Magnetic field sensor for sensing a proximity of an object

Information

  • Patent Grant
  • 10012518
  • Patent Number
    10,012,518
  • Date Filed
    Wednesday, June 8, 2016
    8 years ago
  • Date Issued
    Tuesday, July 3, 2018
    6 years ago
Abstract
A back-biased magnetic field sensor uses one or more magnetic field sensing elements upon a substrate, each outside of a substrate region in which magnetic field lines are near perpendicular to the substrate and outside of which magnetic field lines are not to the substrate. The back-biased magnetic field sensor can sense an approaching and/or a retreating ferromagnetic object.
Description
CROSS REFERENCE TO RELATED APPLICATIONS

Not Applicable.


STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH

Not Applicable.


FIELD

This invention relates generally to magnetic field sensors, and, more particularly, to magnetic field sensors having a magnet and a substrate with magnetic field sensing elements thereupon, all arranged in a variety of relative positions and all acting as proximity detectors.


BACKGROUND

Various types of magnetic field sensing elements are known, including Hall Effect elements and magnetoresistance elements. Magnetic field sensors generally include a magnetic field sensing element and other electronic components. Some magnetic field sensors also include a permanent magnet in a so-called “back biased” arrangement described more fully below.


Magnetic field sensors provide an electrical signal representative of a sensed magnetic field. In some embodiments that have the magnet in a so-called back-biased arrangement, a magnetic field sensed by a magnetic field sensor is a magnetic field generated by the magnet. In these back-biased arrangements, in the presence of a ferromagnetic object, the magnetic field generated by the magnet and sensed by the magnetic field sensor varies in accordance with proximity of the ferromagnetic object to the magnetic field sensor.


In some arrangements, the output signal from the magnetic field sensor is a “non-linear” two state signal having a first state indicative of a ferromagnetic object being distal from the magnetic field sensor and a second different state indicative of the ferromagnetic object being proximate to the magnetic field sensor. In other arrangements the output signal from the magnetic field sensor is a “linear” (analog or digital) signal having a signal value indicative of a distance between the ferromagnetic object and the magnetic field sensor. A magnetic field sensor having either of the above signal characteristics can be referred to as a “proximity sensor.”


Conventional back-biased proximity sensors typically use a single ended configuration with one magnetic field sensing element, typically a planar Hall effect element, with a maximum response axis that intersects the ferromagnetic object.


It would be desirable to provide a back-biased proximity sensor that uses a different type of magnetic field sensing element, different than a planar Hall effect element.


It is known that differential arrangements can offer advantages not found in conventional proximity sensors. For example, in general, a differential arrangement that uses two magnetic field sensing elements can be non-responsive to undesirable external magnetic fields that are equally received by the two magnetic field sensing elements.


A differential arrangement using two planar Hall effect elements would not function properly as a proximity sensor, because both of the two planar Hall effect elements would respond in the same way to a proximate ferromagnetic object and a resulting differential combination would have no output.


Therefore, it would be desirable to provide a back-biased proximity sensor that has a differential arrangement.


SUMMARY

The present invention provides a back-biased magnetic field sensor (proximity sensor) that uses a different type of magnetic field sensing element, different than a planar Hall effect element.


In some embodiments, the present invention provides a back-biased proximity sensor that has a differential arrangement.


In accordance with an example useful for understanding an aspect of the present invention, a magnetic field sensor can sense a movement of a ferromagnetic object along a path, a movement line tangent to the path. The magnetic field sensor can include a magnet and a semiconductor substrate proximate to the magnet and at a position between the ferromagnetic object and the magnet. The semiconductor substrate can include first and second orthogonal axes on the first opposing surface of the substrate intersecting at a coordinate axes point, and a substrate region upon the first opposing surface of the substrate, the substrate region proximate to and surrounding the coordinate axis point, wherein magnetic fields generated by the magnet at the substrate region are substantially perpendicular to the semiconductor substrate in the absence of the ferromagnetic object. The magnetic field sensor can further include a first magnetic field sensing element disposed on or under the first surface of the semiconductor substrate and disposed outside of the substrate region, wherein the first magnetic field sensing element comprises an axis of maximum sensitivity substantially parallel to the first orthogonal axis, wherein a center of the first magnetic field sensing element is disposed along the first orthogonal axis.





BRIEF DESCRIPTION OF THE DRAWINGS

The foregoing features of the invention, as well as the invention itself may be more fully understood from the following detailed description of the drawings, in which:



FIG. 1 is a block diagram showing a prior art magnetic field sensor forming a back-biased magnetic field sensor having one planar Hall effect element and an associated electronic circuit, all upon a semiconductor substrate, along with a back-biasing magnet, the back-biased proximity sensor proximate to a ferromagnetic object;



FIG. 2 is a block diagram showing a prior art electronic circuit that can be used in the prior art back-biased proximity sensor of FIG. 1;



FIG. 3 is a block diagram showing a back-biased magnetic field sensor having a substrate region of a substrate, the substrate region described more particularly below, outside of which one or more magnetic field sensing elements are disposed, and an associated electronic circuit, all disposed upon the electronic substrate, along with a back-biasing magnet, the back-biased proximity sensor proximate to a ferromagnetic object;



FIG. 4 is a block diagram showing a top view of the substrate of the back-biased proximity sensor according to FIG. 3 and having four magnetic field sensing elements shown as vertical Hall effect elements, disposed outside of the above-mentioned semiconductor region, and an electronic circuit;



FIG. 5 is a block diagram showing a side view of a back-proximity sensor according to the back-biased proximity sensor of FIGS. 3 and 4 and showing different magnetic field line directions when in the presence of no ferromagnetic object and when the ferromagnetic object is closer to the back-biased proximity sensor;



FIG. 6 is a block diagram showing further details of an example of the electronic circuit of the back-biased proximity sensor FIG. 3 when the back-biased proximity sensor uses one vertical Hall effect element;



FIG. 7 is a block diagram showing further details of an example of the electronic circuit of the back-biased proximity sensor FIG. 3 when the back-biased proximity sensor uses two vertical Hall effect elements;



FIG. 8 is a block diagram showing further details of an example of the electronic circuit of the back-biased proximity sensor FIG. 3, when the back-biased proximity sensor uses four vertical Hall effect elements as shown in FIG. 4; and



FIG. 9 is a block diagram showing magnetoresistance elements that can be used in the above proximity sensors in place of the vertical Hall effect elements.





DETAILED DESCRIPTION

Before describing the present invention, some introductory concepts and terminology are explained.


As used herein, the term “magnetic field sensing element” is used to describe a variety of electronic elements that can sense a magnetic field. The magnetic field sensing element can be, but is not limited to, a Hall Effect element, a magnetoresistance element, or a magnetotransistor. As is known, there are different types of Hall Effect elements, for example, a planar Hall element, a vertical Hall element, and a Circular Vertical Hall (CVH) element. As is also known, there are different types of magnetoresistance elements, for example, a semiconductor magnetoresistance element such as Indium Antimonide (InSb), a giant magnetoresistance (GMR) element, an anisotropic magnetoresistance element (AMR), a tunneling magnetoresistance (TMR) element, and a magnetic tunnel junction (MTJ). The magnetic field sensing element may be a single element or, alternatively, may include two or more magnetic field sensing elements arranged in various configurations, e.g., a half bridge or full (Wheatstone) bridge. Depending on the device type and other application requirements, the magnetic field sensing element may be a device made of a type IV semiconductor material such as Silicon (Si) or Germanium (Ge), or a compound semiconductor material like Gallium-Arsenide (GaAs) or an Indium compound, e.g., Indium-Antimonide (InSb), or InGaA.


As is known, some of the above-described magnetic field sensing elements tend to have an axis of maximum sensitivity substantially parallel to a substrate that supports the magnetic field sensing element, and others of the above-described magnetic field sensing elements tend to have an axis of maximum sensitivity substantially perpendicular to a substrate that supports the magnetic field sensing element. In particular, planar Hall elements tend to have axes of sensitivity substantially perpendicular to a substrate, while metal based or metallic magnetoresistance elements (e.g., GMR, TMR, AMR) and vertical Hall elements tend to have axes of sensitivity parallel to a substrate.


As used herein, the term “magnetic field sensor” is used to describe a circuit that uses a magnetic field sensing element, generally in combination with other circuits. Magnetic field sensors are used in a variety of applications, including, but not limited to, an angle sensor that senses an angle of a direction of a magnetic field, a current sensor that senses a magnetic field generated by a current carried by a current-carrying conductor, a magnetic switch that senses the proximity of a ferromagnetic object, a rotation detector that senses passing ferromagnetic articles, for example, magnetic domains of a ring magnet, and a magnetic field sensor that senses a magnetic field density of a magnetic field.


The terms “parallel” and “perpendicular” are used in various contexts herein. It should be understood that the terms parallel and perpendicular do not require exact perpendicularity or exact parallelism, but instead it is intended that normal manufacturing tolerances apply, which tolerances depend upon the context in which the terms are used. In some instances, the term “substantially” is used to modify the terms “parallel” or “perpendicular.” In general, use of the term “substantially” reflects angles that are beyond manufacturing tolerances, for example, within +/−ten degrees.


As used herein, the term “baseline” and the phrase “baseline level” are used to describe a lowest magnitude (which may be near zero or may be some other magnetic field) of a magnetic field experienced by a magnetic field sensing element within a magnetic field sensor when the magnetic field sensor is operating in a system.


As used herein, the term “processor” is used to describe an electronic circuit that performs a function, an operation, or a sequence of operations. The function, operation, or sequence of operations can be hard coded into the electronic circuit or soft coded by way of instructions held in a memory device. A “processor” can perform the function, operation, or sequence of operations using digital values or using analog signals.


In some embodiments, the “processor” can be embodied in an application specific integrated circuit (ASIC), which can be an analog ASIC or a digital ASIC. In some embodiments, the “processor” can be embodied in a microprocessor with associated program memory. In some embodiments, the “processor” can be embodied in a discrete electronic circuit, which can be an analog or digital.


As used herein, the term “module” is used to describe a “processor.”


A processor can contain internal processors or internal modules that perform portions of the function, operation, or sequence of operations of the processor. Similarly, a module can contain internal processors or internal modules that perform portions of the function, operation, or sequence of operations of the module.


While electronic circuits shown in figures herein may be shown in the form of analog blocks or digital blocks, it will be understood that the analog blocks can be replaced by digital blocks that perform the same or similar functions and the digital blocks can be replaced by analog blocks that perform the same or similar functions. Analog-to-digital or digital-to-analog conversions may not be explicitly shown in the figures, but should be understood.


As used herein, the term “predetermined,” when referring to a value or signal, is used to refer to a value or signal that is set, or fixed, in the factory at the time of manufacture, or by external means, e.g., programming, thereafter. As used herein, the term “determined,” when referring to a value or signal, is used to refer to a value or signal that is identified by a circuit during operation, after manufacture.


