Not Applicable.
Not Applicable.
This invention relates generally to magnetic field sensors, and, more particularly, to magnetic field sensors having a magnet and a substrate with magnetic field sensing elements thereupon, all arranged in a variety of relative positions and all acting as proximity detectors.
Various types of magnetic field sensing elements are known, including Hall Effect elements and magnetoresistance elements. Magnetic field sensors generally include a magnetic field sensing element and other electronic components. Some magnetic field sensors also include a permanent magnet in a so-called “back biased” arrangement described more fully below.
Magnetic field sensors provide an electrical signal representative of a sensed magnetic field. In some embodiments that have the magnet in a so-called back-biased arrangement, a magnetic field sensed by a magnetic field sensor is a magnetic field generated by the magnet. In these back-biased arrangements, in the presence of a ferromagnetic object, the magnetic field generated by the magnet and sensed by the magnetic field sensor varies in accordance with proximity of the ferromagnetic object to the magnetic field sensor.
In some arrangements, the output signal from the magnetic field sensor is a “non-linear” two state signal having a first state indicative of a ferromagnetic object being distal from the magnetic field sensor and a second different state indicative of the ferromagnetic object being proximate to the magnetic field sensor. In other arrangements the output signal from the magnetic field sensor is a “linear” (analog or digital) signal having a signal value indicative of a distance between the ferromagnetic object and the magnetic field sensor. A magnetic field sensor having either of the above signal characteristics can be referred to as a “proximity sensor.”
Conventional back-biased proximity sensors typically use a single ended configuration with one magnetic field sensing element, typically a planar Hall effect element, with a maximum response axis that intersects the ferromagnetic object.
It would be desirable to provide a back-biased proximity sensor that uses a different type of magnetic field sensing element, different than a planar Hall effect element.
It is known that differential arrangements can offer advantages not found in conventional proximity sensors. For example, in general, a differential arrangement that uses two magnetic field sensing elements can be non-responsive to undesirable external magnetic fields that are equally received by the two magnetic field sensing elements.
A differential arrangement using two planar Hall effect elements would not function properly as a proximity sensor, because both of the two planar Hall effect elements would respond in the same way to a proximate ferromagnetic object and a resulting differential combination would have no output.
Therefore, it would be desirable to provide a back-biased proximity sensor that has a differential arrangement.
The present invention provides a back-biased magnetic field sensor (proximity sensor) that uses a different type of magnetic field sensing element, different than a planar Hall effect element.
In some embodiments, the present invention provides a back-biased proximity sensor that has a differential arrangement.
In accordance with an example useful for understanding an aspect of the present invention, a magnetic field sensor can sense a movement of a ferromagnetic object along a path, a movement line tangent to the path. The magnetic field sensor can include a magnet and a semiconductor substrate proximate to the magnet and at a position between the ferromagnetic object and the magnet. The semiconductor substrate can include first and second orthogonal axes on the first opposing surface of the substrate intersecting at a coordinate axes point, and a substrate region upon the first opposing surface of the substrate, the substrate region proximate to and surrounding the coordinate axis point, wherein magnetic fields generated by the magnet at the substrate region are substantially perpendicular to the semiconductor substrate in the absence of the ferromagnetic object. The magnetic field sensor can further include a first magnetic field sensing element disposed on or under the first surface of the semiconductor substrate and disposed outside of the substrate region, wherein the first magnetic field sensing element comprises an axis of maximum sensitivity substantially parallel to the first orthogonal axis, wherein a center of the first magnetic field sensing element is disposed along the first orthogonal axis.
The foregoing features of the invention, as well as the invention itself may be more fully understood from the following detailed description of the drawings, in which:
Before describing the present invention, some introductory concepts and terminology are explained.
