The present invention relates to a magnetic field generating system and method, particularly for use in steering a catheter.
Catheterisation is a common procedure in which a catheter is inserted into the body of a subject such as a human or animal for performing a variety of further procedures. The catheter is urged through body cavities and lumens such as blood vessels in order to reach a treatment position such as the site of an aneurism. It has particular advantages over more traditional methods of open surgery as the trauma to the subject is significantly reduced.
Traditional methods of steering catheters involve the provision of a bent tip at the front end of the catheter. By applying a torque about the axis of a catheter, the orientation of the bent tip can be used to guide the catheter along a tortuous path within the subject. This torque is conventionally applied by the surgeon performing the procedure. However, in many cases the torque required is large which causes the surgeon to become fatigued and the associated forces involved increase the risk of internal damage of the subject.
More recently a less traumatic method of steering catheters has been developed which involves the use of a magnetic catheter steered in accordance with an applied magnetic field. By controlling the magnitude and direction of the applied magnetic field, it is possible to steer the catheter within the subject by producing a resultant force on the catheter. Stereotaxis Inc. has developed a system using this technique and an example is described in WO99/11189 and WO99/23946.
A major problem with known apparatus of this type is that the external magnets for applying the magnetic field are often large and are positioned in a manner which prevents ease of use of the system with other equipment such as X-ray imaging devices. The provision of a number of powerful magnets surrounding the subject can significantly restrict the access of medical personnel to the subject during the procedure. The magnetic fields produced also extend over a large area and these “stray” fields may affect the operation of other equipment.
In accordance with a first aspect of the present invention, a magnetic field generating system for use in steering a catheter, comprises:
X, Y and Z magnetic field generators arranged to generate corresponding magnetic fields in mutually orthogonal X, Y and Z directions;
Unlike in conventional systems, the present invention provides a working region that is separated from the magnetic field generators. The magnetic field generators are generally provided to one side of the working region rather than surrounding it. This enables the working region to be accessible by medical personnel and allows other medical equipment such as imaging devices to be brought into close proximity with the working region.
This is achieved in the case of the X and Y magnetic field generators by using magnetic elements arranged in an anti-parallel sense. The magnetic field lines can be imagined to xit from one element in a pair, pass through the working region and enter the corresponding element of the pair. Therefore, within the working region the magnetic field lines from the X and Y magnetic field generators are oriented substantially in the X and Y directions respectively.
Typically the magnetic fields will be generated by electromagnets, generally in the form of electrically conducting or superconducting coils. As an alternative, permanent magnets could be provided although these are more difficult to control. Therefore, typically the magnetic elements within a pair will comprise electrically conducting coils of similar dimensions having a similar number of turns such that the magnetic field produced by each will be of a similar configuration and strength. However, the electrical currents within these coils will be arranged to flow in an opposite manner so as to generate similar fields having opposed polarities. The magnetic field at the centre of each coil will therefore be equal and opposite to that at the centre of its counterpart, such that in each case the coils are effectively coupled in series opposition. In general, the coils in the X magnetic field generator will be dissimilar to those of the Y magnetic field generator.
The Z magnetic field generator may comprise a single magnetic element, typically also provided as a coil. The dimensions of this coil will generally differ from those of the X and Y magnetic elements. However, preferably the Z magnetic field generator will also comprise at least two Z magnetic elements, each having a polarity defining a magnetic axis, wherein the Z magnetic elements are arranged such that their magnetic axes are oriented in the Z direction in a substantially anti-parallel manner with respect to one another. Unlike in the X and Y magnetic field generators, the Z magnetic elements will preferably be arranged coaxially with respect to one another. However, unlike the coils of the X and Y magnetic field generators, they will generally differ in their dimensions with respect to one another.
The use of opposed coils in all cases is advantageous in that it reduces the strength of any resultant stray magnetic fields at locations far from the magnetic field generators. This in turn reduces the adverse effect of these magnetic fields on other equipment or objects. The likelihood of any interaction between these generated magnetic fields and those produced by other equipment is also reduced. As a result, greater localized magnetic field strengths can be used.
Each of the coils may be provided with a suitable magnetic core material, such as soft iron in which the magnetisation does not persist after the removal of the electrical current.
In accordance with a second aspect of the present invention we provide a catheter steering system comprising:
Typically the control system will comprise a processor preferably provided as part of a computer for controlling the magnetic field generators. The strengths of the magnetic fields produced by the magnetic field generators are controlled in each case so as to produce a resultant magnetic field having the desired direction and strength.
An associated store, input device and display will be generally provided in association with the processor. If the magnetic fields are to be provided using electromagnets, then preferably the system will also include an electrical signal generator for supplying appropriate electrical signals to the magnetic field generators.