As used herein, the term “active electronic component” is used to describe an electronic component that has at least one p-n junction. A transistor, a diode, and a logic gate are examples of active electronic components. In contrast, as used herein, the term “passive electronic component” as used to describe an electronic component that does not have at least one p-n junction. A capacitor and a resistor are examples of passive electronic components.


Planar and vertical Hall effect elements and also magnetoresistance elements are described herein as coupled to examples of electronic circuits. For the planar and vertical Hall effect elements, while not explicitly shown, current spinning (also referred to as chopping) techniques can be used along with associated circuit elements that are not shown in the figures. Current spinning can be used to reduce a DC offset error (non-zero signal when in the presence of a zero magnetic field) otherwise present in an output signal directly from a planar or vertical Hall effect element.


Current spinning will be understood to be a known technique with known electronic circuit elements that can, at a first coupling “phase,” couple a drive current to drive a current between particular selected drive terminals of a planar or vertical Hall effect element. At the first coupling phase, a differential output signal can be generated between two terminals of the planar or vertical Hall effect element that are not used as the drive terminals of the first coupling phase. Sequentially, at a second coupling phase, the known electronic circuit elements can couple the drive current to drive a current between other particular selected terminals of the planar or vertical Hall effect element. At the second coupling phase, a differential output signal can be generated between two terminals of the planar or vertical Hall effect element that are not used as the drive terminals of the second coupling phase. There can be more than two such coupling phases, for example, four coupling phases. The sequential output signals can be averaged to result in a lower effective offset voltage.


Referring now to FIG. 1, a prior art magnetic field sensor 101 can provide a back-biased proximity sensor 101 used to sense a proximity of a ferromagnetic object 112 or absence thereof.


The back-biased proximity sensor 101 can include a planar Hall effect element 104 and an electronic circuit 106 coupled thereto, both disposed in or on (i.e., over) an electronic substrate 102. The planar Hall effect element 104 can have an axis of maximum sensitivity substantially perpendicular to a major surface 102a of the substrate 102, i.e., along an axis 108.


The back-biased proximity sensor 101 can also include a back-biasing magnet 110 having north and south poles arranged along the axis 108.


The back-biased proximity sensor 101 can include a molded structure that encases the substrate 102 and the magnet 108.


In operation, the planar Hall effect element 104 can generate a differential signal 104a, 104b, which can be coupled to the electronic circuit 106 to generate an output signal (not shown).


As a ferromagnetic object 112 comes closer to the back-biased proximity sensor 101, the differential signal 104a, 104b changes amplitude. The electronic circuit 106 can process the differential signal 104a, 104b in circuits described in conjunction with FIG. 2.


Referring now to FIG. 2, an electronic circuit 200 is an example of the electronic circuit 106 of FIG. 1. As described above, while not shown, in some embodiments, the electronic circuit 200 can include other circuit elements to generate the above-described current spinning.


An amplifier 204 can be coupled to receive a differential signal 202a, 202b, representative of the differential signal 104a, 104b, with or without the above-described current spinning. The amplifier 204 can generate an amplified signal 204a


In non-linear back biased proximity sensors, a comparator 206 (with or without hysteresis) can be coupled to the amplifier and coupled to a reference voltage 210 and can generate a two state (i.e., binary) signal 206a. The signal 206a can have a first state indicative of the ferromagnetic object 112 being distal from the back-biased proximity sensor 101 and a second different state indicative of the ferromagnetic object being proximate to the back-biased proximity sensor 101 (FIG. 1).


An output format module 208 can be coupled to the comparator 206 and can generate a formatted signal 208a indicative of at least the first and second different states.


In linear back biased proximity sensors, the amplified signal 204a can instead be coupled to the output format module 208 and can generate a formatted signal 206a indicative of a magnitude of the amplified signal 204a, which can be indicative of a distance between the ferromagnetic object 112 (FIG. 1) and the back-biased proximity sensor 101.


Referring now to FIG. 3, a back-biased proximity sensor 300 is shown proximate to a ferromagnetic object 316, but does not include the ferromagnetic object 316.


The back-biased proximity sensor 300 can include an electronic substrate 302 having first and second major surfaces 302a, 302b. The substrate 302 can include a substrate region 304 and magnetic field sensing elements e.g., 305, 307, disposed on the first surface 302a and outside of the substrate region 304. The substrate region 304 is shown to be square. However, in other embodiments, the substrate region 304 can be rectangular, oval, round, or any other planar shape defined by characteristics below.


An electronic circuit 310 can be disposed in or on the first surface 302a and can be coupled to the magnetic field sensing element(s).


The back-biased proximity sensor 300 can include a magnet 312 having first and second opposing surfaces 312a, 312b, respectively. A north pole, N, can be disposed upon the first surface 312a and a south pole, S, can be disposed upon the second surface 312b. In some embodiments, the north pole, N, and the south pole, S, are reversed in position.


A magnet axis 314 passes through the north and south poles. In some embodiments, the magnet axis 314 can intersect the coordinate axis point 320.


Upon the first surface 302a of the substrate 302, first and second orthogonal axes 306, 308, respectively, intersect the at a coordinate axis point 320. The coordinate axis point 320 can be at a geometric center the coordinate axis region 304.


In some embodiments, the magnetic axis 314 can intersect the coordinate axis point 320. However, more generally, the substrate region 304 is a region in which magnetic fields generated by the magnet 312 are substantially perpendicular to the first surface 302a of the substrate 302. Further, outside of the substrate region 304, magnetic fields are not substantially perpendicular to the surface 302a.


In general, in some embodiments, the substrate region 304 has a size and a shape selected to provide that, when the ferromagnetic object 316 is not present, the magnetic fields at the surface 302a of the substrate 302 are within about five degrees of perpendicular to the surface 302a, and outside of the substrate region 304, the magnetic fields are beyond about five degrees. However, the substrate region 304 can have other sizes and shapes to result in other magnetic field angles within and outside of the substrate region, for example, within the substrate region 304 less than about two degrees, less than about five degrees, less than about ten, less than about fifteen, less than about twenty, less than about twenty-five, less than about thirty, less than about thirty-five forty, or less than about forty-five degrees. Thus, outside of the substrate region 304, angles of magnetic field lines are greater than or equal to the above-described angles. A preferred magnetic field angle is zero or near zero.


The back-biased proximity sensor 300 can be used to sense the ferromagnetic object 316 at different positions along a direction 318. In some embodiments, the back-biased proximity sensor 300 can have a central axis 316a and the central axis can be aligned with the coordinate axis point 320 at the different positions along the direction 318. The direction 318 can be tangent to a movement line, which may or may not be a straight movement line. In some embodiments, the direction 318 is perpendicular to the first surface 302a of the substrate 302. However, other angles are also possible.


A coordinate axis 340 is consistent among the various figures below, in which the surface 302a of the substrate is in an x-y plane.


Unlike the back-biased proximity sensor 300, it should be understood that, for the conventional back-biased proximity sensor 101 of FIG. 1, the planar Hall effect element 104 is within, rather than outside of, a comparable substrate region, resulting in magnetic fields at the planar Hall effect element 104 being substantially perpendicular to the surface 102a of the substrate 102.


While the first surface 302a can be toward the ferromagnetic object 316 as shown, in other embodiments, the first surface 302a can be toward the magnet


Referring now to FIG. 4, a substrate 402 with first surface 402a can be the same as or similar to the substrate 302 with the first surface 302a of FIG. 3. A substrate region 416 with a coordinate axis point 403 can be the same as or similar to the substrate region 304 with the coordinate axis point 320 of FIG. 4. An electronic circuit 414 can be the same as or similar to the electronic circuit 310 of FIG. 3. A first coordinate axis 430 and a second coordinate axis 432 can be the same as or similar to first and second coordinate axis points 306, 308, respectively, of FIG. 3.


First, second, third and fourth vertical Hall elements 404, 406, 408, 410 can be disposed on, in, or under the first surface 402a of the substrate 402 and outside of the substrate region 416. Maximum response axes 404a, 406a of the first and second vertical Hall effect elements 404, 406, respectively, can be generally aligned with the first coordinate axis 430. Maximum response axes 408a, 410a of the third and fourth vertical Hall effect elements 408, 410, respectively, can be generally aligned with the second coordinate axis 432.


Cartesian coordinates 440 show that the first surface 402a of the substrate 402 can be in the same x-y plane identified in FIG. 3.


While four vertical Hall effect elements are shown, in other embodiments, there can be one, two, three, four, or more vertical Hall elements. Also, while the maximum response axes 404a, 406a, 408a, 410a of the magnetic field sensing elements 404, 406, 408, 410, respectively, are shown to be aligned with first and second coordinate axes 430, 432, respectively, in other embodiments, the maximum response axes can be at other angles.


For embodiments that use one vertical Hall effect element, the one vertical Hall effect element can be any one of the four vertical Hall effect elements 404, 406, 408, 410. For embodiments that use two vertical Hall effect elements, the two vertical Hall effect elements can be any two of the four vertical Hall effect elements. For embodiments that use three vertical Hall effect element, the three vertical Hall effect element scan be any three of the four vertical Hall effect elements


In general, it will be understood that having more than one vertical Hall effect element has advantages. For example, a signal to noise ratio can be improved by using more than one vertical Hall effect element.


Referring now to FIG. 5, a back-biased magnetic field sensor 500 is shown in three views as a ferromagnetic object 514 approaches.


The back-biased magnetic field sensor 500 can be the same as or similar to the magnetic field sensor 300 of FIG. 3. The back-biased magnetic field sensor 500 can include a magnet 510 with a magnet axis 510a, which can be the same as or similar to the magnet 312 with the magnet axis 314 of FIG. 3. The back-biased magnetic field sensor 500 can include a substrate 502 with a first surface 502a, which can be the same as or similar to the substrate 402 with the first surface 402a of FIG. 4 and the same as or similar to the substrate 302 with the first surface 302a of FIG. 3.


First, second, and fourth vertical Hall effect elements 504, 506, 508 can be the same as or similar to the first, second, and fourth vertical Hall effect elements 404, 406, 410 of FIG. 4. A third vertical Hall effect element comparable to the third vertical Hall effect element 408 is not shown for clarity.


In a left hand view, no ferromagnetic object (e.g., 514) is proximate to the back-biased magnetic field sensor 500. Magnetic field line 512a is representative of a magnetic field direction at the first vertical Hall effect element 504, and is tilted in an x-y plane in Cartesian coordinates 540, within an x-z plane, and tilted in a negative x direction. Magnetic field line 512b is representative of a magnetic field direction at the second vertical Hall effect element 506, and is tilted in the x-y plane in Cartesian coordinates 540, within the x-z plane, and tilted in a positive x direction. Magnetic field line 512c is representative of a magnetic field direction at the fourth vertical Hall effect element 508, and is tilted in the x-y plane in Cartesian coordinates 540, within a y-z plane, and tilted in a positive y direction.


