Magnetic earphones holder

Information

  • Patent Grant
  • 12088987
  • Patent Number
    12,088,987
  • Date Filed
    Friday, January 27, 2023
    a year ago
  • Date Issued
    Tuesday, September 10, 2024
    3 months ago
  • Inventors
  • Original Assignees
  • Examiners
    • Robinson; Ryan
    Agents
    • Haverstock & Owens, A Law Corporation
Abstract
A set of headphones and audio system comprises a first set of buttons for controlling a volume level of transmitted audio to the headphones and a second set of buttons for controlling a volume level of external audio played by the headphones. The transmitted audio comprises audio received from an audio source such as an electronic device and the external audio comprises surrounding ambient noise received by a microphone coupled to the headphones. With the first set of controls and the second set of controls a user is able to adjust the volume level of the transmitted audio and the volume level of the external audio in order to listen to the transmitted audio while still interacting with the surrounding environment.
Description
FIELD OF THE INVENTION

The present invention relates to earphone holders. More particularly, the present invention relates to a magnetic earphone holder used to hold a set of earphones.


BACKGROUND OF THE INVENTION

Headset cords transmit signals from a source device, such as a music player or cell phone, to earphones being worn by a user. Although these cords are typically flexible and can be maneuvered out of the way by the user, such manipulation by the user can be inconvenient, and often inefficient, as the cords regularly find their way back into an undesired location. Additionally, if not secured when not being used the earphones often hang loose in an undesired and inconvenient location where they may be snagged or become tangled. Further, earphones are often moved back and forth from the ears of a user where they are transmitting a signal from the source device to the stored position as the user completes tasks and moves around.


SUMMARY OF THE INVENTION

The present application is directed toward an earphones holder used to affix a headset to clothing and/or other items. Any set of earphones is able to be affixed, including a headset for an iPod, iPhone, or any other similar cell phone or MP3 or music player. The earphones holder comprises a magnet which removably couples with a magnetically attractable portion of a set of earphones or an added magnet feature built into or onto the earbud or cord or any feature of the earbud or cord. The magnet is able to be designed into or molded into a variety of items, including the handle of a zipper, a buckle, and an item that can be sewn to, pinned to, or clipped to clothing, bags and other items. In some embodiments, the earphones holder body further comprises an electronic device controller which controls the operation of an electronic device. The controller is configured to send a signal to an electronic device activation circuit which activates the electronic device when the earphones are decoupled from the one or more magnetically attractable surfaces of the earphones holder body and deactivates the electronic device when the earphones are coupled with the one or more magnetically attractable surfaces of the earphones holder body. In further embodiments, the electronic device controller which controls the operation of an electronic device. Particularly, the controller is configured to send a signal to an electronic device activation circuit which operates the electronic in a manner dependent upon a signal from the holder body.


A system for holding a set of earphones comprises a holder body, one or more magnetically attractable surfaces attached to the holder body for removably coupling with a set of earphones, a touch sensor, a touch sensor detector and an electronic device controller for controlling an electronic device. In some embodiments, the system wirelessly communicates with the electronic device. In some embodiments, the system further comprising an earbud engagement detector. In some embodiments, the touch sensor detector receives a signal from the touch sensor and sends a signal to the electronic device controller. In some of these embodiments, the touch sensor detector sends a signal to the electronic device controller that the touch sensor has been tapped, double-tapped, or swiped. Particularly, the electronic device controller sends a signal to an electronic device to operate the electronic device based upon the signal from the touch sensor detector. In some embodiments, the touch sensor detector sends a signal to the electronic device to activate or deactivate the electronic device.


In one aspect, an audio system comprises a set of head phones, a headphones controller, a first set of controls for controlling a volume of transmitted audio played by the head phones, and a second set of controls for controlling a volume of external audio played by the headphones. In some embodiments, the first set of controls and the second set of controls comprise touch screen controls. In further embodiments, the first set of controls and the second set of controls are a component of the headphones. In some embodiments, the first set of controls comprises a first set of buttons and the second set of controls comprises a second set of buttons. In some embodiments, the transmitted audio comprises audio received from an electronic device. The external audio comprises surrounding ambient noise received from an external microphone. In some of these embodiments, the second set of controls control the volume level of ambient noise received through the headphones. In some embodiments, the audio system comprises a noise canceling element.


In another aspect, a set headphones comprises a set of earphones for playing transmitted audio and external audio and a microphone for receiving the external audio. In some embodiments, first set of controls control the volume of transmitted audio played by the headphones and a second set of controls control the volume of external audio played by the headphones. In some embodiments, the first set of controls and the second set of controls comprise touch screen controls. In some embodiments, the first set of controls comprises a first set of buttons and the second set of controls comprises a second set of buttons. In further embodiments, the first set of controls and the second set of controls are a component of the headphones. In some embodiments, the transmitted audio comprises audio received from an electronic device. The external audio comprises surrounding ambient noise received from the external microphone. In some embodiments, the second set of controls control the level of ambient noise played by the headphones. In some embodiments, the headphones comprise a noise canceling element.


In a further aspect, a method of operating a set of headphones comprises receiving transmitted audio from an electronic device, receiving external audio from a microphone of the headphones, and adjusting a volume level of one of the transmitted audio and the external audio. In some embodiments, a first set of controls control the volume of transmitted audio played by the headphones and a second set of controls control the volume of external audio played by the headphones. In some embodiments, the first set of controls and the second set of controls comprise touch screen controls. In further embodiments, the first set of controls comprises a first set of buttons and the second set of controls comprises a second set of buttons. In some embodiments, the first set of controls and the second set of controls are a component of the headphones.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 illustrates an embodiment of an earphones holder having a magnet built into the body of a zipper puller in accordance with the principles of the present invention.



FIGS. 2A-B illustrate an embodiment of an earphones holder having a magnet built into the surface of a plastic shirt snap in accordance with the principles of the present invention.



FIGS. 3A-3D illustrate an embodiment of an earphones holder having a magnet built into a body of an adornment in accordance with some embodiments.



FIG. 4 illustrates an embodiment of an earphones holder having a magnet built into a zipper puller in accordance with some embodiments.



FIGS. 5A and 5B illustrate an embodiment of an earphones holder having a magnet built into a body coupled with a sunglass lanyard in accordance with some embodiments.



FIGS. 5C-5E illustrate an embodiment of an earphones holder having a magnet built into a body coupled with a pair of sunglasses in accordance with some embodiments.



FIGS. 5F and 5G illustrate an embodiment of an earphones holder having a magnet built into a body of a pair of sunglasses in accordance with some embodiments.



FIGS. 6A and 6B illustrate an embodiment of an earphones holder having a magnet built onto the front face of a side squeeze buckle used on bags and packs in accordance with the principles of the present invention.



FIGS. 6C and 6D illustrate an embodiment of an earphones holder having a magnet built into a releasable clip coupled to a sports helmet in accordance with some embodiments.



FIGS. 7A and 7B illustrate an embodiment of an earphones holder having a magnet built into a body in accordance with some embodiments.



FIGS. 8A and 8B illustrate an embodiment of an earphones holder having a magnet built into a piece of jewelry in accordance with some embodiments.



FIG. 9 illustrates an embodiment of an earphones holder having a magnet built into an identifying surface in accordance with some embodiments.



FIG. 10A illustrates an embodiment of an earphones holder having a magnet and a groove built into a zipper puller in accordance with some embodiments.



FIG. 10B shows a close-up view of a magnetically attractable surface for removably coupling with a pair of earphones in accordance with some embodiments.



FIG. 11 illustrates a magnetic earphones and cord holding system in accordance with some embodiments.



FIGS. 12A and 12B illustrate a magnetic earphones and cord holding system in accordance with some embodiments.



FIG. 13 illustrates a schematic view showing the components of a magnetic earphones and cord holding system in accordance with some embodiments.



FIG. 14 illustrates a method of activating and/or deactivating an electronic device in accordance with some embodiments.



FIG. 15 illustrates a magnetic earphones holding system in accordance with some embodiments.



FIG. 16 illustrates a magnetic earphones holding system in accordance with some embodiments.



FIG. 17 illustrates a magnetic earphones holding system in accordance with some embodiments.



FIG. 18 illustrates a magnetic earphones holding system in accordance with some embodiments.



FIGS. 19A-19E illustrate a magnetic earphones holding system in accordance with some embodiments.



FIG. 20 illustrates a magnetic earphones holding system in accordance with some embodiments.



FIG. 21 illustrates a block diagram of a magnetic earphones holding system in accordance with some embodiments.



FIG. 22 illustrates a magnetic earphones holding system in accordance with some embodiments.



FIG. 23 illustrates a schematic view showing the components of a magnetic earphones and cord holding system in accordance with some embodiments.



FIG. 24 illustrates a method of activating and/or deactivating an electronic device in accordance with some embodiments.



FIG. 25 illustrates a schematic view of an audio system in accordance with some embodiments.



FIG. 26 illustrates a set of headphones in accordance with some embodiments.



FIG. 27 illustrates a method of operating a set of headphones in accordance with some embodiments.





DETAILED DESCRIPTION OF THE INVENTION

The description below concerns several embodiments of the invention. The discussion references the illustrated preferred embodiment. However, the scope of the present invention is not limited to either the illustrated embodiment, nor is it limited to those discussed, to the contrary, the scope should be interpreted as broadly as possible based on the language of the Claims section of this document.


This disclosure provides several embodiments of the present invention. It is contemplated that any features from any embodiment can be combined with any features from any other embodiment. In this fashion, hybrid configurations of the illustrated embodiments are well within the scope of the present invention.


Referring now to FIG. 1, a first embodiment of an earphones holder 100 is depicted therein. The earphones holder 100 comprises a magnet 110 embedded or molded into a body 115 of a zipper puller 150. The zipper puller 150 is configured to be coupled to a bag or an item of clothing, such as a jacket or shirt. In some embodiments, the body 115 is configured to act as a closure mechanism capable of releasably coupling a first portion of the bag or item of clothing to a second portion of the bag or article of clothing. For example, in some embodiments, the body 115 comprises a channel (not shown) formed in opposing sidewalls in order to receive and releasably couple together zipper tracks of the bag or item of clothing. In some embodiments, a puller 140 is coupled to the body 115 in order to facilitate the translation of the body 115 along the portions of the bag or item of clothing to which it is attached.


The magnet 110 is molded or otherwise built into the body 115. In some embodiments, the magnet 110 is encased or embedded within a plastic over mold which surrounds the puller 140. In some embodiments, one or more additional magnets are coupled with the body 115. The magnet 110 is configured to receive and releasably secure a set of earphones 175. As shown in FIG. 1, in some embodiments, the magnet 110 removably couples with the magnetically attractable parts of an earbud of the earphones 175. In some embodiments, the earphones 175 and/or the cord 165 comprises a magnet or magnetically attractable surface, which removably couples with the magnet 110. The earphones holder 100 holds a set of earphones 175 connected to the user's Ipod or other electronic device.



FIGS. 2A-B illustrate an embodiment of an earphones holder 200 with a magnet molded into the surface of a plastic or metal snap fastener in accordance with further embodiments. It is contemplated that the snap fastener is capable of being used on a shirt 260, as shown in FIG. 2B, or on another item of clothing or a bag.


The shirt snap comprises a male snap 235 and a female snap 245 that are configured to releasably couple to one another. For example, in some embodiments, the male snap 235 comprises a stud 240 that is configured to fit securely into an aperture in the female snap 245. The perimeter of the aperture is defined by the inner circumference of the socket lip 250 and the base 255 of the female snap 245. In some embodiments, the socket lip 250 extends farther towards the aperture than the base 255, and the end of the stud 240 has a larger diameter than the base of the stud 240. In this configuration, the end of the stud 240, when inserted into the aperture, snaps into place, and is secured from accidental removal by the socket lip 250.


The shirt snap comprises a magnet 210. In some embodiments, the magnet 210 is embedded within the male snap 235 or the female snap 235. In other embodiments, the magnet 210 is a distinct component that is attached to the male snap 235 or the female snap 245. For example, FIG. 2A shows an exploded view of the headset holder 200 with the magnet 210 separated from the male snap 235. The magnet 210 comprises a body 215 that fits securely into an aperture in the male snap 235. In some embodiments, the magnet 210 (as a part of the snap fastener) is configured to act as a closure mechanism capable of releasably coupling a first portion of an item of clothing or a bag to a second portion of the article of clothing or bag.