In many cases a non-magnetic support will be provided for supporting the body of a subject and although this may take the form of a seat, typically the support will be planar such as a table and will be positioned between the magnetic field generators and the working region. Such a support may be relatively movable along one or more axes with respect to the magnetic field generators in order to position the catheter correctly with respect to the resultant magnetic field. In general however, the working region will be of a sufficient extent such that relative movement between the support and the magnetic field generators will not be required.
Preferably the magnetic field generators will, be arranged such that the resultant magnetic field within the working region will be substantially uniform, that is substantially constant in magnitude and direction, along at least one axis and preferably along two or three axes.
In accordance with a third aspect of the present invention we provide a method of operating a catheter steering system according to the second aspect of the invention, the method comprising:
Some examples of a magnetic field generating system will now be described with reference to the accompanying drawings, in which:—
a illustrates the X, Y and Z magnetic field generators according to the first example;
b is a schematic plan view of the X, Y and Z magnetic field generators according to the first example;
An example of a system and method of catheter steering will now be described. The objective is to produce a magnetic flux density of 0.5 Tesla in any direction within the working region, this flux density being sufficient to steer a magnetic catheter within a subject.
The coils 2, 3 each comprise a similar number of turns of electrically conducting or superconducting wire arranged such that in use, electrical currents flow within the coils 2, 3 in the opposing directions marked 4, 5. Each coil therefore acts as a magnet having north and south poles arranged along the Z axis (normal to the plane of the coils as indicated in
The dimensions of the coils 2, 3, 8, 9 are given in Table 1 along with their coordinates with respect to the orthogonal axes shown in the
The magnetic field gradients will produce a force on the magnetic catheter but this force will be relatively minor. These gradients are a consequence of magnetic flux continuity and it is desirable that within the working region they do not significantly affect the magnetic catheter.
A Z magnetic field generator 10 in accordance with a first example of the invention is shown in
Table 2 shows the respective current, dimension and coordinate data for this coil.
The magnetic field and magnetic field gradient produced by the coil 11 are indicated in
Referring to
In a second example shown in
The coils 12, 13 are arranged to meet the following criteria:—
If the coils can be approximated as thin hoops, the dimensions which satisfy these conditions can be found. The radii of the two coils are a1 and a2, their axial positions are b1 and b2, and the ratio of ampere-turns of coil 2 to coil 1 is N:—
These can be solved to give
The magnetic field and magnetic field gradient for this arrangement are shown in
When
Each of the coils 2, 3, 8, 9, 12, 13 is connected to an electrical signal generator 20 with corresponding control lines 2′, 3′, 8′, 9′, 12′, 13′. Each of the coils in this example comprises superconducting wire. A suitable cooling system (not shown) is provided to maintain the coils at a superconducting temperature. The electrical signal generator 20 supplies electrical signals to the coils in response to instructions from a computer 21. The computer 21 has a processor along with an internal store for retaining the operating program code and parameters for use in controlling the coils.
A display 25 is used to display information to the operator of the system such as a surgeon and a number of input devices 26 such as a joystick, mouse and keyboard allow the surgeon to control the system.
A method of operating the catheter steering system detailed above will now be described in association with
At step 30, the catheter 16 is inserted within a human patient at a convenient point such as a femoral artery. The guide wire 18 is then used to urge the catheter 16 along this lumen at step 31. The progress of the catheter is then monitored using an imaging technique at step 32, This imaging step may be performed simultaneously. Steps 31 and 32 may be repeated a number of times.
When the catheter 16 has reached an arterial junction at step 33 the surgeon operates the input device 26 to indicate to the computer 21 the desired direction in which the catheter 16 should be steered.
At step 34 the computer uses the known parameters of the magnetic field generators 1, 7, 10 to calculate a suitable combination of electrical signals to supply to the magnetic field generators 1, 7, 10 for steering the catheter 16 in the required direction.
At step 35 the computer supplies control signals to the electrical signal generator 20 which accordingly produces electrical signals in the control lines 2′, 3′, 8′, 9′, 12′, 13′. The signals supplied to the coils typically comprise a coordinated combination of electric currents. These produce a corresponding magnetic field associated with each of the relevant coils. The individual magnetic fields combine to produce a resultant magnetic field. The magnetic tip of the catheter 17 interacts with this resultant magnetic field and changes its orientation with respect to the body of the catheter 16. Further urging of the catheter 16 using the guide wire 18 at step 35 then allows the catheter to be steered in the new direction.
A subsequent (or simultaneous) imaging process is then performed at step 36 to monitor the progress of the catheter 16.
At step 37, if further steering is required then the steps 33 to 36 may be repeated, otherwise subsequent movement and imaging steps 38 and 39 may be performed. At step 40, if the catheter 16 has reached the desired position then the catheter 16 is used for conventional procedures at step 41. If further movement or steering is required before performing step 41 then steps 33 to 39 may be repeated.
Number | Date | Country | Kind |
---|---|---|---|
0031287.6 | Dec 2000 | GB | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/GB01/05628 | 12/18/2001 | WO | 12/11/2003 |