As used herein, the term “magnetic field sensing element” is used to describe a variety of electronic elements that can sense a magnetic field. The magnetic field sensing element can be, but is not limited to, a Hall Effect element, a magnetoresistance element, or a magnetotransistor. As is known, there are different types of Hall Effect elements, for example, a planar Hall element, a vertical Hall element, and a Circular Vertical Hall (CVH) element. As is also known, there are different types of magnetoresistance elements, for example, a semiconductor magnetoresistance element such as Indium Antimonide (InSb), a giant magnetoresistance (GMR) element, an anisotropic magnetoresistance element (AMR), a tunneling magnetoresistance (TMR) element, and a magnetic tunnel junction (MTJ). The magnetic field sensing element may be a single element or, alternatively, may include two or more magnetic field sensing elements arranged in various configurations, e.g., a half bridge or full (Wheatstone) bridge. Depending on the device type and other application requirements, the magnetic field sensing element may be a device made of a type IV semiconductor material such as Silicon (Si) or Germanium (Ge), or a compound semiconductor material like Gallium-Arsenide (GaAs) or an Indium compound, e.g., Indium-Antimonide (InSb), or InGaA.
As is known, some of the above-described magnetic field sensing elements tend to have an axis of maximum sensitivity substantially parallel to a substrate that supports the magnetic field sensing element, and others of the above-described magnetic field sensing elements tend to have an axis of maximum sensitivity substantially perpendicular to a substrate that supports the magnetic field sensing element. In particular, planar Hall elements tend to have axes of sensitivity substantially perpendicular to a substrate, while metal based or metallic magnetoresistance elements (e.g., GMR, TMR, AMR) and vertical Hall elements tend to have axes of sensitivity parallel to a substrate.
As used herein, the term “magnetic field sensor” is used to describe a circuit that uses a magnetic field sensing element, generally in combination with other circuits. Magnetic field sensors are used in a variety of applications, including, but not limited to, an angle sensor that senses an angle of a direction of a magnetic field, a current sensor that senses a magnetic field generated by a current carried by a current-carrying conductor, a magnetic switch that senses the proximity of a ferromagnetic object, a rotation detector that senses passing ferromagnetic articles, for example, magnetic domains of a ring magnet, and a magnetic field sensor that senses a magnetic field density of a magnetic field.
The terms “parallel” and “perpendicular” are used in various contexts herein. It should be understood that the terms parallel and perpendicular do not require exact perpendicularity or exact parallelism, but instead it is intended that normal manufacturing tolerances apply, which tolerances depend upon the context in which the terms are used. In some instances, the term “substantially” is used to modify the terms “parallel” or “perpendicular.” In general, use of the term “substantially” reflects angles that are beyond manufacturing tolerances, for example, within +/−ten degrees.
As used herein, the term “baseline” and the phrase “baseline level” are used to describe a lowest magnitude (which may be near zero or may be some other magnetic field) of a magnetic field experienced by a magnetic field sensing element within a magnetic field sensor when the magnetic field sensor is operating in a system.
As used herein, the term “processor” is used to describe an electronic circuit that performs a function, an operation, or a sequence of operations. The function, operation, or sequence of operations can be hard coded into the electronic circuit or soft coded by way of instructions held in a memory device. A “processor” can perform the function, operation, or sequence of operations using digital values or using analog signals.
In some embodiments, the “processor” can be embodied in an application specific integrated circuit (ASIC), which can be an analog ASIC or a digital ASIC. In some embodiments, the “processor” can be embodied in a microprocessor with associated program memory. In some embodiments, the “processor” can be embodied in a discrete electronic circuit, which can be an analog or digital.
As used herein, the term “module” is used to describe a “processor.”
A processor can contain internal processors or internal modules that perform portions of the function, operation, or sequence of operations of the processor. Similarly, a module can contain internal processors or internal modules that perform portions of the function, operation, or sequence of operations of the module.
While electronic circuits shown in figures herein may be shown in the form of analog blocks or digital blocks, it will be understood that the analog blocks can be replaced by digital blocks that perform the same or similar functions and the digital blocks can be replaced by analog blocks that perform the same or similar functions. Analog-to-digital or digital-to-analog conversions may not be explicitly shown in the figures, but should be understood.
As used herein, the term “predetermined,” when referring to a value or signal, is used to refer to a value or signal that is set, or fixed, in the factory at the time of manufacture, or by external means, e.g., programming, thereafter. As used herein, the term “determined,” when referring to a value or signal, is used to refer to a value or signal that is identified by a circuit during operation, after manufacture.