The magnet 210 is molded or otherwise built into the body 215. The magnet 210 is configured to receive and releasably secure a set of earphones. In some embodiments, the magnet 210 removably couples with the magnetically attractable parts of the earphones 275 (FIG. 2B). In some embodiments, the earphones 275 and/or the cord 265 comprises a magnet or magnetically attractable surface, which removably couples with the magnet 210. FIG. 2B shows the headset holder 200 in use as a shirt snap fastener on a user's shirt 260. The earphones holder 200 holds a set of earphones 275 connected to the user's Ipod 270.



FIGS. 3A-D illustrate earphone holders 300 and 305 having a magnet 310 molded into an adornment in accordance with some embodiments. In some embodiments, the adornment is an ornamental accessory having an aesthetic characteristic unrelated to its functional structure, such as the star shape in FIGS. 3A-B and the moon shape in FIGS. 3C-D. The buttons and zippers shown in the previous figures would not constitute an adornment since they do not have an aesthetic characteristic that is unrelated to their functional structure. However, if they were modified to have a certain aesthetic shape that was completely unrelated to their functionality, then they could be considered an adornment.


The adornment comprises a body 315 that is configured to be releasably secured to a bag or an article of clothing, such as shirt 360. In some embodiments, the body 315 comprises a pin 335 extending from its base. The pin 335 is configured to penetrate the bag or item of clothing. In some embodiments, one or more flanges 340 are disposed proximate the end of the pin 335 to facilitate the attachment of the adornment to the bag or article of clothing. In some embodiments, a clasp 345 having releases 350 is provided along with the adornment in order to provide a secure attachment of the adornment to the bag or article of clothing.


The magnet 310 is molded or otherwise built into the body 315. The magnet 310 is configured to receive and releasably secure a set of earphones. In some embodiments, the magnet 310 removably couples with the magnetically attractable parts of the earphones 375 (FIG. 3B). In some embodiments, the earphones 375 and/or the cord 365 comprises a magnet or magnetically attractable surface, which removably couples with the magnet 310. FIG. 3A shows the headset holder 300 attached to a user's shirt 360. The earphones holder 300 holds a set of earphones 375 connected to the user's Ipod 370.


Although FIG. 3D illustrates the body using a pin for attachment, it is contemplated that the body can employ other means for releasably securing itself to a bag or an article of clothing. For example, in some embodiments the body utilizes a magnetic attachment in accordance with the principles of the present invention.



FIG. 4 illustrates an embodiment of an earphones holder 400 having a magnet molded into a body configured to be coupled to a zipper head in accordance with further embodiments.


As shown in FIG. 4, the body 415 is coupled to the zipper head 450. The earphones holder 400 comprises a puller 440 which is coupled to the body 415. As shown in FIG. 4, in some embodiments, the puller 440 is a cord which passes through the center of the body 415. In some embodiments the puller 440 is a cord which couples the body 415 with an opening 480. In some embodiments the body 415 comprises one or more of wood, glass, and metal.


The body 415 comprises a magnet 410. In some embodiments, the magnet 410 is embedded within the body 415. In other embodiments, the magnet 410 is a distinct component that is attached to the body 415. As shown within FIG. 4, the magnet 410 is molded or otherwise built into the body 415. The magnet 410 is configured to receive and releasably secure a set of earphones. In some embodiments, the magnet 410 removably couples with the magnetically attractable parts of the earphones 475. In some embodiments, as shown in FIG. 4, the earphones 475 also comprise a magnet or magnetically attractable surface 425, which removably couples with the magnet 410. In these embodiments, the magnet or magnetically attractable surface 425 is able to be a component of the earphones 475 or the headset cord 465. In some embodiments, the magnet or magnetically attractable surface 425 is slidable along the earphones 475 or the headset cord 465. However, as will be apparent to someone of ordinary skill in the art, the magnet or magnetically attractable surface 425 is able to be fixedly or removably connected to the earphones 475 or the headset cord 465. As also shown in FIG. 4, in some embodiments, the earphones holder 400 comprises one or more additional magnets 410′. In some embodiments, a user is able to removably couple each side of the headset cord 465 or the earphones 475 with a corresponding magnet. Alternatively, in some embodiments, a user is able to couple both sides of the headset cord 465 or earphones 475 with only one of the magnets.



FIGS. 5A-5E illustrate an earphone holder 500 in accordance with further embodiments. As shown in FIGS. 5A and 5B, in some embodiments, the earphone holder 500 comprises a body 515 having a magnet 510 molded into it. The body 515 is configured to be coupled to a lanyard for sun or prescription glasses. In some embodiments, the lanyard 570 passes through an opening 580 within the body 515. However, the body 515 is able to couple with the lanyard through a clip or any other mechanism as known in the art. As shown in FIGS. 5A and 5B, each side of the lanyard comprises a body 515 of a headset cord holder 500. However, in some embodiments, the earphone holder 500 is only coupled to one side of the lanyard 570. In some embodiments, the body 515 of the earphone holder 500 comprises one or more of molded plastic, hard plastic, foam and rubber. In some embodiments, the body 510 of the headset cord holder comprises one or more of wood, glass, and metal.


As shown in FIGS. 5C-5E, in some embodiments, the body 515′ and the body 515″ is configured to be removably coupled with a glasses frame 501. In some embodiments, an opening 580 within the body 515′ and the body 515″ is slid onto an ear piece 503 of the glasses frame 501. Accordingly, a user is able to slide the body 515′ and the body 515″ until a desired configuration along the ear piece 503 is found. As will be apparent to someone of ordinary skill in the art, the body 515′ and the body 515″ is able to couple with the glasses frame 501 by any mechanism as known in the art. For example, in some embodiments, the body 515′ and the body 515″ couples with the glasses frame 501 by one or more of a hook and loop fastening system and a clip. The glasses frame 501 is able to comprise sun and prescription glasses or a combination of the two. In some embodiments, the body 515′ and the body 515″ of the earphones holder comprises one or more of molded plastic, hard plastic, foam and rubber. In some embodiments, the body 515′ and the body 515″ of the earphones holder comprises one or more of wood, glass, and metal.


As shown in FIG. 5D, in some embodiments, the magnet 510 is oriented vertically along the body 515′. Alternatively, as shown within FIG. 5E, in some embodiments, the magnet 510 is oriented horizontally along the body 515″. In some embodiments, the body 515′ and 515″ comprises one or more additional magnets 510′.



FIGS. 5F and 5G show an earphone holder comprising a body and a magnet within the body that directly receives and releasably secures a headset cord. In some embodiments, the magnet 510 is built into the glasses frame 501.


As shown within FIGS. 5F and 5G, in some embodiments the magnet 510 is built into the top of an ear piece 503 of the glasses frame 501. Alternatively, in some embodiments, as shown in FIGS. 5F and 5G, in some embodiments, the magnet 510 is built into a side of the earpiece 503 of the glasses frame 501. In some embodiments, the magnet 510 is oriented vertically along the ear piece 503. Alternatively, in some embodiments, the magnet 510 is oriented horizontally along the ear piece 503. Particularly, the magnet 510 is able to be located at any position along the ear piece 503. In some embodiments, the glasses frame 501 comprises one or more additional magnets.


As further shown within FIGS. 5A-5G, the magnets are configured to receive and releasably secure a set of earphones. In some embodiments, the magnet 510 removably couples with the magnetically attractable parts of the earphones 575. In some embodiments, as shown in FIG. 5G, the earphones 575 also comprises a magnet or magnetically attractable surface 525, which removably couples with the magnet 510. In these embodiments, the magnet or magnetically attractable surface 525 is able to be a component of the earphones 575 or the headset cord 565. In some embodiments, the magnet or magnetically attractable surface 525 is slidable along the earphones 575 or the headset cord 565. However, as will be apparent to someone of ordinary skill in the art, the magnet or magnetically attractable surface 525 is able to be fixedly connected to the earphones 575 or the headset cord 565. In some embodiments, a user is able to removably couple each side of the headset cord 565 or the earphones 575 with a corresponding magnet. Alternatively, in some embodiments, a user is able to couple both sides of the headset cord 565 or earphones 575 with only one of the magnets.



FIGS. 6A-B illustrate one embodiment of an earphones holder 600 having a magnet molded onto the front face of a side squeeze buckle used on bags and packs in accordance with some embodiments. FIGS. 6A and 6B show a plan view and a side view of the cord holder 600, respectively.


The side squeeze buckle comprises a female buckle end 615 coupled to a buckle strap or webbing 640 and a male buckle end 635 coupled to a buckle strap or webbing 645. The female buckle end 615 is configured to receive and releasably hold the male buckle end 635. In some embodiments, either the female buckle end 615 or the male buckle end 635 comprises a magnet 610. In some embodiments, the magnet 610 protrudes from either the female buckle end 615, as seen in FIGS. 6A and 6B, or the male buckle end 635. In some embodiments, the magnet 610 does not protrude from the rest of the buckle end, but rather is flush with the rest of the buckle end. Additionally, in some embodiments, the magnet 610 is integrally formed with the buckle end, while in other embodiments, the body is a separate component that is attached to the buckle end. In some embodiments, the earphones holder 600 is configured to act as a closure mechanism capable of releasably coupling a first strap, and any item to which the first strap is attached, to a second strap, and any item to which the second strap is attached. For example, in some embodiments, the magnet is part of a female buckle end 615 that is coupled to a first portion of a bag via a strap 640. The female buckle end 615 mates with a male buckle end 635. The male buckle end 635 is coupled to a second portion of the bag via a strap 645.


The magnet 610 is configured to receive and releasably secure a set of earphones. In some embodiments, the magnet 610 removably couples with the magnetically attractable parts of the earphones. In some embodiments, the earphones also comprise a magnet or magnetically attractable surface, which removably couples with the magnet 610. In these embodiments, the magnet or magnetically attractable surface is able to be a component of the earphones or the headset cord. In some embodiments, the magnet or magnetically attractable surface is slidable along the earphones or the headset cord. However, as will be apparent to someone of ordinary skill in the art, the magnet or magnetically attractable surface is able to be fixedly connected to the earphones or the headset cord. In some embodiments, the earphones holder 600 comprises one or more additional magnets. In some embodiments, a user is able to removably couple each side of the headset cord or the earphones with a corresponding magnet. Alternatively, in some embodiments, a user is able to couple both sides of the headset cord or earphones with only one of the magnets.



FIGS. 6C and 6D illustrate a headset cord holder 600 in accordance with yet further embodiments. As shown in FIGS. 6C and 6D, the headset cord holder 600 comprises a body having a magnet 610 molded into the front face of a releasable clip or side squeeze buckle as described in relation to FIGS. 6A and 6B. The releasable clip is configured to be attached to a sports helmet.


Each end of the releasable clip 615, 635 is coupled by a strap 645, 640 to a sports helmet. As shown in FIG. 6D, the releasable clip is coupled to a bicycle helmet 660. However, the releasable clip is able to be coupled to any sports helmet as known in the art. For example, in some embodiments the releasable clip is coupled to one or more of a skiing helmet, bicycle helmet, motorcycle helmet or other sports helmet.


A magnet 610 is built or otherwise embedded within the releasable clip. The magnet 610 is configured to receive and releasably secure a set of earphones. In some embodiments, the magnet 610 removably couples with the magnetically attractable parts of the earphones. In some embodiments, the earphones also comprises a magnet or magnetically attractable surface, which removably couples with the magnet 610. The magnet 610 is configured to receive and releasably secure a set of earphones. In some embodiments, the magnet 610 removably couples with the magnetically attractable parts of the earphones. In some embodiments, the earphones also comprise a magnet or magnetically attractable surface, which removably couples with the magnet 610. In these embodiments, the magnet or magnetically attractable surface is able to be a component of the earphones or the headset cord. In some embodiments, the magnet or magnetically attractable surface is slidable along the earphones or the headset cord. However, as will be apparent to someone of ordinary skill in the art, the magnet or magnetically attractable surface is able to be fixedly connected to the earphones or the headset cord. In some embodiments, the earphones holder 600 comprises one or more additional magnets. In some embodiments, a user is able removably couple each side of the headset cord or the earphones with a corresponding magnet. Alternatively, in some embodiments, a user is able to couple both sides of the headset cord or earphones with only one of the magnets.