Due to the directions of the maximum response axes 404a, 406a, 410a of FIG. 4, it should be recognized that the first, second, and fourth vertical Hall effect elements 504, 506, 508 have non-zero output signals related to projections of the magnetic field lines 512a, 512b, 512c upon respective maximum response axes.


In the second and third panels of FIG. 5, as the ferromagnetic object 514 approaches, magnetic field lines 512d, 512e, 512f and then magnetic field lines 512g, 512h, 512i become progressively more vertical, i.e., aligned with the z axis of the Cartesian coordinated 540. Accordingly, output signals from the first, second, and fourth vertical Hall effect elements 504, 506, 508 progressively smaller. The change in magnitude of the output signal can be detected to indicate a separation (or a separation threshold) associated with proximity of the ferromagnetic object 514 from the magnetic field sensor 500.



FIGS. 6-8 below show representative electronic circuits that can be used to detect the above-described proximity of the ferromagnetic object 514 to the magnetic field sensor, having one, two, or four vertical Hall effect elements. In each of FIGS. 6-8, while not shown, in some embodiments, circuits can be used that accomplish current spinning described above. However, in other embodiments, current spinning is not used.


Referring now to FIG. 6, an electronic circuit 600 can be the same as or similar to the electronic circuit 414 of FIG. 4, but using only one vertical Hall effect element, for example, the first vertical Hall element 404 of FIG. 4. While it is indicated that the first vertical Hall effect element 404 is used with the electronic circuit 600, in other embodiments, the vertical Hall effect element that is used can be any one of the vertical Hall elements 404, 406, 408, 410 of FIG. 4.


The electronic circuit 600 can include an amplifier 604 coupled to receive a differential signal 602. The differential signal 602 can be coupled to a vertical Hall effect element.


The amplifier 604 can generate an amplified signal 604a.


A comparator circuit 610 can be coupled to receive the amplified signal 604a and coupled to receive a reference signal 614. The comparator circuit 610 can be configured to generate a comparison signal 610 having a first state indicative of the ferromagnetic object 514 being far away from the magnetic field sensor 500 and having a second different state indicative of the ferromagnetic object 514 being near to the magnetic field sensor 500. The comparison signal 610a provides a nonlinear magnetic field sensor.


The comparator circuit 610 and other comparator circuits herein can be linear comparators. However, in other embodiments, the comparator circuits can be digital circuits configured to generate an output signal having at least two different states.


An output format module 612 can be coupled to receive the comparison signal 610a and can be configured to generate a formatted signal 612a indicative of the first or second different states of the comparison signal 610a. The formatted signal 612a can be in one of a variety of signal formats, including, but not limited to, a PWM (pulse width modulation) format, a SENT (single edge nibble transmission) format, an I2C (inter-integrated circuit) format, and a CAN (controller area network) format, each of which can be used to communicate from a sensor to a processor.


In some embodiments, the amplified signal 604a can be coupled to the output format module 612 and the formatted signal 612a can be indicative of a linear representation of an amplitude of the amplified signal 704a, i.e., a representation of a proximity of the ferromagnetic object 514, either a continuous linear representation or a multi-step digital representation.


Referring now to FIG. 7, an electronic circuit 700 can be the same as or similar to the electronic circuit 414 of FIG. 4, but using two vertical Hall effect element, for example, the first and second vertical Hall elements 404, 406, respectively, of FIG. 4. While it is indicated that the first and second vertical Hall effect elements 404, 406 are used with the electronic circuit 700, in other embodiments, the vertical Hall effect elements can be any two of the vertical Hall elements 404, 406, 408, 410 of FIG. 4.


The electronic circuit 700 can include amplifier 704, 716 coupled to receive differential signals 702, 714. The differential signals 702, 714 can be coupled to two respective vertical Hall effect elements.


The amplifiers 704, 716 can generate amplified signals 704a, 716a. A summing circuit 706 can receive and sum the amplified signals 704a, 716a and can generate a summed signal 706a.


A comparator circuit 710 can be coupled to receive the summed signal 706a and coupled to receive a reference signal 718. The comparator circuit 710 can be configured to generate a comparison signal 710 having a first state indicative of the ferromagnetic object 514 being far away from the magnetic field sensor 500 and having a second different state indicative of the ferromagnetic object 514 being near to the magnetic field sensor 500. The comparison signal 710a provides a nonlinear magnetic field sensor.


An output format module 712 can be coupled to receive the comparison signal 710a and can be configured to generate a formatted signal 712a indicative of the first or second different states of the comparison signal 710a. The formatted signal 712a can be in one of a variety of signal formats, including, but not limited to, a PWM format, a SENT format, an I2C format, and a CAN format.


In the some embodiments, the summed signal 706a can be coupled to the output format module 712 and the formatted signal 712a can be indicative of a linear representation of an amplitude of the summed signal 706a, i.e., a representation of a proximity of the ferromagnetic object 514, either a continuous linear representation or a multi-step digital representation.


Referring now to FIG. 8, an electronic circuit 800 can be the same as or similar to the electronic circuit 414 of FIG. 4, but using four vertical Hall effect element, for example, the first, second, third, and fourth vertical Hall elements 404, 406, 408, 410, respectively, of FIG. 4. While it is indicated that the first, second, third, and fourth vertical Hall elements 404, 406, 408, 410 are used with the electronic circuit 800, in other embodiments, more than four vertical Hall effect elements can be used.


The electronic circuit 800 can include amplifier 804, 816, 820, 826 coupled to receive differential signals 802, 814, 818, 824. The differential signals 802, 814, 818, 824 can be coupled to four respective vertical Hall effect elements.


The amplifiers 804, 816, 820, 826 can generate amplified signals 804a, 816a, 820a, 826a. A summing circuit 806 can receive and sum the amplified signals 804a, 816a and can generate a summed signal 806a. A summing circuit 822 can receive and sum the amplified signals 820a, 826a and can generate a summed signal 822a. A summing circuit 808 can received the summed signals 806a, 822a and can generate a summed signal 808a.


A comparator circuit 810 can be coupled to receive the summed signal 808a and coupled to receive a reference signal 828. The comparator circuit 810 can be configured to generate a comparison signal 810 having a first state indicative of the ferromagnetic object 514 being far away from the magnetic field sensor 500 and having a second different state indicative of the ferromagnetic object 514 being near to the magnetic field sensor 500. The comparison signal 810a provides a nonlinear magnetic field sensor.


An output format module 812 can be coupled to receive the comparison signal 810a and can be configured to generate a formatted signal 812a indicative of the first or second different states of the comparison signal 810a. The formatted signal 812a can be in one of a variety of signal formats, including, but not limited to, a PWM format, a SENT format, an I2C format, and a CAN format.


In the some embodiments, the summed signal 808a can be coupled to the output format module 812 and the formatted signal 812a can be indicative of a linear representation of an amplitude of the summed signal 808a, i.e., a representation of a proximity of the ferromagnetic object 514, either a continuous linear representation or a multi-step digital representation.


While magnetic field sensors of FIGS. 2-8 are representative of one, two, three, four, or more vertical Hall effect elements, in other embodiments, each one of the vertical Hall effect elements can be replaced by one or more magnetoresistance elements. It will be understood that a both a vertical Hall effect element and a magnetoresistance element have maximum response axes parallel to a substrate upon which they are disposed.


Current spinning is not used with magnetoresistance elements. However, magnetoresistance elements can be used in bridge arrangements.


Referring now to FIG. 9, a magnetoresistance element bridge 900 can use two magnetoresistance elements 902, 908, indicative of positions of the vertical Hall effect elements 404, 406, respectively, of FIG. 4. The magnetoresistance elements 902, 904 can be coupled to fixed resistors 906, 908. A differential signal 912, 914 can be coupled to an amplifier 916 to generate and amplified signal 916a. The amplifier 916 can be the same as or similar to any of the amplifiers of FIGS. 6-8.


In other embodiments, magnetoresistance elements can be used as any of the above-described vertical Hall effect elements but in a single ended arrangement.


All references cited herein are hereby incorporated herein by reference in their entirety.


Having described preferred embodiments, which serve to illustrate various concepts, structures and techniques, which are the subject of this patent, it will now become apparent that other embodiments incorporating these concepts, structures and techniques may be used. Accordingly, it is submitted that the scope of the patent should not be limited to the described embodiments but rather should be limited only by the spirit and scope of the following claims.


Elements of embodiments described herein may be combined to form other embodiments not specifically set forth above. Various elements, which are described in the context of a single embodiment, may also be provided separately or in any suitable subcombination. Other embodiments not specifically described herein are also within the scope of the following claims.