As used herein, the term “active electronic component” is used to describe an electronic component that has at least one p-n junction. A transistor, a diode, and a logic gate are examples of active electronic components. In contrast, as used herein, the term “passive electronic component” as used to describe an electronic component that does not have at least one p-n junction. A capacitor and a resistor are examples of passive electronic components.
Planar and vertical Hall effect elements and also magnetoresistance elements are described herein as coupled to examples of electronic circuits. For the planar and vertical Hall effect elements, while not explicitly shown, current spinning (also referred to as chopping) techniques can be used along with associated circuit elements that are not shown in the figures. Current spinning can be used to reduce a DC offset error (non-zero signal when in the presence of a zero magnetic field) otherwise present in an output signal directly from a planar or vertical Hall effect element.
Current spinning will be understood to be a known technique with known electronic circuit elements that can, at a first coupling “phase,” couple a drive current to drive a current between particular selected drive terminals of a planar or vertical Hall effect element. At the first coupling phase, a differential output signal can be generated between two terminals of the planar or vertical Hall effect element that are not used as the drive terminals of the first coupling phase. Sequentially, at a second coupling phase, the known electronic circuit elements can couple the drive current to drive a current between other particular selected terminals of the planar or vertical Hall effect element. At the second coupling phase, a differential output signal can be generated between two terminals of the planar or vertical Hall effect element that are not used as the drive terminals of the second coupling phase. There can be more than two such coupling phases, for example, four coupling phases. The sequential output signals can be averaged to result in a lower effective offset voltage.
Referring now to
The back-biased proximity sensor 101 can include a planar Hall effect element 104 and an electronic circuit 106 coupled thereto, both disposed in or on (i.e., over) an electronic substrate 102. The planar Hall effect element 104 can have an axis of maximum sensitivity substantially perpendicular to a major surface 102a of the substrate 102, i.e., along an axis 108.
The back-biased proximity sensor 101 can also include a back-biasing magnet 110 having north and south poles arranged along the axis 108.
The back-biased proximity sensor 101 can include a molded structure that encases the substrate 102 and the magnet 108.
In operation, the planar Hall effect element 104 can generate a differential signal 104a, 104b, which can be coupled to the electronic circuit 106 to generate an output signal (not shown).
As a ferromagnetic object 112 comes closer to the back-biased proximity sensor 101, the differential signal 104a, 104b changes amplitude. The electronic circuit 106 can process the differential signal 104a, 104b in circuits described in conjunction with
Referring now to
An amplifier 204 can be coupled to receive a differential signal 202a, 202b, representative of the differential signal 104a, 104b, with or without the above-described current spinning. The amplifier 204 can generate an amplified signal 204a
In non-linear back biased proximity sensors, a comparator 206 (with or without hysteresis) can be coupled to the amplifier and coupled to a reference voltage 210 and can generate a two state (i.e., binary) signal 206a. The signal 206a can have a first state indicative of the ferromagnetic object 112 being distal from the back-biased proximity sensor 101 and a second different state indicative of the ferromagnetic object being proximate to the back-biased proximity sensor 101 (
An output format module 208 can be coupled to the comparator 206 and can generate a formatted signal 208a indicative of at least the first and second different states.
In linear back biased proximity sensors, the amplified signal 204a can instead be coupled to the output format module 208 and can generate a formatted signal 206a indicative of a magnitude of the amplified signal 204a, which can be indicative of a distance between the ferromagnetic object 112 (
Referring now to
The back-biased proximity sensor 300 can include an electronic substrate 302 having first and second major surfaces 302a, 302b. The substrate 302 can include a substrate region 304 and magnetic field sensing elements e.g., 305, 307, disposed on the first surface 302a and outside of the substrate region 304. The substrate region 304 is shown to be square. However, in other embodiments, the substrate region 304 can be rectangular, oval, round, or any other planar shape defined by characteristics below.
An electronic circuit 310 can be disposed in or on the first surface 302a and can be coupled to the magnetic field sensing element(s).