FIGS. 7A and 7B illustrate a headset cord holder 700 in accordance with further embodiments.


As shown in FIGS. 7A and 7B, a body 715 comprising a magnet 710 is coupled to a sternum strap 720 of a backpack 705. In some embodiments, the magnet 710 is coupled to an arm strap of a backpack 705. However, the body 715 is able to couple to any portion of the backpack 705 as known in the art. In some embodiments, the body 715 removably couples with the sternum strap 715 of the backpack 705. In some embodiments, the body 715 removably couples with the sternum strap 715 by one or more of a hook and loop fastening system and snaps. However, the body 715 is able to removably couple with the backpack 705 by any mechanism as known in the art. In some embodiments, the body 715 is able to additionally couple with one or more of a lumbar pack, a sports bag, and an arm band.


As shown within FIGS. 7A and 7B, the magnet 710 is configured to receive and releasably secure a set of earphones. In some embodiments, the magnet 710 removably couples with the magnetically attractable parts of the earphones. In some embodiments, the earphones also comprises a magnet or magnetically attractable surface, which removably couples with the magnet 710. In these embodiments, the magnet or magnetically attractable surface is able to be a component of the earphones or the headset cord. In some embodiments, the magnet or magnetically attractable surface is slidable along the earphones or the headset cord. However, as will be apparent to someone of ordinary skill in the art, the magnet or magnetically attractable surface is able to be fixedly connected to the earphones or the headset cord. In some embodiments, the earphones holder 700 comprises one or more additional magnets. In some embodiments, a user is able removably couple each side of the headset cord or the earphones with a corresponding magnet. Alternatively, in some embodiments, a user is able to couple both sides of the headset cord or earphones with only one of the magnets.



FIGS. 8A and 8B illustrate an earphones holder 800 in accordance with some embodiments. The headset cord holder 800 comprises a body 815 having a magnet 810 molded or built into the body which is a portion of a piece of jewelry 870.


In some embodiments, the portion of jewelry is configured to be coupled to at least an additional article. For example, as shown in FIGS. 8A and 8B, the body 815 comprises a bead of jewelry 860 in a strand of beads comprising a necklace 870. In some embodiments, the piece of jewelry is one or more of a broach, earrings, bracelet or sunglass lanyard. However, the body is able to be molded or built into any piece of jewelry as known in the art. Alternatively, in some embodiments one or more additional magnets are able to be molded in to the body or other portion of the piece of jewelry.


As shown within FIGS. 8A and 8B, the magnet 810 is configured to receive and releasably secure a set of earphones. In some embodiments, the magnet 810 removably couples with the magnetically attractable parts of the earphones. In some embodiments, the earphones also comprises a magnet or magnetically attractable surface, which removably couples with the magnet 810. In these embodiments, the magnet or magnetically attractable surface is able to be a component of the earphones or the headset cord. In some embodiments, the magnet or magnetically attractable surface is slidable along the earphones or the headset cord. However, as will be apparent to someone of ordinary skill in the art, the magnet or magnetically attractable surface is able to be fixedly connected to the earphones or the headset cord. In some embodiments, the earphones holder 800 comprises one or more additional magnets. In some embodiments, a user is able to removably couple each side of the headset cord or the earphones with a corresponding magnet. Alternatively, in some embodiments, a user is able to couple both sides of the headset cord or earphones with only one of the magnets.


As described above, in FIGS. 8A and 8B, the body 815 comprises a bead of jewelry 860 in a strand of beads comprising a necklace 870. In some embodiments, the piece of jewelry is one or more of a broach, earrings, bracelet or sunglass lanyard. However, the body is able to be molded or built into any piece of jewelry as known in the art. Alternatively, in some embodiments one or more additional magnets is able to be molded in to the body or other portion of the piece of jewelry.



FIG. 9 illustrates an embodiment of an earphones holder having a magnet built into an identifying surface in accordance with some embodiments.


The earphones holder 900 comprises a body 901 having a magnet 910 molded or built into the body 901 which is a portion of an identifying surface 960. The body 901 is configured to be coupled to at least an additional article. In some embodiments, the body 901 comprises one or more of rubber, plastic and metal. The body 901 is configured to attach to an additional article by one or more of stitching, riveting, heat pressing, adhesive attachment, or chemical method. In some embodiments, the body 901 comprises an additional surface 915 which attaches to the additional article.


The magnet 910 is configured to receive and releasably secure a set of earphones. In some embodiments, the magnet 910 removably couples with the magnetically attractable parts of the earphones. In some embodiments, the earphones also comprises a magnet or magnetically attractable surface, which removably couples with the magnet 910. In these embodiments, the magnet or magnetically attractable surface is able to be a component of the earphones or the headset cord. In some embodiments, the magnet or magnetically attractable surface is slidable along the earphones or the headset cord. However, as will be apparent to someone of ordinary skill in the art, the magnet or magnetically attractable surface is able to be fixedly connected to the earphones or the headset cord. In some embodiments, the earphones holder 900 comprises one or more additional magnets. In some embodiments, a user is able to removably couple each side of the headset cord or the earphones with a corresponding magnet. Alternatively, in some embodiments, a user is able to couple both sides of the headset cord or earphones with only one of the magnets.


As described above, the body 901 comprises a portion of an identifying surface 960 and is configured to be coupled to an additional article. Particularly, the identifying surface is able to be coupled to an appropriate article as known in the art. For example, in some embodiments the identifying surface 960 is coupled to a bag or an item of clothing. Alternatively, in some embodiments, the identifying surface 960 is coupled to an accessory item such as a key chain or armband. In some embodiments one or more additional magnets is able to be molded into the body 901 or other portion of the identifying surface 960.


As further shown in FIG. 9, a groove 920 is molded or otherwise built into the body 901. The groove 920 is configured to receive and releasably secure a headset cord. In some embodiments, the groove 920 is defined by a groove wall 930 that surrounds most of the groove 920, leaving only an entry space 935 through which the cord can access the groove 920. In some embodiments, the entry space 935 has a smaller diameter than the groove 920 and the cord, thereby securing the cord within the confines of the groove wall 930 and requiring a significant amount of force for its removal. In some embodiments, portions of the groove wall 930 are flexible so that as the cord is pushed through the entry space 935, the cord is able to force the groove wall 930 out of its way and temporarily increase the diameter of the entry space 935 so that the cord can pass through the entry space 930 into the groove 920. In some embodiments, the groove wall 930 is substantially rigid, thereby forcing the outer sleeve of the cord to constrict as it passes through the entry space 935 between the ends of the groove wall 930.


By incorporating a magnet and a groove into the surface of the body 901 a user is able to releasably secure a headset cord in the groove 920 while utilizing the earphones and then magnetically secure the earphones to the body 901 when not in use.



FIG. 10A illustrates an embodiment of an earphones holder having a magnet and a groove built into a zipper puller in accordance with some embodiments.


As shown in FIG. 10A, the body 1001 is coupled to the zipper head 1050. The earphones holder 1000 comprises a puller 1040 which is coupled to the body 1001. In some embodiments, the puller 1040 is a cord which passes through the center of the body 1001. In some embodiments, the puller 1040 is a cord which couples the body 1001 with an opening 1080. In some embodiments, the body 1001 comprises one or more of wood, glass, and metal.


The body 1001 comprises a magnet 1010. In some embodiments, the magnet 1010 is embedded within the body 1001. In other embodiments, the magnet 1010 is a distinct component that is attached to the body 1001. As shown within FIG. 10A, the magnet 1010 is molded or otherwise built into the body 1001. The magnet 1010 is configured to receive and releasably secure a set of earphones 1075. In some embodiments, the magnet 1010 removably couples with the magnetically attractable parts of the earphones 1075. In some embodiments, as shown in FIG. 10A, the earphones 1075 comprise a magnet or magnetically attractable surface 1085 coupled to the earphones, which affixes the earbud to the magnet 1010 built into or embedded within the body 1001. In these embodiments, the magnet or magnetically attractable surface 1085 is able to be a component of the earphones 1075 or the headset cord 1065. In some embodiments, the magnet or magnetically attractable surface 1085 snaps or removably couples around the earphones 1075. In some embodiments, the magnet or magnetically attractable surface 1085 is slidable along the earphones 1075 or the headset cord 1065. As will be apparent to someone of ordinary skill in the art, the magnet or magnetically attractable surface 1085 is able to be fixedly or removably connected to the earphones 1075 or the headset cord 1065.


As also shown in FIG. 10A, a groove 1020 is molded or otherwise built into the body 1001. The groove 1020 is configured to receive and releasably secure the headset cord 1065. In some embodiments, the groove 1020 is defined by a groove wall 1030 that surrounds most of the groove 1020, leaving only an entry space through which the cord 1065 can access the groove 1020. In some embodiments, the entry space has a smaller diameter than the groove 1020 and the cord 1065, thereby securing the cord within the confines of the groove wall 1030 and requiring a significant amount of force for its removal. In some embodiments, portions of the groove wall 1030 are flexible so that as the cord is pushed through the entry space, the cord is able to force the groove wall 1030 out of its way and temporarily increase the diameter of the entry space so that the cord can pass through the entry space into the groove 1020. In some embodiments, the groove wall 1030 is substantially rigid, thereby forcing the outer sleeve of the cord to constrict as it passes through the entry space between the ends of the groove wall 1030.



FIG. 10B shows a close-up view of the magnetically attractable surface 1085, in accordance with some embodiments. The magnetically attractable surface 1085 removably couples with the earphones 1075 or the headset cord 1065 in order to removably couple the earphones with the magnet 1010 as described above. As shown within FIG. 10B, the magnetically attractable surface 1085 comprises a substantially circular body that fits around the earphones 1075. In some embodiments, the magnetically attractable surface 1085 is stretchable and stretches to fit over the earphones 1075. In some embodiments, the magnetically attractable surface 1085 comprises a hinge or coupler 1087 which enables the magnetically attractable surface 1085 to be opened and coupled around the earphones 1075. In some embodiments, the magnetically attractable surface 1085 is able to be opened at coupler 1087 and then placed around the earphones 1075 and snap fit back into place. In some embodiments, the magnetically attractable surface 1085 comprises two pieces which are separated in order to removably couple the magnetically attractable surface 1085 with the earphones 1075. Particularly, the magnetically attractable surface 1085 is able to removably couple with the earphones 1075 by any appropriate mechanism as known in the art. Additionally, although the magnetically attractable surface 1085 is shown with a circular body, the magnetically attractable surface is able to comprise any appropriate shape for coupling with the earphones 1075.


In some embodiments, a user is able to place the headset cord 1065 within the groove 1020 and then removably couple the magnet or magnetically attractable surface 1085 of the earphones 1075 with the magnet 1010.


In some embodiments, a shape of the one or more magnets as described above is selected from a set comprising a strip, a ball bearing and a disc. In further embodiments, at least one of the one or more magnets comprise one or more of a neodymium magnet and a ceramic magnet.


In operation, a user places a headset cord within the confines of the groove wall while using the headset to listen to an electronic device. This enables a user to comfortably utilize the headset without becoming entangled within the cord. Then, when not listening to the electronic device, a user places a set of earphones near to the magnet in order to allow the earphones to magnetically attract to and be held by the magnet. This enables the user to place the earphones in a convenient location when using the earphones and also when not in use. By doing so, a user is able to safely secure the earphones rather than letting them dangle where they may become entangled or snagged by the user. Consequently, the earphones holder has the advantage of providing an inexpensive and easy way to hold a headset cord in a comfortable and convenient position while utilizing an electronic device. Accordingly, the headset cord holder described herein has numerous advantages.


Referring now to FIG. 11, an embodiment of a magnetic earphones and cord holding system is depicted therein. The magnetic earphones and cord holding system 1100 comprises an earphones holder body 1101 and a set of earphones 1150. The set of earphones 1150 transmits a signal from an electronic device 1105 such as an iPod, iPhone, any other similar cellular phone or smart phone, MP3 or music player, movie player, or other electronic device 1105. As will be apparent to someone of ordinary skill in the art, the set of earphones 1150 is able to transmit a signal from any appropriate electronic device 1105 as known in the art. For example, in some embodiments, the set of earphones 1150 transmits a signal from an electronic media player such as an iPad, smart phone, tablet PC, Mp4 player, or DivX Media format player.


