bajorek et al. Oct 2004 A1
20040209470 Bajorek Oct 2004 A1
20050036223 Wachenschwanz et al. Feb 2005 A1
20050142990 Homola Jun 2005 A1
20050150862 Harper et al. Jul 2005 A1
20050151282 Harper et al. Jul 2005 A1
20050151283 Bajorek et al. Jul 2005 A1
20050151300 Harper et al. Jul 2005 A1
20050155554 Saito Jul 2005 A1
20050167867 Bajorek et al. Aug 2005 A1
20050263401 Olsen et al. Dec 2005 A1
20060052262 Akada et al. Mar 2006 A1
20060147758 Jung et al. Jul 2006 A1
20060181697 Treves et al. Aug 2006 A1
20060207890 Staud Sep 2006 A1
20070060487 Burns et al. Mar 2007 A1
20070070549 Suzuki et al. Mar 2007 A1
20070225183 Sasa et al. Sep 2007 A1
20070245909 Homola Oct 2007 A1
20080024923 Tomimoto et al. Jan 2008 A1
20080075845 Sonobe et al. Mar 2008 A1
20080093760 Harper et al. Apr 2008 A1
20090117408 Umezawa et al. May 2009 A1
20090136784 Suzuki et al. May 2009 A1
20090169922 Ishiyama Jul 2009 A1
20090191331 Umezawa et al. Jul 2009 A1
20090202866 Kim et al. Aug 2009 A1
20090311557 Onoue et al. Dec 2009 A1
20100143752 Ishibashi et al. Jun 2010 A1
20100190035 Sonobe et al. Jul 2010 A1
20100196619 Ishiyama Aug 2010 A1
20100196740 Ayama et al. Aug 2010 A1
20100209601 Shimokawa et al. Aug 2010 A1
20100215992 Horikawa et al. Aug 2010 A1
20100232065 Suzuki et al. Sep 2010 A1
20100247965 Onoue Sep 2010 A1
20100261039 Itoh et al. Oct 2010 A1
20100279151 Sakamoto et al. Nov 2010 A1
20100300884 Homola et al. Dec 2010 A1
20100304186 Shimokawa Dec 2010 A1
20110097603 Onoue Apr 2011 A1
20110097604 Onoue Apr 2011 A1
20110171495 Tachibana et al. Jul 2011 A1
20110206947 Tachibana et al. Aug 2011 A1
20110212346 Onoue et al. Sep 2011 A1
20110223446 Onoue et al. Sep 2011 A1
20110244119 Umezawa et al. Oct 2011 A1
20110299194 Aniya et al. Dec 2011 A1
20110311841 Saito et al. Dec 2011 A1
20120069466 Okamoto et al. Mar 2012 A1
20120070692 Sato et al. Mar 2012 A1
20120077060 Ozawa Mar 2012 A1
20120127599 Shimokawa et al. May 2012 A1
20120127601 Suzuki et al. May 2012 A1
20120129009 Sato et al. May 2012 A1
20120140359 Tachibana Jun 2012 A1
20120141833 Umezawa et al. Jun 2012 A1
20120141835 Sakamoto Jun 2012 A1
20120148875 Hamakubo et al. Jun 2012 A1
20120156523 Seki et al. Jun 2012 A1
20120164488 Shin et al. Jun 2012 A1
20120170152 Sonobe et al. Jul 2012 A1
20120171369 Koike et al. Jul 2012 A1
20120175243 Fukuura et al. Jul 2012 A1
20120189872 Umezawa et al. Jul 2012 A1
20120196049 Azuma et al. Aug 2012 A1
20120207919 Sakamoto et al. Aug 2012 A1
20120225217 Itoh et al. Sep 2012 A1
20120251842 Yuan et al. Oct 2012 A1
20120251846 Desai et al. Oct 2012 A1
20120276417 Shimokawa et al. Nov 2012 A1
20120308722 Suzuki et al. Dec 2012 A1
20130040167 Alagarsamy et al. Feb 2013 A1
20130071694 Srinivasan et al. Mar 2013 A1
20130165029 Sun et al. Jun 2013 A1
20130175252 Bourez Jul 2013 A1
20130216865 Yasumori et al. Aug 2013 A1
20130230647 Onoue et al. Sep 2013 A1
20130314815 Yuan et al. Nov 2013 A1
20140011054 Suzuki Jan 2014 A1
20140044992 Onoue Feb 2014 A1
20140050843 Yl et al. Feb 2014 A1
20140151360 Landdell et al. Jun 2014 A1
Foreign Referenced Citations (10)
Number Date Country
62-066417 Mar 1987 JP
1-271908 Oct 1989 JP
6-004857 Jan 1994 JP
07-326042 Dec 1995 JP
08-319492 Dec 1996 JP
2002074648 Mar 2002 JP
2003162810 Jun 2003 JP
2007284659 Nov 2007 JP
2008-047284 Feb 2008 JP
2004031261 Apr 2004 WO
Non-Patent Literature Citations (3)
Entry
Machine Translation: Saito et al. (US JP 2003-162810).
Written Opinion and Search Report for Singapore Patent Application No. 201003777-8 dated Nov. 21, 2011, 18 pages.
Japanese Office Action dated Jul. 30, 2013 for related Japanese Application No. 2008-088951, 6 pages.
Related Publications (1)
Number Date Country
20110026162 A1 Feb 2011 US