The back-biased proximity sensor 300 can include a magnet 312 having first and second opposing surfaces 312a, 312b, respectively. A north pole, N, can be disposed upon the first surface 312a and a south pole, S, can be disposed upon the second surface 312b. In some embodiments, the north pole, N, and the south pole, S, are reversed in position.
A magnet axis 314 passes through the north and south poles. In some embodiments, the magnet axis 314 can intersect the coordinate axis point 320.
Upon the first surface 302a of the substrate 302, first and second orthogonal axes 306, 308, respectively, intersect the at a coordinate axis point 320. The coordinate axis point 320 can be at a geometric center the coordinate axis region 304.
In some embodiments, the magnetic axis 314 can intersect the coordinate axis point 320. However, more generally, the substrate region 304 is a region in which magnetic fields generated by the magnet 312 are substantially perpendicular to the first surface 302a of the substrate 302. Further, outside of the substrate region 304, magnetic fields are not substantially perpendicular to the surface 302a.
In general, in some embodiments, the substrate region 304 has a size and a shape selected to provide that, when the ferromagnetic object 316 is not present, the magnetic fields at the surface 302a of the substrate 302 are within about five degrees of perpendicular to the surface 302a, and outside of the substrate region 304, the magnetic fields are beyond about five degrees. However, the substrate region 304 can have other sizes and shapes to result in other magnetic field angles within and outside of the substrate region, for example, within the substrate region 304 less than about two degrees, less than about five degrees, less than about ten, less than about fifteen, less than about twenty, less than about twenty-five, less than about thirty, less than about thirty-five forty, or less than about forty-five degrees. Thus, outside of the substrate region 304, angles of magnetic field lines are greater than or equal to the above-described angles. A preferred magnetic field angle is zero or near zero.
The back-biased proximity sensor 300 can be used to sense the ferromagnetic object 316 at different positions along a direction 318. In some embodiments, the back-biased proximity sensor 300 can have a central axis 316a and the central axis can be aligned with the coordinate axis point 320 at the different positions along the direction 318. The direction 318 can be tangent to a movement line, which may or may not be a straight movement line. In some embodiments, the direction 318 is perpendicular to the first surface 302a of the substrate 302. However, other angles are also possible.
A coordinate axis 340 is consistent among the various figures below, in which the surface 302a of the substrate is in an x-y plane.
Unlike the back-biased proximity sensor 300, it should be understood that, for the conventional back-biased proximity sensor 101 of
While the first surface 302a can be toward the ferromagnetic object 316 as shown, in other embodiments, the first surface 302a can be toward the magnet
Referring now to
First, second, third and fourth vertical Hall elements 404, 406, 408, 410 can be disposed on, in, or under the first surface 402a of the substrate 402 and outside of the substrate region 416. Maximum response axes 404a, 406a of the first and second vertical Hall effect elements 404, 406, respectively, can be generally aligned with the first coordinate axis 430. Maximum response axes 408a, 410a of the third and fourth vertical Hall effect elements 408, 410, respectively, can be generally aligned with the second coordinate axis 432.
Cartesian coordinates 440 show that the first surface 402a of the substrate 402 can be in the same x-y plane identified in
While four vertical Hall effect elements are shown, in other embodiments, there can be one, two, three, four, or more vertical Hall elements. Also, while the maximum response axes 404a, 406a, 408a, 410a of the magnetic field sensing elements 404, 406, 408, 410, respectively, are shown to be aligned with first and second coordinate axes 430, 432, respectively, in other embodiments, the maximum response axes can be at other angles.
For embodiments that use one vertical Hall effect element, the one vertical Hall effect element can be any one of the four vertical Hall effect elements 404, 406, 408, 410. For embodiments that use two vertical Hall effect elements, the two vertical Hall effect elements can be any two of the four vertical Hall effect elements. For embodiments that use three vertical Hall effect element, the three vertical Hall effect element scan be any three of the four vertical Hall effect elements
In general, it will be understood that having more than one vertical Hall effect element has advantages. For example, a signal to noise ratio can be improved by using more than one vertical Hall effect element.