The earphones holder body 1101 comprises a groove 1120 for receiving and releasably securing a headset cord 1165, one or more magnetically attractable surfaces 1110 for removably coupling with one or more magnets 1185 of the set of earphones 1150, and an electronic device controller 1140. In some embodiments, the one or more magnetically attractable surfaces 1110 are magnets. In some of these embodiments, the magnets are neodymium magnets. In further embodiments, the earphones holder body 1101 comprises one or more recesses 1115 for holding an earbud 1175. In some embodiments, the earbud 1175 is press fit into the one or more recesses 1115. In some embodiments, the earphones holder body 1101 comprises a body comprising a zipper puller, a snap fastener, an adornment, a buckle attachment, or an item of jewelry and a magnet built into or embedded within the body. Particularly, the earphones holder body 1101 is able to comprise a cord holder as described in U.S. patent application Ser. No. 12/891,510, filed on Sep. 27, 2010 and/or a earphones holder as described in U.S. Provisional Patent Application No. 61/601,722, filed on Feb. 22, 2012, which are both hereby incorporated by reference. In some embodiments, the set of earphones 1150 is a component of a hands free telephone adapter.


The groove 1120 is molded or otherwise built into the earphones body 1101. The groove 1120 is configured to receive and releasably secure a headset cord 1165. In some embodiments, the groove 1120 is defined by a groove wall 1122 that surrounds most of the groove 1120, leaving only an entry space 1124 through which the cord 1165 can access the groove 1120. In some embodiments, the entry space 1135 has a smaller diameter than the groove 1120 and the cord 1165, thereby securing the cord 1165 within the confines of the groove wall 1122 and requiring a significant amount of force for its removal. In some embodiments, portions of the groove wall 1122 are flexible so that as the cord 1165 is pushed through the entry space 1124, the cord 1165 is able to force the groove wall 1122 out of its way and temporarily increase the diameter of the entry space 1135 so that the cord 1165 can pass through the entry space 1124 into the groove 1120. In some embodiments, the groove wall 1122 is substantially rigid, thereby forcing the outer sleeve of the cord 1165 to constrict as it passes through the entry space 1124 between the ends of the groove wall 1122.


By incorporating a magnet and a groove into the surface of the earphones holder body 1101, a user is able to releasably secure a headset cord 1165 in the groove 1120 while utilizing the earphones 1150 and then magnetically secure the earphones 1150 to the earphones holder body 1101 when not in use. The one or more magnetically attractable surfaces 1110 are able to be fixedly or removably connected to the earphones holder body 1101.


As described above, the one or more magnetically attractable surfaces 1110 are configured for removably coupling with the one or more magnets 1185 of the earphones 1150. In some embodiments, when the one or more magnets 1185 are removably coupled with the one or more magnetically attractable surfaces 1110, the body of the earbud 1175 is placed within the one or more recesses 1115. In some embodiments, the one or more recesses 1115 and the body of the earbud 1175 comprise interlocking geometry. In these embodiments, the body of the earbud 1175 is press fit or snap fit into the one or more recesses of the earphones holder body 1101.


The electronic device controller 1140 receives a signal from the earbud engagement detector 1130 and sends a signal to the electronic device activation circuit 1155 based upon the signal received from the earbud engagement detector 1130. The electronic device activation circuit 1155 operates an electronic device 1105 based upon the signal received from the controller 1140. In some embodiments, the earbud engagement detector 1130 sends a signal to the controller 1140 that the one or more magnets 1185 and the earbud 1175 have been decoupled from the earphones holder body 1101. In these embodiments, upon receiving the signal from the earbud engagement detector 1130, the controller 1140 sends a signal to the electronic device activation circuit 1155 to activate the electronic device 1105. In some embodiments, the earbud engagement detector 1130 sends a signal to the controller 1140 that the one or more magnets 1185 and the earbud 1175 have been coupled with the earphones holder body 1101. In these embodiments, upon receiving the signal from the earbud engagement detector 1130, the controller 1140 sends a signal to the electronic device activation circuit 1155 to deactivate the electronic device 1105.


In further embodiments, the electronic device controller 1140 sends a signal to electronic device activation circuit 1155 to operate the electronic device 1105 in another manner. For example, in some embodiments, upon receiving the signal from the earbud engagement detector 1130, the controller 1140 sends a signal to the electronic device activation circuit 1155 to adjust the volume of the signal from the electronic device 1105. Additionally, in some embodiments, the controller 1140 is able to send a signal to the electronic device activation circuit 1155 in order to pause the signal of an application or a program being transmitted by the electronic device 1105. Particularly, the controller 1140 is able to send any appropriate signal to the electronic device activation circuit 1155 in order to operate the electronic device 1105.


The magnetic earphones and cord holding system 1100 is able to send a signal to activate and/or deactivate an electronic device 1105 such as a cell phone. For example, if the user's phone rings, the user is able to remove the set of earphones 1150 from the earphones holder body 1101 and a signal is sent to answer the phone and connect the call. Likewise, if the user is on a call and the set of earphones 1150 are coupled with the earphones holder body 1101, a signal is sent to hang up the phone and terminate the call. Similarly, the magnetic earphones and cord holding system 1100 is able to send a signal to start, resume, or stop an electronic device such as an electronic media player or gaming device. For example, if a user needs to interrupt playing a video game, playing music, playing a movie, or other media stream, the user is able to couple the set of earphones 1150 with the holder body 1101 in order to pause the electronic device 1105. Then, when the user desires to resume using the electronic device 1105, the user is able to decouple the earphones 1150 from the holder body and send a signal and unpause the electronic device 1105. In this manner, the user is able to use the magnetic earphones and cord holding system 1100 to operate, activate and/or deactivate any programs or applications that are running on the electronic device 1105.


In some embodiments, the signal sent by the electronic device controller 1140 to the electronic device activation circuit 1155 and the signal sent by the electronic device activation circuit 1155 to the electronic device 1105 comprise one or more of infrared, infrared laser, radio frequency, wireless, WiFi, and Bluetooth®. However, the signal sent by the electronic device controller 1140 and the electronic device activation circuit 1155 are able to comprise any wireless signal as known in the art. Alternatively, in some embodiments, the signal sent by the electronic device controller 1140 and the electronic device activation circuit 1155 comprise a wired signal.



FIGS. 12A and 12B illustrate a side view of a magnetic earphones and cord holding system formed in two parts. The magnetic earphones and cord holding system 1200 comprises a first body 1201 and a second body 1202. The first body 1201 is substantially similar to the earphones holder body 1101 as discussed in relation to FIG. 11 and comprises a groove (not shown) for receiving and releasably securing a headset cord, one or more magnetically attractable surfaces 1110, an earbud engagement detector (not shown), and an electronic device controller (not shown). As shown in FIGS. 12A and 12B, the first body 1201 comprises a coupling mechanism 1203 and the second body 1202 comprises a coupling mechanism 1205. The coupling mechanisms 1203 and 1205 enable the first body 1210 and the second body 1202 to couple together. In some embodiments, the coupling mechanisms 1203 and 1205 comprises a snap, a button, or a hook and loop fastening system. However, the coupling mechanisms 1203 and 1205 are able to comprise any appropriate coupling mechanisms as known in the art. In some embodiments, the second body 1202 comprises a button, a snap, a zipper, or an adornment.



FIG. 13 illustrates a schematic view showing the components of a magnetic earphones and cord holding system in accordance with some embodiments. As shown in FIG. 13, the magnetic earphones and cord holding system 1300 comprises an earbud engagement detector 1330, an electronic device controller 1340, and an electronic device activation circuit 1355. As described above, the earbud engagement detector 1330 detects an engagement of the earbud 1175 (FIG. 11) with the one or more magnets 1110. The earbud engagement detector 1330 sends a signal to the electronic device controller 1340 based upon the engagement status of the earbud. The electronic device controller 1340 processes the signal it receives from the earbud engagement detector 1330 and sends a signal to the electronic device activation circuit 1355 which operates an electronic device in a manner dependent upon the signal from the electronic device controller 1340. In some embodiments, the electronic device controller 1340 sends a signal to the electronic device activation circuit 1355 to activate the electronic device. In some embodiments, the electronic device controller 1340 sends a signal to the electronic device activation circuit 1355 to deactivate the electronic device.



FIG. 14 illustrates a method of operating a set of earphones in accordance with some embodiments.


As shown in FIG. 14, at the step 1404 an engagement status of an earbud is detected. In some embodiments, it is detected whether or not the earbud is coupled with an earphones holder body. Then, based upon the engagement status of the earbud, at the step 1406, a signal is sent to operate the electronic device. In some embodiments, the signal is one or more of an infrared, infrared laser, radio frequency, wireless, WiFi, and Bluetooth® signal. In some embodiments, the signal is a wired signal. In some embodiments, the signal is a signal to turn off or to turn on the electronic device.



FIG. 15 illustrates a magnetic earphones holding system in accordance with further embodiments. The magnetic earphones holding system 1500 comprises an earphones holder body 1501 and a set of earphones 1550. The set of earphones 1550 transmits a signal from an electronic device 1505 such as an iPod, iPhone, any other similar cellular phone or smart phone, MP3 or music player, movie player, or other electronic device 1505. As will be apparent to someone of ordinary skill in the art, the set of earphones 1550 is able to transmit a signal from any appropriate electronic device 1505 as known in the art. For example, in some embodiments, the set of earphones 1550 transmits a signal from an electronic media player such as an iPad, smart phone, tablet PC, Mp4 player, or DivX Media format player.


The earphones holder body 1501 is in the shape of a zipper puller and comprises one or more magnetically attractable surfaces 1510 for removably coupling with one or more magnets 15815 of the set of earphones 1550, and an electronic device controller 1540. In some embodiments, the one or more magnetically attractable surfaces 1510 are magnets. In some of these embodiments, the magnets are neodymium magnets. In some embodiments, the holder body 1501 comprises a plurality of magnetically attractable surfaces 1510. In some embodiments, the earphones holder body 1501 comprises a body comprising a snap fastener, an adornment, a buckle attachment, or an item of jewelry and a magnet built into or embedded within the body. In some embodiments, the earphones holder body 1501 further comprises a groove as described in relation to FIG. 1. In some embodiments, the set of earphones 1550 is a component of a hands free telephone adapter.


Using the one or more magnet 1585 of the earphones 1550, a user is able to couple the earphones 1550 with the one or more magnetically attractable surfaces 1510 of the earphones holder body 1501 when not in use. The one or more magnetically attractable surfaces 1510 are able to be fixedly or removably connected to the earphones holder body 1501. In some embodiments, the holder body 1501 further comprises one or more recesses for interlocking with the earbud 1575. In these embodiments, the body of the earbud 1575 is press fit or snap fit into the one or more recesses of the earphones holder body 1501.


As further shown in FIG. 15, the earphones holder body 1501 comprises an electronic device controller 1540 and an earbud engagement detector 1530. The electronic device controller 1540 receives a signal from the earbud engagement detector 1530 and sends a signal to the electronic device activation circuit 1555 based upon the signal received from the earbud engagement detector 1530. The electronic device activation circuit 1555 operates an electronic device 1505 based upon the signal received from the controller 1540. In some embodiments, the earbud engagement detector 1530 sends a signal to the controller 1540 that the one or more magnets 1585 and the earbud 1575 have been decoupled from the earphones holder body 1501. In these embodiments, upon receiving the signal from the earbud engagement detector 1530, the controller 1540 sends a signal to the electronic device activation circuit 1555 to activate the electronic device 15015. In some embodiments, the earbud engagement detector 1530 sends a signal to the controller 1540 that the one or more magnets 1585 and the earbud 1575 have been coupled with the earphones holder body 1501. In these embodiments, upon receiving the signal from the earbud engagement detector 1530, the controller 1540 sends a signal to the electronic device activation circuit 1555 to deactivate the electronic device 1505.


As shown within FIG. 15, the earbud engagement detector 1530 and the electronic device controller 1540 are components of the earphones holder body 1501. However, as will be apparent to someone of ordinary skill the art, one or more of the earbud engagement detector 1530 and the electronic device controller 1540 are able to be components of the set of earphones 1550.