Claims
  • 1. A magnetic field sensor for sensing a movement of a ferromagnetic object, the magnetic field sensor comprising: a magnet;a semiconductor substrate having first and second surfaces, the semiconductor substrate proximate to the magnet and at a position between the ferromagnetic object and the magnet, the semiconductor substrate comprising: first and second orthogonal axes on the first surface of the substrate intersecting at a coordinate axes point; anda substrate region upon the first opposing surface of the substrate, the substrate region proximate to and surrounding the coordinate axis point, wherein magnetic fields generated by the magnet within the substrate region are substantially perpendicular to the first and second surfaces of the semiconductor substrate in the absence of the ferromagnetic object, the magnetic field sensor further comprising:a first magnetic field sensing element disposed on or under the first surface of the semiconductor substrate and disposed outside of the substrate region, wherein the first magnetic field sensing element comprises an axis of maximum sensitivity substantially parallel to the first orthogonal axis, wherein a center of the first magnetic field sensing element is disposed along the first orthogonal axis;a second magnetic field sensing element disposed on or under the first surface of the semiconductor substrate and disposed outside of the semiconductor region, wherein the second magnetic field sensing element comprises an axis of maximum sensitivity substantially parallel to the axis of maximum sensitivity of the first magnetic field sensing element, and wherein a center of the second magnetic field sensing element is disposed along the first orthogonal axis;a third magnetic field sensing element disposed on or under the first surface of the semiconductor substrate and disposed outside of the semiconductor region, wherein the third magnetic field sensing element comprises an axis of maximum sensitivity substantially perpendicular to the axis of maximum sensitivity of the first magnetic field sensing element and substantially parallel to the first surface of the semiconductor substrate, and wherein a center of the third magnetic field sensing element is disposed along the second orthogonal axis;a fourth magnetic field sensing element disposed on or under the first surface of the semiconductor substrate and disposed outside of the semiconductor region, wherein the fourth magnetic field sensing element comprises an axis of maximum sensitivity substantially parallel to the axis of maximum sensitivity of the third magnetic field sensing element, wherein a center of the fourth magnetic field sensing element is disposed along the second orthogonal axis, wherein the centers of the first and second magnetic field sensing elements are substantially equidistant from and on opposite sides of the coordinate axes point, and wherein the centers of the third and fourth magnetic field sensing elements are substantially equidistant from and on opposite sides of the coordinate axes point; andan electronic circuit disposed upon the substrate, configured to combine signals from the first, second, third, and fourth magnetic field sensing elements to generate a combined signal, and configured to compare the combined signal with a threshold signal to generate a two-state binary signal having a change of state when the ferromagnetic object moves closer to the semiconductor substrate than a predetermined distance.
  • 2. The magnetic field sensor of claim 1, wherein the centers of the first and second magnetic field sensing elements are substantially equidistant from and on opposite sides of the coordinate axes point.
  • 3. The magnetic field sensor of claim 1, wherein the first and second magnetic field sensing elements comprise vertical Hall effect elements.
  • 4. The magnetic field sensor of claim 1, wherein the first and second magnetic field sensing elements comprise magnetoresistance elements.
  • 5. The magnetic field sensor of claim 1, wherein the first, second, third, and fourth magnetic field sensing elements comprise vertical Hall effect elements.
  • 6. The magnetic field sensor of claim 1, wherein the first, second, third, and fourth magnetic field sensing elements comprise magnetoresistance elements.
  • 7. The magnetic field sensor of claim 1, wherein magnetic fields generated by the magnet outside of the substrate region are tilted relative to the first and second surfaces of the semiconductor substrate in the absence of the ferromagnetic object, and wherein the magnetic fields generated by the magnet at the centers of the first and second magnetic field sensing elements outside of the substrate region tilt less relative to the first and second surfaces of the semiconductor substrate as the ferromagnetic object approaches the magnetic field sensor.
  • 8. The magnetic field sensor of claim 1, wherein the two state binary signal changes state when the ferromagnetic object approaches the magnetic field sensor in a straight line toward the magnetic field sensor.
  • 9. A magnetic field sensor for sensing a movement of a ferromagnetic object, the magnetic field sensor comprising: a magnet;a semiconductor substrate having first and second surfaces, the semiconductor substrate proximate to the magnet and at a position between the ferromagnetic object and the magnet, the semiconductor substrate comprising: first and second orthogonal axes on the first surface of the substrate intersecting at a coordinate axes point; anda substrate region upon the first opposing surface of the substrate, the substrate region proximate to and surrounding the coordinate axis point, wherein magnetic fields generated by the magnet within the substrate region are substantially perpendicular to the first and second surfaces of the semiconductor substrate in the absence of the ferromagnetic object, the magnetic field sensor further comprising:a first magnetic field sensing element disposed on or under the first surface of the semiconductor substrate and disposed outside of the substrate region, wherein the first magnetic field sensing element comprises an axis of maximum sensitivity substantially parallel to the first orthogonal axis, wherein a center of the first magnetic field sensing element is disposed along the first orthogonal axis;a second magnetic field sensing element disposed on or under the first surface of the semiconductor substrate and disposed outside of the substrate region, wherein the second magnetic field sensing element comprises an axis of maximum sensitivity substantially perpendicular to the axis of maximum sensitivity of the first magnetic field sensing element and substantially parallel to the first surface of the semiconductor substrate, wherein a center of the second magnetic field sensing element is disposed along the second orthogonal axis; andan electronic circuit disposed upon the substrate, coupled to the first and second magnetic field sensing elements and configured to combine first and second signals from the first and second magnetic field sensing elements to generate a combined signal, and configured to compare the combined signal with a reference signal to generate a two-state binary signal having a change of state when the ferromagnetic object moves closer to the semiconductor substrate than a predetermined distance.
  • 10. The magnetic field sensor of claim 9, wherein the centers of the first and second magnetic field sensing elements are substantially equidistant from the coordinate axes point.
  • 11. The magnetic field sensor of claim 9, wherein the first and second magnetic field sensing elements comprise vertical Hall effect elements.
  • 12. The magnetic field sensor of claim 9, wherein the first and second magnetic field sensing elements comprise magnetoresistance elements.
  • 13. The magnetic field sensor of claim 9, further comprising: a third magnetic field sensing element disposed on or under the first surface of the semiconductor substrate and disposed outside of the semiconductor region, wherein the third magnetic field sensing element comprises an axis of maximum sensitivity substantially perpendicular to the axis of maximum sensitivity of the first magnetic field sensing element and substantially parallel to the first surface of the semiconductor substrate, anda fourth magnetic field sensing element disposed on or under the first surface of the semiconductor substrate and disposed outside of the semiconductor region, wherein the fourth magnetic field sensing element comprises an axis of maximum sensitivity substantially parallel to the axis of maximum sensitivity of the third magnetic field sensing element.
  • 14. The magnetic field sensor of claim 13, wherein a center of the third magnetic field sensing element is disposed along the first orthogonal axis, wherein a center of the fourth magnetic field sensing element is disposed along the second orthogonal axis, wherein the centers of the first and second magnetic field sensing elements are substantially equidistant from and on opposite sides of the coordinate axes point, and wherein the centers of the third and fourth magnetic field sensing elements are substantially equidistant from and on opposite sides of the coordinate axes point.