Referring now to
The back-biased magnetic field sensor 500 can be the same as or similar to the magnetic field sensor 300 of
First, second, and fourth vertical Hall effect elements 504, 506, 508 can be the same as or similar to the first, second, and fourth vertical Hall effect elements 404, 406, 410 of
In a left hand view, no ferromagnetic object (e.g., 514) is proximate to the back-biased magnetic field sensor 500. Magnetic field line 512a is representative of a magnetic field direction at the first vertical Hall effect element 504, and is tilted in an x-y plane in Cartesian coordinates 540, within an x-z plane, and tilted in a negative x direction. Magnetic field line 512b is representative of a magnetic field direction at the second vertical Hall effect element 506, and is tilted in the x-y plane in Cartesian coordinates 540, within the x-z plane, and tilted in a positive x direction. Magnetic field line 512c is representative of a magnetic field direction at the fourth vertical Hall effect element 508, and is tilted in the x-y plane in Cartesian coordinates 540, within a y-z plane, and tilted in a positive y direction.
Due to the directions of the maximum response axes 404a, 406a, 410a of
In the second and third panels of
Referring now to
The electronic circuit 600 can include an amplifier 604 coupled to receive a differential signal 602. The differential signal 602 can be coupled to a vertical Hall effect element.
The amplifier 604 can generate an amplified signal 604a.
A comparator circuit 610 can be coupled to receive the amplified signal 604a and coupled to receive a reference signal 614. The comparator circuit 610 can be configured to generate a comparison signal 610 having a first state indicative of the ferromagnetic object 514 being far away from the magnetic field sensor 500 and having a second different state indicative of the ferromagnetic object 514 being near to the magnetic field sensor 500. The comparison signal 610a provides a nonlinear magnetic field sensor.
The comparator circuit 610 and other comparator circuits herein can be linear comparators. However, in other embodiments, the comparator circuits can be digital circuits configured to generate an output signal having at least two different states.
An output format module 612 can be coupled to receive the comparison signal 610a and can be configured to generate a formatted signal 612a indicative of the first or second different states of the comparison signal 610a. The formatted signal 612a can be in one of a variety of signal formats, including, but not limited to, a PWM (pulse width modulation) format, a SENT (single edge nibble transmission) format, an I2C (inter-integrated circuit) format, and a CAN (controller area network) format, each of which can be used to communicate from a sensor to a processor.
In some embodiments, the amplified signal 604a can be coupled to the output format module 612 and the formatted signal 612a can be indicative of a linear representation of an amplitude of the amplified signal 704a, i.e., a representation of a proximity of the ferromagnetic object 514, either a continuous linear representation or a multi-step digital representation.
Referring now to
The electronic circuit 700 can include amplifier 704, 716 coupled to receive differential signals 702, 714. The differential signals 702, 714 can be coupled to two respective vertical Hall effect elements.
The amplifiers 704, 716 can generate amplified signals 704a, 716a. A summing circuit 706 can receive and sum the amplified signals 704a, 716a and can generate a summed signal 706a.
A comparator circuit 710 can be coupled to receive the summed signal 706a and coupled to receive a reference signal 718. The comparator circuit 710 can be configured to generate a comparison signal 710 having a first state indicative of the ferromagnetic object 514 being far away from the magnetic field sensor 500 and having a second different state indicative of the ferromagnetic object 514 being near to the magnetic field sensor 500. The comparison signal 710a provides a nonlinear magnetic field sensor.
An output format module 712 can be coupled to receive the comparison signal 710a and can be configured to generate a formatted signal 712a indicative of the first or second different states of the comparison signal 710a. The formatted signal 712a can be in one of a variety of signal formats, including, but not limited to, a PWM format, a SENT format, an I2C format, and a CAN format.
In the some embodiments, the summed signal 706a can be coupled to the output format module 712 and the formatted signal 712a can be indicative of a linear representation of an amplitude of the summed signal 706a, i.e., a representation of a proximity of the ferromagnetic object 514, either a continuous linear representation or a multi-step digital representation.
Referring now to
The electronic circuit 800 can include amplifier 804, 816, 820, 826 coupled to receive differential signals 802, 814, 818, 824. The differential signals 802, 814, 818, 824 can be coupled to four respective vertical Hall effect elements.