As shown within FIG. 16, in some embodiments, the one or more magnets 1685 comprise a magnetically attractable surface that is a circular body that fits around the earphones 1650. In some embodiments, the one or more magnets 1685 removably couple with the earphones 1650. In some of these embodiments, the magnetically attractable surface 1685 is stretchable and stretches to fit over the earphones 1650. In some embodiments, the magnetically attractable surface 1685 comprises a hinge or coupler which enables the magnetically attractable surface 1685 to be opened and coupled around the earphones 1650. In some embodiments, the magnetically attractable surface 1685 is able to be opened at coupler and then placed around the earphones 1650 and snap fit back into place. In some embodiments, the magnetically attractable surface 1685 comprises two pieces which are separated in order to removably couple the magnetically attractable surface 1685 with the earphones 1650. Particularly, the magnetically attractable surface 1685 is able to removably couple with the earphones 1650 by any appropriate mechanism as known in the art. Additionally, although the magnetically attractable surface 1685 is shown with a circular body, the magnetically attractable surface is able to comprise any appropriate shape for coupling with the earphones 1650. As further shown in FIG. 16, the earbud engagement detector 1630 and the electronic device controller 1640 are components of the earphones 1650.


In further embodiments, the earbud engagement detector 1730 (FIG. 17) is a component of an earbud 1775 and sends a signal to a electronic device controller 1740 incorporated into a separate body 1701.



FIG. 17 illustrates a magnetic earphones holding system in accordance with further embodiments. The magnetic earphones holding system 1700 comprises an earphones holder body 1701 and a set of earphones 1750. The set of earphones 1750 transmits a signal from an electronic device 1705 such as an iPod, iPhone, any other similar cellular phone or smart phone, MP3 or music player, movie player, or other electronic device 1705. As will be apparent to someone of ordinary skill in the art, the set of earphones 1750 is able to transmit a signal from any appropriate electronic device 1705 as known in the art. For example, in some embodiments, the set of earphones 1750 transmits a signal from an electronic media player such as an iPad, smart phone, tablet PC, Mp4 player, or DivX Media format player.


As described above, the earphones holder body 1701 is able to be in a shape of a zipper puller, a snap fastener, an adornment, a buckle attachment, or an item of jewelry and a magnet built into or embedded within the body and comprises one or magnetically attractable surfaces 1710 and an electronic device controller 1740. As shown in FIG. 17, the earphones 1750 comprise one or more magnets 1785 and an earbud engagement detector 1730. In some embodiments, the electronic device controller 1740 and the earbud engagement detector 1730 are components of the earphone holder body 1701. Alternatively, in some embodiments, the electronic device controller 1740 and the earbud engagement detector 1730 are components of the set of earphones 1750.


Using the one or more magnet 1785 of the earphones 1750, a user is able to couple the earphones 1750 with the one or more magnetically attractable surfaces 1710 of the earphones holder body 1701 when not in use. The one or more magnetically attractable surfaces 1710 are able to be fixedly or removably connected to the earphones holder body 1701. In some embodiments, the holder body 1701 further comprises one or more recesses for interlocking with the earbud 1775. In these embodiments, the body of the earbud 1775 is press fit or snap fit into the one or more recesses of the earphones holder body 1701.


The electronic device controller 1740 receives a signal from the earbud engagement detector 1730 and sends a signal to the electronic device activation circuit 1755 based upon the signal received from the earbud engagement detector 1730. The electronic device activation circuit 1755 operates an electronic device 1705 based upon the signal received from the controller 1740. Particularly, the controller 1740 relays the signal from the earbud engagement detector 1730 to the electronic device 1705. As described above, in some embodiments the signal received from the controller 1740 is a signal to activate and/or deactivate the electronic device 1705.


In further embodiments, the earphones holder body 1701 comprises an item that is placed on a counter top or other similar item. In some embodiments, the electronic device controller 1740, is able to send a signal to an activation circuit 1755 of an electronic device 1705 that is removably coupled with an external docking station.


In some embodiments, the signal sent by the electronic device controller 1740 to the electronic device activation circuit 1755 and the signal sent by the electronic device activation circuit 1755 to the electronic device 1705 comprise one or more of infrared, infrared laser, radio frequency, wireless, WiFi, and Bluetooth®. However, the signal sent by the electronic device controller 1740 and the electronic device activation circuit 1755 are able to comprise any wireless signal as known in the art. Alternatively, in some embodiments, the signal sent by the electronic device controller 1740 and the electronic device activation circuit 1755 comprise a wired signal.


In further embodiments, the set of earphones 1750 comprise wireless earphones. In these embodiments, the earbud engagement detector 1730 sends a wireless signal to the electronic device controller 1740 based on the engagement status of the earphones and the earphones 1750 receive a wireless content signal from the electronic device 1705.



FIG. 18 illustrates a magnetic earphones holding system in accordance with some embodiments. The system 1800 comprises a set of earphones comprising one or more magnets or magnetically attractable surfaces 1885 built into the earbud 1875 and one or more magnets or magnetically attractable surfaces 1895 built into the earbud 1875′. As shown in FIG. 18, the earbud 1875 comprises an earbud engagement detector 1830 and an electronic device controller 1840 built into the body of the earbud 1875. Although, the earbud engagement detector 1830 and an electronic device controller 1840 built into a signal body of the earbud 1875, as will be apparent to someone of ordinary skill in the art, the earbud engagement detector 1830 and the electronic device controller 1840 are able to be components of different earbuds.


The electronic device controller 1840 receives a signal from the earbud engagement detector 1830 based upon an engagement of the earbud 1875 with the earbud 1875′. In some embodiments, the earbud engagement detector 1830 sends a signal to the controller 1840 that the one or more magnets or magnetically attractable surfaces 1885 have been removed from the one or more magnets or magnetically attractable surfaces 1895. In these embodiments, upon receiving the signal from the earbud engagement detector 1830, the controller 1840 sends a signal to the electronic device activation circuit 1855 to activate the electronic device 1805. In some embodiments, the earbud engagement detector 1830 sends a signal to the controller 540 that the earbud 1875 has been coupled with the earbud 1875′. In these embodiments, upon receiving the signal from the earbud engagement detector 1830, the controller 1840 sends a signal to the electronic device activation circuit 1855 to deactivate the electronic device 1805.


In operation, the earphones holder enables a user to comfortably utilize a headset without becoming entangled within the cord. In some embodiments, a user uses a groove and the magnets of a cord holder body while using the headset to listen to an electronic device. A user places a set of earphones near to the magnet in order to allow the earphones to magnetically attract to and be held by the magnet. When the user wishes to use the electronic device, the earphones are removed from the magnet and a signal is transmitted in order to active an electronic device such as a music player or cell phone. Then, when the user no longer wishes to use the electronic device, the earphones are recoupled with the magnet and the electronic device is deactivated. In this manner, the earphones are able to be removed from the earphones holder body and an electronic device is automatically activated in order to answer a telephone call. Then, when the telephone call is terminated, the user is able to recouple the earphones with the earphones holder body and automatically deactivate the device. Alternatively, the earphones are able to be removed from the earphones holder body and an electronic device is automatically activated in order to listen to music transmitted from a music player or cell phone and then recoupled with the earphones holder body in order to deactivate the device when the use of the earphones is no longer desired.


Referring now to FIGS. 19A19E, an embodiment of a magnetic earphones and cord holding system is depicted therein. The magnetic earphones and cord holding system 1900 comprises a body 1901 comprising a touch sensor 1903, an on/off button 1911, a microphone 1913, a speaker 1915, and a charging port 1917. As shown in FIGS. 19A19E, the body 1901 also comprises an electronic device controller 1940 and a touch sensor detector 1960. In some embodiments, the system comprises an earphones jack 1907 and one or magnets or magnetically attractable surfaces 1920 and 1920′ and one or more earbud engagement detectors 1930 and 1930′. The one or magnets or magnetically attractable surfaces 1920 and 1920′ are configured to removably couple with one or more magnets 1985 and 1985′ of a set of earphones 1950. In further embodiments, the body 1901 comprises a groove and/or one or more recesses for securing the earphones 1950 and the cord 1965, as described above.


In some embodiments, the electronic device controller 1940 receives a signal from the earbud engagement detector 1930 and sends a signal to the electronic device activation circuit 1955 based upon the signal received from the earbud engagement detector 1930. The electronic device activation circuit 1955 operates an electronic device 1905 based upon the signal received from the controller 1940. In some embodiments, the earbud engagement detector 1930 sends a signal to the controller 1940 that the one or more magnets 1985 and the earbud 1975 have been decoupled from the earphones holder body 1901. In these embodiments, upon receiving the signal from the earbud engagement detector 1930, the controller 1940 sends a signal to the electronic device activation circuit 1955 to activate the electronic device 1905. In some embodiments, the earbud engagement detector 1930 sends a signal to the controller 1940 that the one or more magnets 1985 and the earbud 1975 have been coupled with the earphones holder body 1901. In these embodiments, upon receiving the signal from the earbud engagement detector 1930, the controller 1940 sends a signal to the electronic device activation circuit 1955 to deactivate the electronic device 1905.


In further embodiments, the touch sensor detector 1960 receives a signal from the touch sensor 1903 based upon a contact with the touch sensor 1903 and sends a signal to the electronic device controller 1940, which sends a signal to the electronic device activation circuit 1955. The electronic device activation circuit 1955 operates an electronic device 1905 based upon the signal received from the controller 1940. For example, in some embodiments, the touch sensor detector 1960 sends a signal to the electronic device controller 1940 that the touch sensor 1903 has been tapped, double-tapped, and/or swiped. In response, the electronic device controller 1940 sends a signal to the electronic device activation circuit 1955 to operate the electronic device 1905. In some embodiments, the electronic device controller 1940 is able to send a signal to activate/de-activate the electronic device, turn up or turn down the volume, change the playing media, and/or change the program being operated by the electronic device 1905. Particularly, the electronic device controller 1940 is able to send any appropriate desired control signal to the electronic device 1905. Additionally, the touch sensor 1903 is able to be operated in any desired manner.


In some embodiments, the magnetic and cord holding system 1900 is used with the set of earphones 1950. In these embodiments, the power input 1995 is inserted into the earphones jack 1907 and the one or more magnets 1985 and 1985′ are removably coupled with the one or more magnets or magnetically attractable surfaces 1920 and 1920′. In some embodiments, a user is able to remove the earphones 1950 and transmit a signal in order to activate the electronic device 1905, as described above. Then, with the earphones in their ears, a user is able to utilize the touch sensor 1903 in order to operate the electronic device 1905. In some embodiments, the magnetic and cord holding system 1900 is used with a short cord set of earphones. Consequently, the set of earphones is able to be used without becoming entangled in the clothing of the user. Particularly, as shown in FIG. 20, because the power input 1975 and the earphones 1950 are held closely together when coupled with the body 1901, the cord 1965 of the earphones only needs to long enough to comfortably couple the earphones 1950 with the ears of a user and enable the user to use the touch sensor 1903 and/or the microphone 1913 of the body 1901 of the magnetic and cord holding system 1900.


In further embodiments, the magnetic and cord holding system 1900 is able to be used without the set of earphones 1950. For example, the touch sensor 1903 is able to be contacted in order activate the electronic device 1905 and then a user is able to utilize the touch sensor 1903 in order to operate the electronic device 1905. In these embodiments, the touch sensor 1903 is able to be utilized in order to answer a telephone call and communicate using the microphone 1913 and the speaker 1915. Then, when the telephone call is terminated, the user is able to utilize the touch sensor 1903 to terminate the call and deactivate the electronic device 1905. Additionally, in some embodiments, the system 1900 and the touch sensor 1903 are used without audio in order to control a program running on the electronic device 1905.


The magnetic and cord holding system 1900 is able to be used with a variety of electronic devices and in a variety of settings. For example, in some embodiments, the system 1900 is utilized with an electronic device that is coupled with an external docking station. In further embodiments, the system 1900 is able to be used as a controller for a game or program located on the electronic device. In these embodiment the touch sensor 1903 is able to be utilized to send control messages to the electronic device in order to control the game or program. In further embodiments, the system 1900 is able to receive a signal from an electronic device. For example, in some embodiments the system 1900 is able to receive an audio signal from the electronic device through the speaker 1915. Further, in some embodiments, the speaker 1915 and the microphone 1913 are used to communicate voice controls to the electronic device 1905.