  • 15. The magnetic field sensor of claim 13, wherein the electronic circuit is further configured to combine third and fourth signals from the third and fourth magnetic field sensing elements with the first and second signals to generate the combined signal.
  • 16. The magnetic field sensor of claim 9, wherein magnetic fields generated by the magnet outside of the substrate region are tilted relative to the first and second surfaces of the semiconductor substrate in the absence of the ferromagnetic object, and wherein the magnetic fields generated by the magnet at the centers of the first and second magnetic field sensing elements are less tilted relative to the first and second surfaces of the semiconductor substrate as the ferromagnetic object approaches the magnetic field sensor.
  • 17. The magnetic field sensor of claim 9, wherein the two state binary signal changes state when the ferromagnetic object approaches the magnetic field sensor in a straight line toward the magnetic field sensor.
US Referenced Citations (362)
Number Name Date Kind
3195043 Burig et al. Jul 1965 A
3281628 Bauer et al. Oct 1966 A
3607528 Gassaway Sep 1971 A
3611138 Winebrener Oct 1971 A
3661061 Tokarz May 1972 A
3728786 Lucas et al. Apr 1973 A
4048670 Eysermans Sep 1977 A
4053829 Maruo Oct 1977 A
4188605 Stout Feb 1980 A
4204317 Winn May 1980 A
4236832 Komatsu et al. Dec 1980 A
4283643 Levin Aug 1981 A
4315523 Mahawili et al. Feb 1982 A
4438347 Gehring Mar 1984 A
4481469 Hauler et al. Nov 1984 A
4573258 Io et al. Mar 1986 A
4614111 Wolff Sep 1986 A
4649796 Schmidt Mar 1987 A
4670715 Fuzzell Jun 1987 A
4719419 Dawley Jan 1988 A
4733455 Nakamura et al. Mar 1988 A
4745363 Carr et al. May 1988 A
4746859 Malik May 1988 A
4752733 Petr et al. Jun 1988 A
4758943 Aström et al. Jul 1988 A
4760285 Nelson Jul 1988 A
4764767 Ichikawa et al. Aug 1988 A
4769344 Sakai et al. Sep 1988 A
4772929 Manchester Sep 1988 A
4789826 Willett Dec 1988 A
4796354 Yokoyama et al. Jan 1989 A
4823075 Alley Apr 1989 A
4833406 Foster May 1989 A
4908685 Shibasaki et al. Mar 1990 A
4910861 Dohogne Mar 1990 A
4944028 Iijima et al. Jul 1990 A
4954777 Klopfer et al. Sep 1990 A
4970411 Halg et al. Nov 1990 A
4983916 Iijima et al. Jan 1991 A
5012322 Guillotte Apr 1991 A
5021493 Sandstrom Jun 1991 A
5028868 Murata et al. Jul 1991 A
5038130 Eck et al. Aug 1991 A
5045920 Vig et al. Sep 1991 A
5078944 Yoshino Jan 1992 A
5084289 Shin et al. Jan 1992 A
5121289 Gagliardi Jun 1992 A
5137677 Murata Aug 1992 A
5139973 Nagy et al. Aug 1992 A
5167896 Hirota et al. Dec 1992 A
5185919 Hickey Feb 1993 A
5196794 Murata Mar 1993 A
5200698 Thibaud Apr 1993 A
5210493 Schroeder et al. May 1993 A
5216405 Schroeder et al. Jun 1993 A
5244834 Suzuki et al. Sep 1993 A
5247202 Popovic et al. Sep 1993 A
5247278 Pant et al. Sep 1993 A
5250925 Shinkle Oct 1993 A
5289344 Gagnon et al. Feb 1994 A
5286426 Rano, Jr. et al. Mar 1994 A
5304926 Wu Apr 1994 A
5315245 Schroeder et al. May 1994 A
5329416 Ushiyama et al. Jul 1994 A
5332956 Oh Jul 1994 A
5332965 Wolf et al. Jul 1994 A
5341097 Wu Aug 1994 A
5351028 Krahn Sep 1994 A
5399968 Sheppard et al. Mar 1995 A
5412255 Wallrafen May 1995 A
5414355 Davidson et al. May 1995 A
5424558 Borden et al. Jun 1995 A
5432444 Yasohama et al. Jul 1995 A
5434105 Liou Jul 1995 A
5453727 Shibasaki et al. Sep 1995 A
5469058 Dunnam Nov 1995 A
5477143 Wu Dec 1995 A
5479695 Grader et al. Jan 1996 A
5486759 Seiler et al. Jan 1996 A
5488294 Liddell et al. Jan 1996 A
5491633 Henry et al. Feb 1996 A
5497081 Wolf et al. Mar 1996 A
5500589 Sumcad Mar 1996 A
5500994 Itaya Mar 1996 A
5508611 Schroeder et al. Apr 1996 A
5521501 Dettmann et al. May 1996 A
5545983 Okeya et al. Aug 1996 A
5551146 Kawabata et al. Sep 1996 A
5581170 MammanO et al. Dec 1996 A
5581179 Engel et al. Dec 1996 A
5583436 Van De Walle et al. Dec 1996 A
5596272 Busch Jan 1997 A
5621319 Bilotti et al. Apr 1997 A
5627315 Figi et al. May 1997 A
5631557 Davidson May 1997 A
5640090 Furuya et al. Jun 1997 A
5691637 Oswald et al. Nov 1997 A
5696790 Graham et al. Dec 1997 A
5712562 Berg Jan 1998 A
5714102 Highum et al. Feb 1998 A
5719496 Wolf Feb 1998 A
5729128 Bunyer et al. Mar 1998 A
5757181 Wolf et al. May 1998 A
5781005 Vig et al. Jul 1998 A
5789658 Henn et al. Aug 1998 A
5789915 Ingraham Aug 1998 A
5796249 Andräet et al. Aug 1998 A
5818222 Ramsden Oct 1998 A
5818223 Wolf Oct 1998 A
5839185 Smith et al. Nov 1998 A
5841276 Makino et al. Nov 1998 A
5859387 Gagnon Jan 1999 A
5886070 Honkura et al. Feb 1999 A
5883567 Mullins, Jr. Mar 1999 A
5896030 Hasken Apr 1999 A
5912556 Frazee et al. Jun 1999 A
5963028 Engel et al. Oct 1999 A
6011770 Tan Jan 2000 A
6016055 Jager et al. Jan 2000 A
6043646 Jansseune Mar 2000 A
6064198 Wolf et al. May 2000 A
6136250 Brown Oct 2000 A
6175233 McCurley et al. Jan 2001 B1
6180041 Takizawa Jan 2001 B1
6184679 Popovic et al. Feb 2001 B1
6194893 Yokotani et al. Feb 2001 B1
6198373 Ogawa et al. Mar 2001 B1
6242604 Hudlicky et al. Jun 2001 B1
6242904 Shirai et al. Jun 2001 B1
6242905 Draxelmayr Jun 2001 B1
6265865 Engel et al. Jul 2001 B1
6278269 Vig et al. Aug 2001 B1
6297627 Towne et al. Oct 2001 B1
6339322 Loreck et al. Jan 2002 B1
6351506 Lewicki Feb 2002 B1
6356068 Steiner et al. Mar 2002 B1
6392478 Mulder et al. May 2002 B1
6429640 Daughton et al. Aug 2002 B1
6436748 Forbes et al. Aug 2002 B1
6437558 Li et al. Aug 2002 B2
6452381 Nakatani et al. Sep 2002 B1
6462536 Mednikov et al. Oct 2002 B1
6492804 Tsuge et al. Dec 2002 B2
6501270 Opie Dec 2002 B1
6504363 Dogaru et al. Jan 2003 B1
6525531 Forrest et al. Feb 2003 B2
6542847 Lohberg et al. Apr 2003 B1
6545332 Huang Apr 2003 B2
6545457 Goto et al. Apr 2003 B2
6545462 Schott et al. Apr 2003 B2
6566872 Sugitani May 2003 B1
6640451 Vinarcik Nov 2003 B1
6653968 Schneider Nov 2003 B1
6687644 Zinke et al. Feb 2004 B1
6692676 Vig et al. Feb 2004 B1
6707298 Suzuki et al. Mar 2004 B2
6759843 Furlong Jul 2004 B2
6768301 Hohe et al. Jul 2004 B1
6770163 Kuah et al. Aug 2004 B1
6781233 Zverev et al. Aug 2004 B2
6781359 Stauth et al. Aug 2004 B2
6798193 Zimmerman et al. Sep 2004 B2
6815944 Vig et al. Nov 2004 B2
6822443 Dogaru Nov 2004 B1
6853178 Hayat-Dawoodi Feb 2005 B2
6896407 Nomiyama et al. May 2005 B2
6902951 Goller et al. Jun 2005 B2
6917321 Haurie et al. Jul 2005 B1
6956366 Butzmann Oct 2005 B2
7026808 Vig et al. Apr 2006 B2
7031170 Daeche et al. Apr 2006 B2
7038448 Schott et al. May 2006 B2
7049924 Hayashi et al. May 2006 B2
7112955 Buchhold Sep 2006 B2
7112957 Bicking Sep 2006 B2
7126327 Busch Oct 2006 B1
7132825 Martin Nov 2006 B2
7190784 Li Mar 2007 B2
7193412 Freeman Mar 2007 B2
7199579 Scheller et al. Apr 2007 B2
7253614 Forrest et al. Aug 2007 B2
7259545 Stauth et al. Aug 2007 B2
7265531 Stauth et al. Sep 2007 B2
7269992 Lamb et al. Sep 2007 B2
7285952 Hatanaka et al. Oct 2007 B1
7292095 Burt et al. Nov 2007 B2
7295000 Werth Nov 2007 B2
7319319 Jones et al. Jan 2008 B2
7323780 Daubenspeck et al. Jan 2008 B2
7323870 Tatschl et al. Jan 2008 B2
7325175 Momtaz Jan 2008 B2
7345468 Okada et al. Mar 2008 B2
7355388 Ishio Apr 2008 B2
7361531 Sharma et al. Apr 2008 B2
7362094 Voisine et al. Apr 2008 B2
7365530 Bailey et al. Apr 2008 B2
7368904 Scheller et al. May 2008 B2
7385394 Auburger et al. Jun 2008 B2
7425821 Monreal et al. Sep 2008 B2
7474093 Ausserlechner Jan 2009 B2
7476953 Taylor et al. Jan 2009 B2
7518354 Stauth et al. Apr 2009 B2
7592801 Bailey et al. Sep 2009 B2
7598601 Taylor et al. Oct 2009 B2
7605647 Romero et al. Oct 2009 B1
7635993 Boeve Dec 2009 B2
7694200 Forrest et al. Apr 2010 B2
7701208 Nishikawa Apr 2010 B2
7729675 Krone Jun 2010 B2
7746056 Stauth et al. Jun 2010 B2
7746065 Pastre et al. Jun 2010 B2
7764118 Kusuda et al. Jul 2010 B2
7768083 Doogue et al. Aug 2010 B2
7769110 Momtaz Aug 2010 B2
7772838 Bailey et al. Aug 2010 B2
7800389 Friedrich et al. Sep 2010 B2
7808074 Knittl Oct 2010 B2
7816772 Engel et al. Oct 2010 B2
7816905 Doogue et al. Oct 2010 B2
7839141 Werth et al. Nov 2010 B2
7915886 Stolfus et al. Mar 2011 B2
7923996 Doogue et al. Apr 2011 B2
7936144 Vig et al. May 2011 B2
7956604 Ausserlechner Jun 2011 B2
7961823 Kolze et al. Jun 2011 B2
7990209 Romero Aug 2011 B2
8030918 Doogue et al. Oct 2011 B2
8058870 Sterling Nov 2011 B2
8063631 Fermon et al. Nov 2011 B2
8063634 Sauber et al. Nov 2011 B2
8080993 Theuss et al. Dec 2011 B2
8106654 Theuss et al. Jan 2012 B2
8128549 Testani et al. Mar 2012 B2
8134358 Charlier et al. Mar 2012 B2
8143169 Engel et al. Mar 2012 B2
8253210 Theuss et al. Aug 2012 B2
8274279 Gies Sep 2012 B2
8362579 Theuss et al. Jan 2013 B2
8610430 Werth et al. Dec 2013 B2
8729890 Donovan et al. May 2014 B2
8773124 Ausserlechner Jul 2014 B2
9116018 Frachon Aug 2015 B2
9164156 Elian et al. Oct 2015 B2
9201123 Elian et al. Dec 2015 B2
20010002791 Tsuge et al. Jun 2001 A1
20010009367 Seitzer et al. Jul 2001 A1
20020027488 Hayat-Dawoodi et al. Mar 2002 A1
20020084923 Li Jul 2002 A1
20020097639 Ishizaki et al. Jul 2002 A1
20030001563 Turner Jan 2003 A1
20030038675 Gailus et al. Feb 2003 A1
20030062891 Slates Apr 2003 A1
20030102909 Motz Jun 2003 A1
20030107366 Busch et al. Jun 2003 A1
20030151406 Wan et al. Aug 2003 A1
20030222642 Butzmann Dec 2003 A1
20040032251 Zimmerman et al. Feb 2004 A1
20040046248 Waelti et al. Mar 2004 A1
20040062362 Matsuya Apr 2004 A1
20040080314 Tsujii et al. Apr 2004 A1
20040135220 Goto Jul 2004 A1
20040056647 Stauth et al. Aug 2004 A1
20040184196 Jayasekara Sep 2004 A1
20040196045 Larsen Oct 2004 A1
20050120782 Kishibata et al. Jun 2005 A1
20050122099 Imamoto et al. Jun 2005 A1
20050167790 Khor et al. Aug 2005 A1
20050179429 Lohberg Aug 2005 A1
20050225318 Bailey et al. Oct 2005 A1
20050258820 Forster Nov 2005 A1
20050280411 Bicking Dec 2005 A1
20060033487 Nagano et al. Feb 2006 A1
20060038559 Lamb et al. Feb 2006 A1
20060038561 Honkura et al. Feb 2006 A1
20060068237 Murphy Mar 2006 A1
20060125473 Frachon et al. Jun 2006 A1
20060175674 Taylor Aug 2006 A1
20060181263 Doogue et al. Aug 2006 A1
20060202692 Tatschl et al. Sep 2006 A1
20060261801 Busch Nov 2006 A1
20070110199 Momtaz et al. May 2007 A1
20070170533 Doogue et al. Jul 2007 A1
20070247141 Pastre et al. Oct 2007 A1
20070285089 Ibuki et al. Dec 2007 A1
20080013298 Sharma et al. Jan 2008 A1
20080094055 Monreal et al. Apr 2008 A1
20080116884 Rettig May 2008 A1
20080116885 Van Zon et al. May 2008 A1
20080137784 Krone Jun 2008 A1
20080143329 Ishihara Jun 2008 A1
20080204011 Shoji Aug 2008 A1
20080237818 Engel et al. Oct 2008 A1
20080238410 Charlier et al. Oct 2008 A1
20080270067 Eriksen et al. Oct 2008 A1
20090001964 Strzalkowski Jan 2009 A1
20090001972 Fernandez et al. Jan 2009 A1
20090009163 Yamada Jan 2009 A1
20090058404 Kurumado Mar 2009 A1
20090085706 Baarman et al. Apr 2009 A1
20090102467 Snell et al. Apr 2009 A1
20090115412 Fuse May 2009 A1
20090137398 Bozovic et al. May 2009 A1
20090140725 Ausserlechner Jun 2009 A1
20090146647 Ausserlechner Jun 2009 A1
20090152696 Dimasacat et al. Jun 2009 A1
20090167298 Kreutzbruck et al. Jul 2009 A1
20090168286 Berkley et al. Jul 2009 A1
20090206831 Fermon et al. Aug 2009 A1
20090212765 Doogue et al. Aug 2009 A1
20090212771 Cummings et al. Aug 2009 A1
20090243601 Feldtkeller Oct 2009 A1
20090251134 Uenoyama Oct 2009 A1
20090256552 Guo et al. Oct 2009 A1
20100026279 Vig et al. Feb 2010 A1
20100026288 Sauber et al. Feb 2010 A1
20100033175 Boeve et al. Feb 2010 A1
20100052667 Kohama et al. Mar 2010 A1
20100141249 Ararao et al. Jun 2010 A1
20100188078 Foletto et al. Jul 2010 A1
20100201356 Koller et al. Aug 2010 A1
20100211347 Friedrich et al. Aug 2010 A1
20100237450 Doogue et al. Sep 2010 A1
20100276769 Theuss et al. Nov 2010 A1
20100295140 Theuss et al. Nov 2010 A1
20100330708 Engel et al. Dec 2010 A1
20110018533 Cesaretti et al. Jan 2011 A1
20110031960 Hohe et al. Feb 2011 A1
20110048102 Fernandez et al. Mar 2011 A1
20110074405 Doogue et al. Mar 2011 A1
20110127998 Elian et al. Jun 2011 A1
20110267040 Frachon Nov 2011 A1
20110285384 Nomura Nov 2011 A1
20110298448 Foletto et al. Dec 2011 A1
20120013333 Ararao et al. Jan 2012 A1
20120019236 Tiernan et al. Jan 2012 A1
20120062215 Ide et al. Mar 2012 A1
20120086090 Sharma et al. Apr 2012 A1
20120249133 Friedrich Oct 2012 A1
20120274314 Cesaretti et al. Nov 2012 A1
20130138372 Ausserlechner May 2013 A1
20130214774 Cesaretti et al. Aug 2013 A1
20130214777 Itoi Aug 2013 A1
20130241543 Stenson et al. Sep 2013 A1
20130249029 Vig et al. Sep 2013 A1
20130278246 Stegerer et al. Oct 2013 A1
20130300401 Krapf et al. Nov 2013 A1
20130300406 Pepka et al. Nov 2013 A1
20140266181 Milano et al. Sep 2014 A1
20140327435 Rohrer Nov 2014 A1
20140333295 Fernandez et al. Nov 2014 A1
20140347044 Monreal et al. Nov 2014 A1
20150022186 Ausserlechner Jan 2015 A1
20150022187 Taylor et al. Jan 2015 A1
20150022193 Burdette et al. Jan 2015 A1
20150022197 David et al. Jan 2015 A1
20150022198 David et al. Jan 2015 A1
20150346289 Ausserlechner Dec 2015 A1
20150354985 Judkins, III et al. Dec 2015 A1
20150377648 Sirohiwala et al. Dec 2015 A1
20160011281 Sander Jan 2016 A1
20160123771 David et al. May 2016 A1
20160123774 Foletto May 2016 A1
Foreign Referenced Citations (131)
Number Date Country
683 469 Mar 1994 CH
102483443 May 2012 CN
102713654 Oct 2012 CN
102954808 Mar 2013 CN
25 18 054 Nov 1976 DE
40 31 560 Apr 1992 DE
195 39 458 Apr 1997 DE
196 34 715 Mar 1998 DE
196 50 935 Jun 1998 DE
198 38 433 Mar 1999 DE
199 61 504 Jun 2001 DE
102 10 184 Sep 2003 DE
103 14 602 Oct 2004 DE
10 2004017191 Oct 2005 DE
10 2006 037 226 Feb 2008 DE
10 2007 018 238 Oct 2008 DE
10 2007 041 230 Apr 2009 DE
10 2010 016 584 Nov 2010 DE
10 2011 102483 Nov 2012 DE
0 289 414 Nov 1988 EP
0 289 414 Nov 1988 EP
0 357 013 Mar 1990 EP
0 357 013 Mar 1990 EP
0 361 456 Apr 1990 EP
0 361 456 Apr 1990 EP
0 680 103 Nov 1995 EP
0 898 180 Feb 1999 EP
0 944 888 Oct 2001 EP
1306687 May 2003 EP
1 443 332 Aug 2004 EP
1 580 560 Sep 2005 EP
1 637 898 Mar 2006 EP
1 662 353 May 2006 EP
1 679 524 Jul 2006 EP
1 850 143 Oct 2007 EP
2 063 229 May 2009 EP
2 063 229 May 2009 EP
2 748 105 Oct 1997 FR
2 909 756 Jun 2008 FR
2276727 Oct 1994 GB
2481482 Dec 2011 GB
60-152950 Aug 1985 JP
61-48777 Mar 1986 JP
S61-48777 Mar 1986 JP
S6367583 Mar 1988 JP
363 084176 Apr 1988 JP
63 -263782 Oct 1988 JP
63-300911 Dec 1988 JP
H02-116753 May 1990 JP
02-149013 Jun 1990 JP
H03-29817 Feb 1991 JP
H04-095817 Mar 1992 JP
04-152688 May 1992 JP
H06-273437 Sep 1994 JP
08-97486 Apr 1996 JP
H08-511348 Nov 1996 JP
09-166612 Jun 1997 JP
10-332725 Dec 1998 JP
11-064363 Mar 1999 JP
11-74142 Mar 1999 JP
2000-183241 Jun 2000 JP
2001-043475 Feb 2001 JP
2001-141738 May 2001 JP
2001-165702 Jun 2001 JP
2001-1659951 Jun 2001 JP
2002-117500 Apr 2002 JP
2002-149013 May 2002 JP
2002-357920 Dec 2002 JP
2003-177171 Jun 2003 JP
2003-202365 Jul 2003 JP
2004-055932 Feb 2004 JP
2004-093381 Mar 2004 JP
2004-152688 May 2004 JP
2004-356338 Dec 2004 JP
2004-357858 Dec 2004 JP
2005-517928 Jun 2005 JP
2005-337866 Dec 2005 JP
2005-345302 Dec 2005 JP
2006-003096 Jan 2006 JP
2006-3116 Jan 2006 JP
2006-275764 Oct 2006 JP
2007-012582 Jan 2007 JP
2007-218799 Aug 2007 JP
2008-180550 Aug 2008 JP
2008-264569 Nov 2008 JP
2008-286667 Nov 2008 JP
2009-002911 Jan 2009 JP
2009-222524 Oct 2009 JP
2009-250725 Oct 2009 JP
2009-250931 Oct 2009 JP
2010-537207 Dec 2010 JP
2011086479 Apr 2011 JP
4880874 Dec 2011 JP
2012-501446 Jan 2012 JP
2012-0040247 Apr 2012 KR
WO 8809026 Nov 1988 WO
WO 9312403 Jun 1993 WO
WO 9408203 Apr 1994 WO
WO 9429672 Dec 1994 WO
WO 9518982 Jul 1995 WO
WO 96 02849 Feb 1996 WO
WO 9602849 Feb 1996 WO
WO 9949322 Sep 1999 WO
WO 200174139 Oct 2001 WO
WO 200174139 Oct 2001 WO
WO 2003069358 Aug 2003 WO
WO 2003069358 Aug 2003 WO
WO 2003107018 Dec 2003 WO
WO 2004027436 Apr 2004 WO
WO 2004072672 Aug 2004 WO
WO 2005013363 Feb 2005 WO
WO 2005013363 Feb 2005 WO
WO 2006056829 Jun 2006 WO
WO 2006083479 Aug 2006 WO
WO2007095971 Aug 2007 WO
WO 2007138508 Dec 2007 WO
WO 2008008140 Jan 2008 WO
WO 2008008140 Jan 2008 WO
WO 2008048379 Apr 2008 WO
WO 2008121443 Oct 2008 WO
WO 2008145662 Dec 2008 WO
WO 2009108422 Sep 2009 WO
WO 2009108422 Sep 2009 WO
WO 2010014309 Feb 2010 WO
WO 2010027658 Mar 2010 WO
WO 2010065315 Jun 2010 WO
WO 2010096367 Aug 2010 WO
WO 2011011479 Jan 2011 WO
WO 2012148646 Nov 2012 WO
WO 2013169455 Nov 2013 WO
WO2015058733 Apr 2015 WO
Non-Patent Literature Citations (151)
Entry
Voluntary Amendment with English Calims dated Nov. 7, 2016 for Korean App. No. 10-2016-7004178; 15 Pages.
European Response filed on Aug. 24, 2016 to the official communication dated Feb. 23, 2016; for European Pat. App. No. 14742423.8; 17 pages.
Voluntary Amendment dated Nov. 2, 2016 with English claims for Chinese Application No. 201480040243.6; 13 pages.
European Extended Search Report dated Dec. 22, 2016; for European Pat. App. No. 16193227.2; 11 pages.
Japanese Voluntary Amendment with English Claims dated Dec. 12, 2016; for Japanese Pat. App. No. 2016-528006; 7 pages.
Response filed on Jan. 19, 2017 to Final Office Action dated Oct. 20, 2016; for U.S. Appl. No. 13/946,400;; 13 Pages.
Japanese Office Action (with English Translation) dated Jan. 13, 2017 for Japanese Application No. 2015-511491; 11 Pages.
U.S. Final Office Action dated Feb. 10, 2017 for U.S. Appl. No. 13/468,478; 27 Pages.
U.S. Advisory Action dated Feb. 16, 2017 for U.S. Appl. No. 13/946,400; 4 Pages.
Response to U.S. Final Office Action dated Oct. 20, 2016 (w/RCE) for U.S. Appl. No. 13/946,400; Response filed on Feb. 23, 2017; 17 Pages.
Applicant-Initiated Interview Summary dated Mar. 10, 2017 for U.S. Appl. No. 13/946,400; 2 pages.
U.S. Non-Final Office Action dated Apr. 6, 2017 for U.S. Appl. No. 13/946,400; 36 Pages.
Response (with Amended Claims in English) to Japanese Office Action dated Feb. 13, 2017 for Japanese Application No. 2015-511491; Response filed on Apr. 11, 2017; 9 Pages.
Response to U.S. Final Office Action dated Feb. 10, 2017 for U.S. Appl. No. 13/468,478; Response filed on May 3, 2017; 9 Pages.