In some embodiments, the signal sent by the electronic device controller 1940 to the electronic device activation circuit 1955 and the signal sent by the electronic device activation circuit 1955 to the electronic device 1905 comprise one or more of infrared, infrared laser, radio frequency, wireless, WiFi, and Bluetooth®. However, the signal sent by the electronic device controller 1940 and the electronic device activation circuit 1955 are able to comprise any wireless signal as known in the art. Alternatively, in some embodiments, the signal sent by the electronic device controller 1940 and the electronic device activation circuit 1955 comprise a wired signal.



FIG. 21 illustrates a block diagram showing the components of the body 1901 of the system 1900. As described above, the body 1901 comprises a touch sensor 1903, an on/off button 1905, a microphone 1913, a speaker 1915, and a charging port 1917. As shown in FIGS. 19A19E, the body 1901 also comprises an electronic device controller 1940 and a touch sensor detector 1960. In some embodiments, the system comprises an earphones jack 1907 and one or magnets or magnetically attractable surfaces 1920 and 1920′ and one or more earbud engagement detectors 1930 and 1930′. In some embodiments, the body 1901 comprises a printed circuit board 1923 and a battery 1925 for supplying power to the system 1900. In some embodiments, the body 1901 further comprises an LED light 1919 for indicating that the body 1901 is powered on. In some embodiments, the earphones jack 1907 is a 3.5 mm jack. However, as will apparent to someone of ordinary skill in the art, the earphones jack 1907 is able to comprises any appropriately sized jack. In some embodiments, the charging port 1917 is a USB port. However, the charging port 1917 is able to comprise any appropriately sized charging port.



FIG. 22 illustrates the magnetic and cord holding system 1900 removably coupled to a shirt collar in accordance with some embodiments. The body 1901 of the system 1900 has been coupled to the shirt 2200 by using the clip 1909, as shown in FIGS. 19A and 19B. When using the clip 1909, a user is able to secure the body 1901 in a convenient, desired location. As will be apparent to someone of ordinary skill in the art, the body 1901 is able to be secured in any appropriate manner as known in the art. For example, in some embodiments, the body 1901 is coupled with a lanyard which is placed around a neck of a user in order to place the body 1901 in a convenient location.



FIG. 23 illustrates a schematic view showing the components of a magnetic earphones and cord holding system in accordance with some embodiments. As shown in FIG. 23, the magnetic earphones and cord holding system 2300 comprises an earbud engagement detector 2330, an electronic device controller 2340, and an electronic device activation circuit 355. As described above, the earbud engagement detector 2330 detects an engagement of an earbud with the one or more magnets of the body as shown in FIGS. 19A-19E. The earbud engagement detector 2330 sends a signal to the electronic device controller 340 based upon the engagement status of the earbud. The electronic device controller 2340 processes the signal it receives from the earbud engagement detector 2330 and sends a signal to the electronic device activation circuit 2355 which operates an electronic device in a manner dependent upon the signal from the electronic device controller 2340. In some embodiments, the electronic device controller 2340 sends a signal to the electronic device activation circuit 2355 to activate the electronic device. In some embodiments, the electronic device controller 2340 sends a signal to the electronic device activation circuit 2355 to deactivate the electronic device.


As further shown in FIG. 23, the magnetic earphones and cord holding system 2300 comprises a touch sensor detector 2360. The touch sensor detector detects a contact of the touch sensor 903 (FIG. 9A) and sends a signal to the electronic device controller 2340 based upon the contact with the touch sensor 903. The electronic device controller 2340 processes the signal it receives from the touch sensor detector 2360 and sends a signal to the electronic device activation circuit 2355 to operate an electronic device in a manner based upon the signal received from the electronic device controller 2340. In some embodiments, the electronic device controller 2340 sends a signal to the electronic device activation circuit 2355 to activate/de-activate the electronic device, turn up or turn down the volume, change the playing media, and/or change the program being operated by the electronic device.



FIG. 24 illustrates a method of operating a magnetic earphones and cord holding system comprising a touch sensor in accordance with some embodiments. In the step 2404, a contact of a touch sensor is detected. For example, in some embodiments it is detected that the touch sensor is tapped, double-tapped, swiped in a sideways direction, and/or swiped in an up and down direction. Then, based upon the contact with the touch sensor, in the step 2406, a signal is sent to operate the electronic device. In some embodiments, the signal is one or more of an infrared, infrared laser, radio frequency, wireless, WiFi, and Bluetooth® signal. In some embodiments, the signal is a wired signal. In some embodiments, the signal is a signal to activate/de-activate the electronic device, turn up or turn down the volume, change the playing media, and/or change the program being operated by the electronic device.


The magnetic earphones and cord holding system enables a user to automatically activate and/or deactivate an electronic device and place the earphones in a convenient location when using the earphones and when not in use. Consequently, the earphones and cord holding system has the advantage of providing an inexpensive and easy way to hold a headset cord in a comfortable and convenient position while utilizing an electronic device. Additionally, the earphones and cord holding system is able to conserve power by ensuring that the electronic device is only activated when needed. Accordingly, the magnetic earphones and cord holding system described herein has numerous advantages.


In another aspect, a set of headphones and audio system comprises a first set of buttons for controlling a volume level of transmitted audio to the headphones and a second set of buttons for controlling a volume level of external audio played by the headphones. The transmitted audio comprises audio received from an audio source such as an electronic device and the external audio comprises surrounding ambient noise received by a microphone coupled to the headphones. With the first set of controls and the second set of controls a user is able to adjust the volume level of the transmitted audio and the volume level of the external audio in order to listen to the transmitted audio while still interacting with the surrounding environment. The set of headphones and audio system is able to be used with the magnetic earphones and cord holding system, such as described above.


Referring now to FIG. 25, a schematic view of an audio system is depicted therein. As shown within FIG. 25, the audio system 2500 comprises a first set of controls 2530, a second set of controls 2535, a headphones controller 2540, a transmitted audio adjustment circuit 2550 and an external audio adjustment circuit 2555. The first set of controls 2530 controls a transmitted audio to a set of headphones. The transmitted audio is transmitted from an electronic device, such as described above, or a similar audio player which plays audio through the headphones. Particularly, the headphones are able to receive transmitted audio from any appropriate device configured for use with headphones. The second set of controls 2535 controls an external audio received from a microphone coupled to the headphones. Particularly, the second set of controls 2535 is able to adjust a volume of surrounding ambient nose received by the microphone and played through the headphones.


The first set of controls 2530 and the second set of controls 2535 send a signal to the headphones controller 2540. The headphones controller 2540 processes the signals from the first set of controls 2530 and the second set of controls 2535 and sends a signal to one or both of the transmitted audio adjustment circuit 2550 and the external audio adjustment circuit 2555. For example, in some embodiments, the first set of controls 2530 sends a signal to the headphones controller 2540 to adjust a volume of the transmitted audio received through the headphones. The headphones controller 2540 processes the signal from the first set of controls 2530 and sends a signal to the transmitted audio adjustment circuit 2550 to turn up or turn down the volume of the transmitted audio. In some embodiments, the second set of controls 2535 sends a signal to the headphones controller 2540 to adjust a volume of the external audio received by the microphone and played through the headphones. The headphones controller 2540 processes the signal from the second set of controls 2535 and sends a signal to the external audio adjustment circuit 2555 to turn up or turn down the volume of the external audio received by the microphone and played through the headphones.


The first set of controls 2530 and the second set of controls 2535 enable a user to precisely set a volume level of transmitted audio and external audio played through the headphones. For example, a user is able to use the second set of controls 2535 to adjust the level of ambient noise to zero and/or off so that the headphones are isolated from the surrounding ambient noise of the external environment. Alternatively, the second set of controls 2535 may be used to adjust the level of ambient noise to a level where the user is able to have a conversation or clearly hear outside noises while still wearing the headphones. Particularly, the first set of controls 2530 and the second set of controls 2535 are able to adjust the level of transmitted audio and the level of external audio played by the headphones to an acceptable level as desired by the user.


In some embodiments, the audio system 2500 comprises a magnetic earphones and cord holding system, such as described above and the first set of controls 2530 and the second set of controls 2535 comprise touch screen controls of the touch sensor 1903 (FIG. 19). Additionally, in some embodiments, the first set of controls 2530 comprises a first set of buttons and the second set off controls 2535 comprises a second set of buttons. In some embodiments, the first set of controls 2530 and the second set of controls 2535 are a component of the headphones and/or headphones cord. In some embodiments, the headphones comprise a noise canceling element.



FIG. 26 illustrates a set of headphones in accordance with some embodiments. The set of headphones comprises a set of earphones 2670 for playing transmitted audio and external audio received through a microphone 2660. As shown in FIG. 26, the earphones 2670 comprise a set of earbuds designed to be worn within the ears of the user. However, the earphones 2670 are able to comprise over the ear headphones or other design as appropriately desired. As described above, in some embodiments, the transmitted audio is received from a electronic or other device transmitting audio.


As further shown in FIG. 26, the headphones 2600 comprise a first set of controls 2630, a second set of controls 2635, a headphones controller 2640, a transmitted audio adjustment circuit 2650 and an external audio adjustment circuit 2655. Although the first set of controls 2630, the second set of controls 2635, the headphones controller 2640, the transmitted audio adjustment circuit 2650 and the external audio adjustment circuit 2655 are shown coupled to separate components of the headphones 2600, the first set of controls 2630, the second set of controls 2635, the headphones controller 2640, the transmitted audio adjustment circuit 2650 and the external audio adjustment circuit 2655 may be coupled together and/or separately as appropriately desired. In some embodiments, the first set of controls 2630, the second set of controls 2635 are touch screen controls used with a magnetic earphones and cord holding system, such as described above.


In some embodiments, the first set of controls 2630 comprises a first button 2631 for raising the volume of the transmitted audio and a second button 2632 for lowering the volume of the transmitted audio. Similarly, the second set of controls 2635 comprises a first button 2636 for raising the volume of the transmitted audio and a second button 2637 for lowering the volume of the external audio received by the microphone 2660 and played through the headphones 2600. In some embodiments, the first set of controls 2630 and the second set of controls 2635 comprise touch screen controls. In some embodiments, the headphones 2600 comprise a noise canceling element 2680.


As described above, the first set of controls 2630 and the second set of controls 2635 send a signal to the headphones controller 2640. The headphones controller 2640 processes the signals from the first set of controls 2630 and the second set of controls 2635 and sends a signal to one or both of the transmitted audio adjustment circuit 2650 and the external audio adjustment circuit 2655. For example, in some embodiments, the first set of controls 2630 sends a signal to the headphones controller 2640 to adjust a volume of the transmitted audio received through the headphones. The headphones controller 2640 processes the signal from the first set of controls 2630 and sends a signal to the transmitted audio adjustment circuit 2650 to turn up or turn down the volume of the transmitted audio. In some embodiments, the second set of controls 2635 sends a signal to the headphones controller 2640 to adjust a volume of the external audio received by the microphone and played through the headphones. The headphones controller 2640 processes the signal from the second set of controls 2635 and sends a signal to the external adjustment circuit 2655 to turn up or turn down the volume of the external audio received by the microphone and played through the headphones.


The first set of controls 2630 and the second set of controls 2635 enable a user to precisely set a volume level of transmitted audio and external audio played through the headphones. For example, a user is able use the second set of controls 2635 to adjust the level of ambient noise to zero and/or off so that the headphones are isolated from the surrounding ambient noise of the external environment. Alternatively, the second set of controls 2635 may be used to adjust the level of ambient noise to a level where the user is able to have a conversation or clearly hear outside noises while still wearing the headphones. Particularly, the first set of controls 2630 and the second set of controls 2635 are able to adjust the level of transmitted audio and the level of external audio played by the headphones to an acceptable level as desired by the user.



FIG. 27 illustrates a method of operating a set of headphones in accordance with some embodiments.


The method begins in the step 2710. In the step 2720, audio is received from an electronic device. As described above, the transmitted audio is transmitted from an electronic device, such as described above, or a similar audio player which plays audio through the headphones. In the step 2730, external audio is received from a microphone coupled to the set of headphones. Then, in the step 2740 a volume level of one or more of the transmitted audio and the external audio is adjusted to a level as desired by the user. In some embodiments, a first set of controls and a second set of controls enable a user to precisely set a volume level of transmitted audio and external audio played through the headphones. In some embodiments, the first set of controls and the second set of controls comprise touch screen controls. Alternatively, in some embodiments, the first set of controls comprises a first set of buttons and the second set off controls comprises a second set of buttons. The first set of controls and the second set of controls are able to be coupled to the headphones and/or a magnetic headphones holder as described above. The method ends in the step 2750.