Notice of Allowance dated May 15, 2017 for U.S. Appl. No. 13/468,478; 15 Pages.
Request for Continued Examination for U.S. Appl. No. 13/468,478, filed Jun. 5, 2017; 3 Pages.
Japanese Office Action (with English Translation) dated May 18, 2017 for Japanese Application No. 2015-511491; 8 Pages.
Response to Office Action filed on Jun. 30, 2017 for U.S. Appl. No. 13/946,400; 12 Pages.
Japanese Office Action (with English Translation) dated May 18, 2017 for Japanese Application No. 2015-511491; 5 Pages.
PCT International Search Report and Written Opinion dated Jul. 20, 2017 for PCT Appl. No. PCT/US2017/033530; 15 pages.
PCT International Search Report and Written Opinion dated Jul. 20, 2017 for PCT/US2017/033526; 17 pages.
Japanese Office Action with English translation dated May 18, 2017 for Japanese Application No. 2015-511491, 5 pages.
Final Office Action dated Oct. 20, 2016 for U.S. Appl. No. 13/946,400; 20 pages.
Korean Office Action (with English Translation) dated Dec. 20, 2017 corresponding to Korean Appl. No. 10-2014-7032857; 14 Pages.
U.S. Non-Final Office Action dated Jan. 9, 2018 corresponding to U.S. Appl. No. 15/709,739; 12 Pages.
U.S. Appl. No. 15/709,739, filed Sep. 20, 2017, Pepka et al.
Response to Official Communication dated Mar. 13, 2017 for European Application No. 16193227.2; Response filed Oct. 2, 2017; 7 pages.
U.S. Final Office Action dated Oct. 5, 2017 for U.S. Appl. No. 13/946,400; 39 pages.
Response to U.S. Final Office Action dated Oct. 5, 2017 for U.S. Appl. No. 13/946,400; Response filed on Feb. 27, 2018; 14 Pages.
Japanese Petition (with Machine English Translation) filed Jan. 24, 2018 for Japanese Application No. 2015-511491; 10 Pages.
Response (with English Translation) to Korean Notice of Reasons for Refusal dated Dec. 20, 2017 for Korean Application No. 10-2014-7032857; Response filed Feb. 14, 2018; 47 Pages.
Chinese Office Action (w/English Translation) dated Feb. 1, 2018 for Chinese Application No. 201480040243.6; 26 Pages.
Ahn et al., “A New Toroidal-Meander Type Integrated Inductor With a Multilevel Meander Magnetic Core”, IEEE Transactions on Magnetics, vol. 30, No. 1, Jan. 1994, pp. 73-79.
Allegro “Two-Wire True Zero Speed Miniature Differential Peak-Detecting Gear Tooth Sensor;” ATS645LSH; 2004; Allegro MicroSystems, Inc., Worcester, MA 01615; pp. 1-14.
Allegro Microsystems, Inc. Data Sheet A1341; “High Precision, Highly Programmable Linear Hall Effect Sensor IC with EEPROM, Output Protocols SENT and PWM, and Advanced Output Linearization Capabilities;” May 17, 2010; 46 pages.
Allegro Microsystems, Inc. Data Sheet ATS601LSG; “Non-TPOS, Tooth Detecting Speed Sensor;” Nov. 1, 2011; 9 pages.
Allegro Microsystems, Inc., “Gear-Tooth Sensor for Automotive Applications,” Aug. 3, 2001.
Allegro MicroSystems, Inc., Hall-Effect IC Applications Guide, http://www.allegromicro.com/en/Products/Design/an/an27701.pdf, Copyright 1987, 1997, pp. 1-36.
Alllegro “True Zero-Speed Low-Jitter High Accuracy Gear Tooth Sensor;” ATS625LSG; 2005; Allegro MicroSystems, Inc. Worcester, MA 01615; pp. 1-21.
Ausserlechner et al.; “Compensation of the Piezo-Hall Effect in Integrated Hall Sensors on (100)-Si;” IEEE Sensors Journal, vol. 7, No. 11; Nov. 2007; ISBN: 1530-437X; pp. 1475-1482.
Ausserlechner et al.; “Drift of Magnetic Sensitivity of Small Hall Sensors Due to Moisture Absorbed by the IC-Package;” Proceedings of IEEE Sensors, 2004; vol. 1; Oct. 24, 2004; ISBN:0-7803-8692-2; pp. 455-458.
Ausserlechner; “Limits of Offset Cancellation by the Principle of Spinning Current Hall Probe;” Proceedings of IEEE Sensors; Oct. 2004; pp. 1117-1120.
Ausserlechner; “The piezo-Hall effect in n-silicon for arbitrary crystal orientation;” Proceedings of IEEE Sensors; vol. 3; Oct. 24, 2004; ISBN: 0-7803-8692-2; pp. 1149-1152.
Bahreyni, et al.; “A Resonant Micromachined Magnetic Field Sensor;” IEEE Sensors Journal; vol. 7, No. 9, Sep. 2007; pp. 1326-1334.
Barrettino, et al.; “CMOS-Based Monolithic Controllers for Smart Sensors Comprising Micromembranes and Microcantilevers;” IEEE Transactions on Circuits and Systems-I Regular Papers vol. 54, No. 1; Jan. 2007; pp. 141-152.
Baschirotto et al.; “Development and Analysis of PCB Vector 2-D Magnetic Field Sensor System for Electronic Compass;” IEEE Sensors Journal vol. 6, No. 2; Apr. 2006; pp. 365-371.
Bilotti et al.; “Monolithic Magnetic Hall Sensor Using Dynamic Quadrature Offset Cancellation;” IEEE Journal of Solid-State Circuits; vol. 32, Issue 6; Jun. 1997; pp. 829-836.
Bowers et al., “Microfabrication and Process Integration of Powder-Based Permanent Magnets”, Interdisciplinary Microsystems Group, Dept. Electrical and Computer Engineering, University of Florida, USA; Technologies for Future Micro-Nano Manufacturing Workshop, Napa, California, Aug. 8-10, 2011, pp. 162-165.
Demierre, et al.; “Reference Magnetic Actuator for Self-Calibration of a Very Small Hall Sensor Array;” Sensors and Actuators A97-98; Apr. 2002; pp. 39-46.
Dwyer, “Back-Biased Packaging Advances (SE, SG & SH versus SA & SB),” http://www.allegromicro.com/en/Products/Design/packaging_advances/index.asp, Copyright 2008, pp. 1-5.
Frick, et al.; “CMOS Microsystem for AC Current Measurement with Galvanic Isolation;” IEEE Sensors Journal; vol. 3, No. 6; Dec. 2003; pp. 752-760.
Halg; “Piezo-Hall Coefficients of n-Type Silicon;” Journal of Applied Physics; vol. 64, No. 1; Jul. 1, 1988; pp. 276-282.
Honeywell International, Inc., “Hall Effect Sensing and Application,” Micro Switch Sensing and Control, Chapter 3, http://content.honeywell.com/sensing/prodinfo/solidstate/technical/hallbook.pdf, date unavailable but believed to be before Jan. 2008, pp. 9-18.
Hosticka; “CMOS Sensor Systems;” Sensors and Actuators A66; Apr. 1998; pp. 335-341.
Infineon Product Brief, TLE 4941plusC, Differential Hall IC for Wheel Speed Sensing, Oct. 2010, www.infineon.com/sensors, 2 pages.
Infineon Technologies; “Differential Two-Wire Hall Effect Sensor IC;” TLE4942 Preliminary Data Sheet; Jun. 2000; pp. 1-13.
Johnson et al., “Hybrid Hall Effect Device,” Appl. Phys. Lett., vol. 71, No. 7, Aug. 1997, pp. 974-976.
Kanda et al.; “The Piezo-Hall Effect in n-Silicon;” 22nd International Conference on the Physics of Semiconductors; vol. 1, Jan. 1995; pp. 89-92.
Krammerer et al.: “A Hall effect sensors network insensitive to mechanical stress;” Proceedings of IEEE Sensors; vol. 3, Oct. 2004; pp. 1071-1074.
Lagorce et al.; “Magnetic and Mechanical Properties of Micromachined Strontium Ferrite/Polyimide Composites;” Journal of Microelectromechanical Systems; vol. 6, No. 4; Dec. 1997; pp. 307-312.
Lequesne et al.; “High-Accuracy Magnetic Position Encoder Concept;” IEEE Transactions on Industry Applications; vol. 35, No. 3; May/Jun. 1999; pp. 568-576.
Magnani et al.; “Mechanical Stress Measurement Electronics Based on Piezo-Resistive and Piezo-Hall Effects;” 9th International Conference on Electronics, Circuits and Systems 2002; vol. 1; SBN: 0-7803-7596-3; Dec. 2002; pp. 363-366.
Manic et al.; “Short and Long-Term Stability Problems of Hall Plates in Plastic Packages;” IEEE 38th Annual International Reliability Physics Symposium; Apr. 2000; pp. 225-230.
Manic; “Drift in Silicon Integrated Sensors and Circuits Due to the Thermo-Mechanical Stresses;” Lausanne, École Polytechnique Fédérale De Lausanne 2000; Part 1 of 2; 74 pages.
Manic; “Drift in Silicon Integrated Sensors and Circuits Due to the Thermo-Mechanical Stresses;” Lausanne, École Polytechnique Fédérale De Lausanne 2000; Part 2 of 2; 102 pages.
Melexis Microelectronic Systems, Hall Applications Guide, Section 3—Applications,1997 (48 pages).
Motz et al.; “An Integrated Magnetic Sensor with Two Continuous-Time ΔΣ-Converters and Stress Compensation Capability;” IEEE International Solid-State Circuits Conference; Digest of Technical Papers; Feb. 6, 2006; ISBN: 1-4244-0079-1; pp. 1151-1160.
Motz, et al.; “A Chopped Hall Sensor with Small Jitter and Programmable “True Power-On” Function;” IEEE Journal of Solid-State Circuits; vol. 40, No. 7; Jul. 2005; pp. 1533-1540.
Motz, et al.; “An Integrated Hall Sensor Platform Design for Position, Angle and Current Sensing;” IEEE Sensors 2006; Exco, Daegu, Korea / Oct. 22-25, 2006; pp. 1008-1011.
Munter; “A Low-offset Spinning-current Hall Plate;” Sensors and Actuators A21-A23; 1990; pp. 742-746.
Munter; “Electronic Circuitry for a Smart Spinning-current Hall Plate with Low Offset;” Sensors and Actuators A; Jun. 1991;.pp. 747-751.
Oniku et al., “High-Energy-Density Permanent Micromagnets Formed From Heterogeneous Magnetic Powder Mixtures”, Interdisciplinary Microsystems Group, Dept. of Electrical and Computer Engineering, University of Florida, Gainesville, FL 32611, USA; Preprint of MEMS 2012 Conf. Paper, 4 pages.
Park et al.: “Batch-Fabricated Microinductors with Electroplated Magnetically Anisotropic and Laminated Alloy Cores”, IEEE Transactions on Magnetics, vol. 35, No. 5, Sep. 1999, 10 pages.
Park et al.; “Ferrite-Based Integrated Planar Inductors and Transformers Fabricated at Low Temperature;” IEEE Transactions on Magnetics; vol. 33, No. 5; Sep. 1997; pp. 3322-3324.