In use the set of headphones comprising a microphone for receiving ambient surrounding noise enables a user to adjust the amount of ambient noise played through the headphones. Using a set of controls the level of ambient noise may be turned all the way off in order to be isolated from surrounding ambient noises while only listening to transmitted music. Alternatively, the ambient noise may be turned to a level that allows the user to interact with the surrounding environment while still wearing the headphones and listening to the transmitted music.


With the headphones, a user is able to go for a bike ride or a run while listening to music while still hearing the surrounding traffic and other ambient noises. Additionally, if a user needs to interact with another person they only need to increase the level of ambient noise in order to hear the other person and carry on a conversation. The headphones enable a user to interact with the surrounding environment without removing the earphones and interrupting the audio experience. Particularly, the user is able to carry out everyday tasks while listening to music or other audio while maintaining contact with surrounding environment and other persons. Accordingly, the set of headphones comprising a microphone for receiving surrounding ambient noise as described herein has many advantages.


The presently claimed invention has been described in terms of specific embodiments incorporating details to facilitate the understanding of the principles of construction and operation of the invention. As such, references herein to specific embodiments and details thereof are not intended to limit the scope of the claims appended hereto. It will be apparent to those skilled in the art that modifications can be made to the embodiments chosen for illustration without departing from the spirit and scope of the invention.

Claims
  • 1. An audio system comprising: a. a first earphone comprising a first magnetically attractable surface;b. a second earphone comprising a second magnetically attractable surface for removably coupling with the first magnetically attractable surface; andc. a device controller configured to enable audio from an electronic device to be played in one or more the first earphone and the second earphone when a decoupling of the first magnetically attractable surface and the second magnetically attractable surface is detected.
  • 2. The audio system of claim 1, wherein the device controller causes the audio to stop being played in the first earphone and the second earphone when the first magnetically attractable surface and the second magnetically attractable surface are again coupled.
  • 3. The audio system of claim 1, further comprising: a. a first set of controls for controlling a volume of the audio played by the first earphone and the second earphone; andb. a second set of controls for controlling a volume of external audio played by the first earphone and the second earphone.
  • 4. The audio system of claim 3, wherein the external audio comprises surrounding ambient noise received from an external microphone.
  • 5. The audio system of claim 4, wherein the second set of controls control the volume level of ambient noise received through the first earphone and the second earphone.
  • 6. The audio system of claim 1, further comprising a noise canceling element.
  • 7. The audio system of claim 1, wherein the device controller is further configured to cause an incoming call to a telephone to be answered and connected and further wherein the audio comprises audio for the call.
  • 8. The audio system of claim 7, wherein the device controller further causes an ongoing call through the telephone to be terminated when the first magnetically attractable surface and the second magnetically attractable surface are again coupled.
  • 9. An audio system comprising: a. a first earphone comprising a first magnetically attractable surface;b. a second earphone comprising a second magnetically attractable surface for removably coupling to the first magnetically attractable surface of the first earphone; andc. a device controller configured to cause audio to be played in the first earphone and the second earphone when the second magnetically attractable surface is removed and decoupled from the first magnetically attractable surface.
  • 10. The audio system of claim 9, wherein the device controller causes the audio to stop being played in the first earphone and the second earphone when the second magnetically attractable surface is again coupled to the first magnetically attractable surface.
  • 11. The audio system of claim 10, further comprising: a. a first set of controls for controlling a volume of the audio played by the first earphone and the second earphone; andb. a second set of controls for controlling a volume of external audio played by the first earphone and the second earphone.
  • 12. The audio system of claim 11, wherein the external audio comprises surrounding ambient noise received from an external microphone.
  • 13. The audio system of claim 12, wherein the second set of controls control the volume level of ambient noise received through the first earphone and the second earphone.
  • 14. The audio system of claim 9, further comprising a noise canceling element.
  • 15. The audio system of claim 9, wherein the device controller is further configured to cause an incoming call to a telephone to be answered and connected and further wherein the audio comprises audio for the call.
  • 16. The audio system of claim 15, wherein the device controller further causes an ongoing call through the telephone to be terminated when the second magnetically attractable surface is again coupled to the first magnetically attractable surface.
  • 17. A method of operating an electronic device comprising: a. detecting an engagement status of a first magnetically attractable surface of a first earphone with a second magnetically attractable surface of a second earphone; andb. causing audio from an electronic device to be played in the first earphone and the second earphone when the first magnetically attractable surface is removed and decoupled from the second magnetically attractable surface.
  • 18. The method of claim 17, further comprising: causing the audio from the electronic device to stop being played in the first earphone and the second earphone when the first magnetically attractable surface is again coupled to the second magnetically attractable surface.
  • 19. The method of claim 17, further comprising: a. operating the electronic device based upon the engagement status of the first magnetically attractable surface with the second magnetically attractable surface; andb. receiving the audio from the electronic device.
  • 20. The method of claim 17, further comprising: a. receiving external audio from a microphone; andb. adjusting a volume level in the first earphone and the second earphone of one of the audio and the external audio.
  • 21. The method of claim 20, wherein the external audio comprises surrounding ambient noise received from an external microphone.
  • 22. The method of claim 17, further comprising canceling outside noise from being played by the first earphone and the second earphone.
  • 23. The method of claim 20, further comprising answering a telephone when the first magnetically attractable surface is removed and decoupled from the second magnetically attractable surface and connecting a call and further wherein the audio comprises audio for the call.
  • 24. The method of claim 23, further comprising terminating the call through the telephone when the first magnetically attractable surface is again coupled to the second magnetically attractable surface.
RELATED APPLICATIONS

This Patent Application is a continuation of the co-pending U.S. patent application Ser. No. 17/230,773, filed Apr. 14, 2021, and entitled “MAGNETIC EARPHONES HOLDER”, which is hereby incorporated by reference in its entirety, which is a continuation of the U.S. patent application Ser. No. 15/683,526, filed Aug. 22, 2017, and entitled “MAGNETIC EARPHONES HOLDER”, which is hereby incorporated by reference in its entirety, which is a continuation of the U.S. patent application Ser. No. 14/215,833, filed Mar. 17, 2014, and entitled “MAGNETIC EARPHONES HOLDER”, which is hereby incorporated by reference in its entirety, which is a continuation-in-part of the co-pending U.S. patent application Ser. No. 13/734,871 filed Jan. 4, 2013, and entitled “HEADSET CORD HOLDER”, which is hereby incorporated by reference in its entirety, which claims priority under 35 U.S.C. 119(e) to the U.S. provisional patent Application No. 61/601,722, filed on Feb. 22, 2012, and entitled “MAGNETIC EARPHONES HOLDER,” the U.S. provisional patent Application No. 61/671,572, filed on Jul. 13, 2012, and entitled “MAGNETIC EARPHONES HOLDER,” and the U.S. provisional patent Application No. 61/712,136, filed on Oct. 10, 2012, and entitled “MAGNETIC EARPHONES HOLDER.” The U.S. provisional patent Application No. 61/601,722, filed on Feb. 22, 2012, and entitled “MAGNETIC EARPHONES HOLDER,” the U.S. provisional patent Application No. 61/671,572, filed on Jul. 13, 2012, and entitled “MAGNETIC EARPHONES HOLDER,” and the U.S. provisional patent Application No. 61/712,136, filed on Oct. 10, 2012, and entitled “MAGNETIC EARPHONES HOLDER” are all also hereby incorporated by reference.

US Referenced Citations (215)
Number Name Date Kind
630544 Kissman Aug 1899 A
3392729 Lenoir Jul 1968 A
3604069 Jensen Sep 1971 A
3753201 Ohman Aug 1973 A
3849843 Alberts Nov 1974 A
4346501 Saiya Aug 1982 A
4562621 Takeshima et al. Jan 1986 A
4901355 Moore Feb 1990 A
5090096 Tereda Feb 1992 A
5499927 Ohno et al. Mar 1996 A
5511289 Melia Apr 1996 A
5511292 Covi et al. Apr 1996 A
5671508 Murai Sep 1997 A
5713110 Covi et al. Feb 1998 A
D395815 Walters et al. Jul 1998 S
5831513 Lue Nov 1998 A
5892564 Rahn Apr 1999 A
6301050 DeLeon Oct 2001 B1
6431500 Jacobs et al. Aug 2002 B1
6438248 Kamimura et al. Aug 2002 B1
6526635 Nasu et al. Mar 2003 B2
D479978 Watabe et al. Sep 2003 S
D480942 Ishida et al. Oct 2003 S
6801140 Mantyjarvi et al. Oct 2004 B2
7013492 Hugh et al. Mar 2006 B2
7103188 Jones Sep 2006 B1
7311526 Rohrbach et al. Dec 2007 B2
7317809 Almqvist Jan 2008 B2
7416099 deLeon et al. Aug 2008 B2
7418103 Sargaison Aug 2008 B2
7436974 Harper Oct 2008 B2
7464893 Spjut Dec 2008 B2
7479949 Jobs et al. Jan 2009 B2
7503101 Sieger Mar 2009 B2
7519192 Laycock et al. Apr 2009 B1
7559123 Yang Jul 2009 B1
7594724 Purcell Sep 2009 B2
7673348 Williams Mar 2010 B2
7693295 Harper Apr 2010 B2
7706821 Konchitsky Apr 2010 B2
7817808 Konchitsky et al. Oct 2010 B2
7825626 Kozisek Nov 2010 B2
7903826 Boersma Mar 2011 B2
7915512 Fratti Mar 2011 B2
D636756 Fahrendorff Apr 2011 S
7986791 Bostick Jul 2011 B2
8086281 Rabu et al. Dec 2011 B2
8086288 Klein Dec 2011 B2
8139809 Jubelirer et al. Mar 2012 B2
8155340 Garudadri et al. Apr 2012 B2
8185084 Terlizzi May 2012 B2
8189843 Harper May 2012 B2
8199947 Rass Jun 2012 B2
8218782 Asada et al. Jul 2012 B2
8225465 Honeycutt Jul 2012 B2
8285208 Terlizzi Oct 2012 B2
8290545 Terlizzi Oct 2012 B2
8331579 Kato Dec 2012 B2
8391524 Gozen Mar 2013 B2
8401219 Hankey et al. Mar 2013 B2
8411041 Lee et al. Apr 2013 B2
8498679 Yu Jul 2013 B2
8539649 Honeycutt Sep 2013 B2
8621724 Honeycutt Jan 2014 B2
8655003 Duisters et al. Feb 2014 B2
8695170 Honeycutt Apr 2014 B2
8655005 Birger Jun 2014 B2
8891798 Laffon de Mazieres Nov 2014 B1
8898170 Haughay, Jr. Nov 2014 B2
9167329 Honeycutt Oct 2015 B2
9257850 Sato Feb 2016 B2
9536560 Jehan Jan 2017 B2
9568994 Jehan Feb 2017 B2
9579060 Lisy Feb 2017 B1
9591395 Burgett et al. Mar 2017 B2
9609420 Azmi Mar 2017 B2
9750462 LeBoeuf Sep 2017 B2
9769556 Honeycutt Sep 2017 B2
9915378 Honeycutt Mar 2018 B2
10104486 Dohmen Oct 2018 B2
10225640 Honeycutt Mar 2019 B2
10225819 Jang Mar 2019 B2
20010046304 Rast Nov 2001 A1
20030019015 Hugh et al. Jan 2003 A1
20030074712 Liao Apr 2003 A1
20030224839 Takahashi Dec 2003 A1
20040096079 Chang et al. May 2004 A1
20040107887 Kinkead Jun 2004 A1
20040204165 Huang Oct 2004 A1
20040204208 Thompson Oct 2004 A1
20050069147 Bjerre Mar 2005 A1
20050130593 Michalak Jun 2005 A1
20050248717 Howell et al. Nov 2005 A1
20060008106 Harper Jan 2006 A1
20060029234 Sargaison Feb 2006 A1
20060045304 Lee Mar 2006 A1
20060059666 Senink Mar 2006 A1
20060107822 Bowen May 2006 A1
20060153394 Beasley Jul 2006 A1
20070074712 Fielding, Jr. Apr 2007 A1
20070080186 De Leon et al. Apr 2007 A1
20070086617 Loh Apr 2007 A1
20070093279 Janik Apr 2007 A1
20070116316 Goldberg May 2007 A1
20070127747 Doyle Jun 2007 A1
20070160249 LeGette et al. Jul 2007 A1
20070234523 Aks Oct 2007 A1
20070253584 Rass Nov 2007 A1
20070254271 Burlik Nov 2007 A1
20070291974 Eisenbraun Dec 2007 A1
20080001014 Spjut Jan 2008 A1
20080029288 Chen et al. Feb 2008 A1
20080058037 Dunn Mar 2008 A1
20080089539 Ishil Apr 2008 A1
20080096726 Riley Apr 2008 A1
20080107287 Beard May 2008 A1
20080123258 Singh May 2008 A1
20080130910 Jobling et al. Jun 2008 A1
20080157991 Raghunath Jul 2008 A1
20080198141 Lee et al. Aug 2008 A1
20080240486 Garcia et al. Oct 2008 A1
20080289151 Chan Nov 2008 A1
20080298606 Johnson et al. Dec 2008 A1
20080317274 Kim Dec 2008 A1
20090024748 Goldspink et al. Jan 2009 A1
20090034748 Sibbald Feb 2009 A1
20090097689 Prest Apr 2009 A1
20090154739 Zellner Jun 2009 A1
20090175456 Johnson Jul 2009 A1
20090177097 Ma Jul 2009 A1
20090178253 Yang Jul 2009 A1
20090196436 Westenbroek Aug 2009 A1
20090226013 Burge Sep 2009 A1
20090245549 Jubelirer et al. Oct 2009 A1
20090036119 Smith et al. Dec 2009 A1
20090320247 Honeycutt Dec 2009 A1
20100011054 Pan Jan 2010 A1
20100020892 Brown Jan 2010 A1
20100020982 Brown et al. Jan 2010 A1
20100020998 Brown et al. Jan 2010 A1
20100022281 Cohen et al. Jan 2010 A1
20100022283 Terlizzi Jan 2010 A1
20100115732 Honeycutt May 2010 A1
20100150370 Bales et al. Jun 2010 A1
20100159741 Rothbaum Jun 2010 A1
20100166207 Masuyama Jul 2010 A1
20100170066 Honeycutt Jul 2010 A1
20100172522 Mooring Jul 2010 A1
20100197360 Namgoong Aug 2010 A1
20100217099 LeBoeuf et al. Aug 2010 A1
20100217102 LeBoeuf et al. Aug 2010 A1
20100250669 Pan Sep 2010 A1
20100275418 Ingram Nov 2010 A1
20100276315 Corry Nov 2010 A1
20110010894 Honeycutt Jan 2011 A1
20110117840 Li May 2011 A1
20110117972 Smith May 2011 A1
20110162883 Grosset et al. Jul 2011 A1
20110270601 Karapetian Nov 2011 A1
20110286615 Olodort et al. Nov 2011 A1
20110287806 Vasudevan Nov 2011 A1
20120021540 Takahashi Jan 2012 A1
20120101819 Heiman Apr 2012 A1
20120114154 Abrahamsson May 2012 A1
20120171964 Tang et al. Jul 2012 A1
20120189136 Brown Jul 2012 A1
20120197093 LeBoeuf et al. Aug 2012 A1
20120201412 Del Prete Aug 2012 A1
20120203077 He et al. Aug 2012 A1
20120238215 Kari et al. Sep 2012 A1
20120255146 Honeycutt Oct 2012 A1
20130028461 Harper Jan 2013 A1
20130120919 Erickson May 2013 A1
20130129110 Harper May 2013 A1
20130214998 Andes Aug 2013 A1
20130216085 Honeycutt Aug 2013 A1
20130238829 Laycock Sep 2013 A1
20130248661 Honeycutt Sep 2013 A1
20130343585 Bennett Dec 2013 A1
20130344924 Sorensen Dec 2013 A1
20140043213 Park et al. Feb 2014 A1
20140082892 Honeycutt Mar 2014 A1
20140098206 Rosella Apr 2014 A1
20140116085 Lam May 2014 A1
20140165338 Honeycutt Jun 2014 A1
20140198929 Honeycutt Jul 2014 A1
20140243617 LeBoeuf Aug 2014 A1
20140314247 Zhang Oct 2014 A1
20150011898 Romesburg Jan 2015 A1
20150063587 Park Mar 2015 A1
20150083619 Kenard Mar 2015 A1
20150195639 Azmi Jul 2015 A1
20150230019 Sakai Aug 2015 A1
20150256010 Scandurra Sep 2015 A1
20150257662 Lee et al. Sep 2015 A1
20160007111 Honeycutt Jan 2016 A1
20160044401 Lee Feb 2016 A1
20160057530 Anderson Feb 2016 A1
20160098138 Park Apr 2016 A1
20160196758 Causevic et al. Jul 2016 A1
20160277824 Ushakov Sep 2016 A1
20160292270 Negi Oct 2016 A1
20170048613 Smus Feb 2017 A1
20170093079 Wagman Mar 2017 A1
20170094391 Panecki et al. Mar 2017 A1
20170124276 Tee May 2017 A1
20170150488 Young May 2017 A1
20170180534 Kamstrup Jun 2017 A1
20170280223 Cavarra Sep 2017 A1
20170303026 Honeycutt Oct 2017 A1
20170318375 Honeycutt Nov 2017 A1
20170318376 Honeycutt Nov 2017 A1
20170353782 Honeycutt Dec 2017 A1
20180156361 Honeycutt Jun 2018 A1
20180242064 Honeycutt Aug 2018 A1
Foreign Referenced Citations (51)
Number Date Country
2439147 Jul 2001 CN
1338231 Mar 2002 CN
1890855 Jan 2007 CN
2888595 Apr 2007 CN
200943618 Sep 2007 CN
200965597 Oct 2007 CN
201011738 Jan 2008 CN
201054770 Apr 2008 CN
201123112 Sep 2008 CN
101374366 Feb 2009 CN
101848406 Sep 2010 CN
101938564 Jan 2011 CN
203313376 Nov 2013 CN
104507004 Apr 2015 CN
102007015828 Oct 2008 DE
1179307 Feb 2002 EP
3451693 Jun 2019 EP
2460200 Nov 2009 GB
2461477 Jun 2010 GB
H01140842 Jun 1989 JP
2002330803 Nov 2002 JP
2003198719 Jul 2003 JP
2003524354 Aug 2003 JP
2004214996 Jul 2004 JP
2005-318267 Nov 2005 JP
2006336803 Dec 2006 JP
1305823 Jul 2007 JP
200855050 Mar 2008 JP
3141560 Apr 2008 JP
2009212918 Sep 2009 JP
2010157897 Jul 2010 JP
2011526456 Oct 2011 JP
200228427 Jun 2001 KR
200252682 Nov 2001 KR
10-2007-0093529 Sep 2007 KR
10-0796806 Jan 2008 KR
10-0813067 Mar 2008 KR
20080023479 Mar 2008 KR
10-2008-0038807 May 2008 KR
10-2009-0008972 Jan 2009 KR
10-2009-0016976 Feb 2009 KR
M277220 Oct 2005 TW
2002080714 Oct 2002 WO
2003103255 Dec 2003 WO
2004107887 Dec 2004 WO
2009158075 Dec 2009 WO
2010083828 Jul 2010 WO
2010142290 Dec 2010 WO
2011001433 Jan 2011 WO
2011121169 Oct 2011 WO
2016080890 May 2016 WO
Non-Patent Literature Citations (33)
Entry
Declaration of Rob Honeycutt, executed on Oct. 7, 2010 and 2 Pages.
Office Action from Japanese Patent Application No. 2014-558859.
English Translation of Office Action from Japanese Patent Application No. 2014-55859.
International Search Report and Written Opinion from PCT Application No. PCT/US2017/027139.
The International Search Report with Written Opinions for PCT Patent App. No. PCT/US18/32808.
Japanese Decision of Rejection issued May 23, 2018 from Japanese Patent Application 2014-558859.
The Office Action dated Jan. 28, 2019, from the Chinese Application No. 201711191174.
The International Preliminary Report for the International Application PCT/US2018/032808 mailed Nov. 28, 2019.
U.S. Appl. No. 62/235,205 (specification and drawings), filed Sep. 30, 2015.
The Second Office Action dated Nov. 4, 2019 from the Chinese Application No. 201711191174.0.
Kyle Russell, Forget Tangled Wires: We're Really Excited for These Magnetic Earbuds, Business Insider, https://www.businessinsider.com/magnetic-earbuds-dont-get-tangled-2014-1, Jan. 14, 2014.
Robert Nelson, Jabra Rox Wireless Bluetooth earbuds unveiled, Android Community, https://androidcommunity.com/abra-rox-wireless-bluetooth-earbuds-unveiled-20131112/, Nov. 12, 2013.
Lose The Jack With Jabra Rox Wireless, https://www.jabra.com/cp/us/pressreleasearchive/2013/press-release-12-11-2013, Dec. 11, 2013.
Jabra Rox Wireless User Manual, jabra.com/roxwireless, 2013.
Jabra Rox Wireless Technical Specifications, jabra.com/roxwireless.
Jabra Rox Wireless Datasheet, jabra.com.
ReSound Launches New Vea for Budget-conscious Consumers, The Hearing Review, https://www.hearingreview.com/hearing-products/hearing-aids/resound-launches-new-vea - . . . , Jul. 8, 2012.
ReSound User Guide Resound Custom and Remote Microphone Hearing Instruments, gnresound.com.
Kelvin Sze, Acronym GT-J14 Gore-Tex Jacket Magnetic Earbuds Holder, http://itechnews.net/2009/10/04/acronym-gt-14-gore-tex-jacket-magnetic-earbuds-holder/, Oct. 4, 2009.
ReSound Vea User Guide Behind-The-Ear (BTE) Models: Standard Tube, Thin Tube.
Bluetooth Earbuds w/Magnetic Docking. Made in USA., elroy, Kickstarter campaign, Mar. 10, 2013.
Jacquelyn Tanner, Elroy is Smarter Than Your Average Bluetooth Earbuds, Top Mobile Trends, Mar. 19, 2013.
A. Goldman, Handbook of Modern Ferromagnetic Materials, Springer US (1999) (second printing with corrections, 2002, Chapters 1 & 2, pp. i-xix and 1-40.
McGraw-Hill Dictionary of Scientific and Technical Terms (5th ed. 1994), p. 38.
Acronym GT-J14 Gore-Tex Jacket Magnetic (Year:2014).
Decision Instituting Inter Partes Review, dated Mar. 9, 2021, in IPR2020-01324, U.S. Pat. No. 9,167,329 B2.
Decision Instituting Inter Partes Review, dated Mar. 9, 2021, in IPR2020-01325, U.S. Pat. No. 9,167,329 B2.
Decision Instituting Inter Partes Review, dated Mar. 9, 2021, in IPR2020-01427, U.S. Pat. No. 9,769,556 B2.
Decision Instituting Inter Partes Review, dated Mar. 9, 2021, in IPR2020-01428, U.S. Pat. No. 9,769,556 B2.
Decision Instituting Inter Partes Review, dated Mar. 9, 2021, in IPR2020-01429, U.S. Pat. No. 9,769,556 B2.
The Notice of Allowance mailed Sep. 27, 2022 in U.S. Appl. No. 17/230,773.
The Notice of Allowance mailed Oct. 3, 2022 in U.S. Appl. No. 17/230,694.
Jabra PRO 920 Duo User Manual, www.jabra.com, GN Netcom A/S, 2015.
Related Publications (1)
Number Date Country
20230171531 A1 Jun 2023 US
Provisional Applications (3)
Number Date Country
61712136 Oct 2012 US
61671572 Jul 2012 US
61601722 Feb 2012 US
Continuations (3)
Number Date Country
Parent 17230773 Apr 2021 US
Child 18102297 US
Parent 15683526 Aug 2017 US
Child 17230773 US
Parent 14215833 Mar 2014 US
Child 15683526 US
Continuation in Parts (1)
Number Date Country
Parent 13734871 Jan 2013 US
Child 14215833 US