Partin et al.; “Temperature Stable Hall Effect Sensors;” IEEE Sensors Journal, vol. 6, No. 1; Feb. 2006; pp. 106-110.
Pastre, et al.; “A Hall Sensor Analog Front End for Current Measurement with Continuous Gain Calibration;” IEEE Sensors Journal; vol. 7, No. 5; May 2007; pp. 860-867.
Pastre, et al.; “A Hall Sensor-Based Current Measurement Microsystem With Continuous Gain Calibration;” Research in Microelectronics and Electronics, IEEE vol. 2; Jul. 25, 2005; ISBN: 0-7803-9345-7; pp. 95-98.
Popovic; “Sensor Microsystems;” Proc. 20th International Conference on Microelectronics (MWIL 95); vol. 2, NIS, Serbia, Sep. 12-14, 1995; pp. 531-537.
Randhawa; “Monolithic Integrated Hall Devices in Silicon Circuits;” Microelectronics Journal; vol. 12, No. 6; Sep. 14-17, 1981; pp. 24-29.
Robert Bosch GMBH Stuttgart; “Active Sensor for ABS/ASR/VDC-Systems with 2-Wire-Current Interface;” Specification TLE4941/TLE4942; Version 5; Jun. 25, 2000; 44 pages.
Ruther et al.; “Integrated CMOS-Based Sensor Array for Mechanical Stress Mapping;” 5th IEEE Conference on Sensors, Oct. 2007; pp. 1131-1134.
Ruther et al.; “Thermomagnetic Residual Offset in Integrated Hall Plates;” IEEE Sensors Journal; vol. 3, No. 6; Dec. 2003; pp. 693-699.
Sargent; “Switched-capacitor IC controls feedback loop;” EDN; Design Ideas; Feb. 17, 2000; pp. 154 and 156.
Schneider; “Temperature Calibration of CMOS Magnetic Vector Probe for Contactless Angle Measurement System,” IEDM 1996 pp. 533-536.
Schott et al.; “Linearizing Integrated Hall Devices;” 1997 International Conference on Solid-State Sensors and Actuators, Jun. 16-19, 1997; pp. 393-396.
Schott, et al.; “CMOS Single-Chip Electronic Compass with Microcontroller;” IEEE Journal of Solid-State Circuits; vol. 42, No. 12; Dec. 2007; pp. 2923-2933.
Simon et al.; “Autocalibration of Silicon Hall Devices;” 8th International Conference on Solid-State Sensors and Actuators; vol. 2; Jun. 25, 1995; pp. 237-240.
Smith et al.; “Low Magnetic Field Sensing with GMR Sensors;” Sensor Magazine; Part 1; Sep. 1999; http://archives.sensormag.com/articles/0999/76mail.shtm; pp. 1-8.
Smith et al.; “Low Magnetic Field Sensing with GMR Sensors;” Sensor Magazine; Part 2; Oct. 1999; http://archives.sensormag.com/articles/1099/84/mail.shtml; pp. 1-11.
Steiner et al.; “Double-Hall Sensor with Self-Compensated Offset;” International Electron Devices Meeting; Dec. 7, 1997; ISBN: 0-7803-4100-7; pp. 911-914.
Steiner et al; Offset Reduction in Hall Devices by Continuous Spinning Current Method; Sensors and Actuators A66; 1998; pp. 167-172.
Stellrecht et al.; Characterization of Hygroscopic Swelling Behavior of Mold Compounds and Plastic Packages; IEEE Transactions on Components and Packaging Technologies; vol. 27, No. 3; Sep. 2004; pp. 499-506.
Tian et al.; “Multiple Sensors on Pulsed Eddy-Current Detection for 3-D Subsurface Crack Assessment;” IEEE Sensors Journal, vol. 5, No. 1; Feb. 2005; pp. 90-96.
Trontelj et al; “CMOS Integrated Magnetic Field Source Used as a Reference in Magnetic Field Sensors on Common Substrate;” WEP 1-6; IMTC; May 1994; pp. 461-463.
Wu, et al.; “A Chopper Current-Feedback Instrumentation Amplifier with a 1mHz 1/f Noise Corner and an AC-Coupled Ripple-Reduction Loop;” IEEE International Solid-State Circuits Conference; Feb. 10, 2009; pp. 322-324.
Zou et al.; “Three-Dimensional Die Surface Stress Measurements in Delaminated and Non-Delaminated Plastic Packages;” 48th Electronic Components and Technology Conference; May 25, 1998; pp. 1223-1234.
U.S. Appl. No. 12/840,324, filed Jul. 21, 2010, Cesaretti et al.
U.S. Appl. No. 12/959,672, filed Dec. 3, 2010, Doogue et al.
U.S. Appl. No. 12/968,353, filed Dec. 15, 2010, Donovan et al.
U.S. Appl. No. 13/095,371, filed Apr. 27, 2011, Cesaretti et al.
U.S. Appl. No. 13/350,970, filed Jan. 16, 2012, Milano et al.
U.S. Appl. No. 13/398,127, filed Feb. 16, 2012, Cesaeretti et al.
U.S. Appl. No. 13/424,618, filed Mar. 20, 2012, Doogue et al.
U.S. Appl. No. 13/526,106, filed Jun. 18, 2012, Vig et al.
U.S. Appl. No. 15/176,688, filed Jun. 8, 2016, David et al.
Daughton J: “Spin-dependent sensors”, Proceedings of the IEEE New York, US, vol. 91. No. 5 May 1, 2003; 6 pages.
Donovan et al.; “Systems and Methods for Synchronizing Sensor Data;” U.S. Appl. No. 12/968,353, filed Dec. 15, 2010; 37 pages.
Kapser et al; “Integrated GMR Based Wheel Speed Sensor for Automotive Applications;” IEEE 2007 Conference on Sensors; Oct. 27, 2007; pp. 848-851.
Udo; “Limits of Offset Cancellation by the Principle of Spinning Current Hall Probe;” Proceedings of IEEE Sensors; Oct. 2004; pp. 1117-1120.
Amendment and RCE dated Sep. 9, 2015; for U.S. Appl. No. 13/946,400; 9 pages.
Decision to Grant dated Oct. 27, 2016; For European Pat. App. No. 13722619.7; 2 pages.
European Response filed on Aug. 24, 2016 to Official Communication dated Feb. 23, 2016; For European Pat. App. No. 14742423.8; 17 pages.
Final Office Action dated Jun. 9, 2015; for U.S. Appl. No. 13/946,400; 17 pages.
Final Office Action dated Jul. 17, 2014; for U.S. Appl. No. 13/486,478; 13 pages.
Final Office Action dated Sep. 16, 2015; for U.S. Appl. No. 13/468,478; 19 pages.
Final Office Action dated Oct. 20, 2016; for U.S. Appl. No. 13/946,400; 34 pages.
Office Action dated Jan. 15, 2014; for U.S. Appl. No. 13/468,478; 36 pages.
Office Action dated Jan. 5, 2015; for U.S. Appl. No. 13/946,400; 56 pages.
Office Action dated Feb. 12, 2015; for U.S. Appl. No. 13/468,478; 14 pages.
Office Action dated Nov. 19, 2015; for U.S. Appl. No. 13/946,400; 24 pages.
Office Action dated May 10, 2016; for U.S. Appl. No. 13/468,478; 20 Pages.
Request for Continued Examination dated Jan. 19, 2015; For U.S. Appl. No. 13/468,478; 3 pages.
Request for Continued Examination dated Sep. 9, 2015; For U.S. Appl. No. 13/946,400; 2 pages.
Request for Continued Examination filed Jan. 14, 2016, For U.S. Appl. No. 13/468,478, 3 pages.
Response dated Jun. 12, 2014 to Office Action dated Jan. 15, 2014; For U.S. Appl. No. 13/468,478; 11 pages.
Response dated Jan. 19, 2015 to Final Office Action dated Jul. 17, 2014; For U.S. Appl. No. 13/468,478; 12 pages.
Response dated Apr. 3, 2015 to Office Action dated Jan. 5, 2015; for U.S. Appl. No. 13/946,400; 13 pages.
Response filed Jun. 16, 2015; to Office Action dated Feb. 12, 2015; for U.S. Appl. No. 13/468,478; 11 pages.
Response dated Jan. 14, 2016 to Final Office Action dated Sep. 16, 2015; For U.S. Appl. No. 13/468,478, 15 pages.
Response dated Feb. 17, 2016 to Non-Final Office Action dated Nov. 19, 2015; For U.S. Appl. No. 13/946,400; 11 pages.
Response dated Oct. 3, 2016 to Office Action dated May 10, 2016 for U.S. Appl. No. 13/468,478; 17 pages.
Rule 56 letter; for U.S. Appl. No. 13/946,400; 2 pages.
European Communication under Rule 71(3) EPC, Intention to Grant dated Jun. 2, 2016 corresponding to European Application No. 13722619.7; 7 Pages.
European Response dated May 21, 2015 to Written Opinion; for European Pat. App. No. 13722619.7, 15 pages.
Voluntary Amendment with English Claims dated Nov. 7, 2016 for Korean Pat. App. No. 10-2016-7004178; 15 pages.
Voluntary Amendment dated Nov. 2, 2016 with English claims for Chinese App. No. 201480040243.6; 13 pages.
Voluntary Amendment dated Dec. 28, 2016 with English claims; For Japanese Pat. App. No. 2016-528006; 8 pages.
Extended Search Report dated Dec. 22, 2016; For European Pat. App. No. 16193227.2-1586; 11 pages.
International Search Report and Written Opinion of the ISA dated Jul. 17, 2013; For PCT Pat. App. No. PCT/US2013/037065; 9 pages.
PCT International Preliminary Report on Patentability and Written Opinion of the ISA dated Nov. 20, 2014; For PCT Pat. App. No. PCT/US2013/037065; 11 pages.
International Search Report and Written Opinion dated Nov. 3, 2014 for Int'l PCT Application PCT/US2014/044993; 13 pages.
PCT International Preliminary Report on Patentability dated Jan. 28, 2016; For PCT Pat. App. No. PCT/US2014/044993; 9 pages.
Response to Japanese Office Action (with English claims) dated Oct. 3, 2017 for Japanese Application No. 2016-528006; Response filed Dec. 26, 2017; 8 Pages.
Response to U.S. Final Office Action dated Oct. 5, 2017 for U.S. Appl. No. 13/946,400; Response filed Jan. 5, 2018; 11 Pages.
Appeal Brief dated Sep. 19, 2017 from Japanese Application No. 2015-511491 with English translations; 14 Pages.
Pre-Trial Report dated Nov. 2, 2017 from Japanese Application No. 2015-511491 with English translations and Claims on File; 7 Pages.
Korean Office Action with English Translation dated Nov. 22, 2017 for Korean Application No. 10-2016-7004178; 17 Pages.
Non-final Office Action dated Dec. 15, 2017 for U.S. Appl. No. 15/176,688; 27 pages.
Korean Response (with English Language Summary) dated Jan. 19, 2018 for Korean Application No. 10-2016-7004178; 25 Pages.
Response to U.S. Office Action dated Dec. 15, 2017 for U.S. Appl. No. 15/176,668; Response filed on Feb. 9, 2018; 13 Pages.
Notice of Allowance dated Apr. 4, 2018 for U.S. Appl. No. 13/946,400; 11 pages.
Related Publications (1)
Number Date Country
20170356759 A1 Dec 2017 US