The amplifiers 804, 816, 820, 826 can generate amplified signals 804a, 816a, 820a, 826a. A summing circuit 806 can receive and sum the amplified signals 804a, 816a and can generate a summed signal 806a. A summing circuit 822 can receive and sum the amplified signals 820a, 826a and can generate a summed signal 822a. A summing circuit 808 can received the summed signals 806a, 822a and can generate a summed signal 808a.
A comparator circuit 810 can be coupled to receive the summed signal 808a and coupled to receive a reference signal 828. The comparator circuit 810 can be configured to generate a comparison signal 810 having a first state indicative of the ferromagnetic object 514 being far away from the magnetic field sensor 500 and having a second different state indicative of the ferromagnetic object 514 being near to the magnetic field sensor 500. The comparison signal 810a provides a nonlinear magnetic field sensor.
An output format module 812 can be coupled to receive the comparison signal 810a and can be configured to generate a formatted signal 812a indicative of the first or second different states of the comparison signal 810a. The formatted signal 812a can be in one of a variety of signal formats, including, but not limited to, a PWM format, a SENT format, an I2C format, and a CAN format.
In the some embodiments, the summed signal 808a can be coupled to the output format module 812 and the formatted signal 812a can be indicative of a linear representation of an amplitude of the summed signal 808a, i.e., a representation of a proximity of the ferromagnetic object 514, either a continuous linear representation or a multi-step digital representation.
While magnetic field sensors of
Current spinning is not used with magnetoresistance elements. However, magnetoresistance elements can be used in bridge arrangements.
Referring now to
In other embodiments, magnetoresistance elements can be used as any of the above-described vertical Hall effect elements but in a single ended arrangement.
All references cited herein are hereby incorporated herein by reference in their entirety.
Having described preferred embodiments, which serve to illustrate various concepts, structures and techniques, which are the subject of this patent, it will now become apparent that other embodiments incorporating these concepts, structures and techniques may be used. Accordingly, it is submitted that the scope of the patent should not be limited to the described embodiments but rather should be limited only by the spirit and scope of the following claims.
Elements of embodiments described herein may be combined to form other embodiments not specifically set forth above. Various elements, which are described in the context of a single embodiment, may also be provided separately or in any suitable subcombination. Other embodiments not specifically described herein are also within the scope of the following claims.
Number | Name | Date | Kind |
---|---|---|---|
3195043 | Burig et al. | Jul 1965 | A |
3281628 | Bauer et al. | Oct 1966 | A |
3607528 | Gassaway | Sep 1971 | A |
3611138 | Winebrener | Oct 1971 | A |
3661061 | Tokarz | May 1972 | A |
3728786 | Lucas et al. | Apr 1973 | A |
4048670 | Eysermans | Sep 1977 | A |
4053829 | Maruo | Oct 1977 | A |
4188605 | Stout | Feb 1980 | A |
4204317 | Winn | May 1980 | A |
4236832 | Komatsu et al. | Dec 1980 | A |
4283643 | Levin | Aug 1981 | A |
4315523 | Mahawili et al. | Feb 1982 | A |
4438347 | Gehring | Mar 1984 | A |
4481469 | Hauler et al. | Nov 1984 | A |
4573258 | Io et al. | Mar 1986 | A |
4614111 | Wolff | Sep 1986 | A |
4649796 | Schmidt | Mar 1987 | A |
4670715 | Fuzzell | Jun 1987 | A |
4719419 | Dawley | Jan 1988 | A |
4733455 | Nakamura et al. | Mar 1988 | A |
4745363 | Carr et al. | May 1988 | A |
4746859 | Malik | May 1988 | A |
4752733 | Petr et al. | Jun 1988 | A |
4758943 | Aström et al. | Jul 1988 | A |
4760285 | Nelson | Jul 1988 | A |
4764767 | Ichikawa et al. | Aug 1988 | A |
4769344 | Sakai et al. | Sep 1988 | A |
4772929 | Manchester | Sep 1988 | A |
4789826 | Willett | Dec 1988 | A |
4796354 | Yokoyama et al. | Jan 1989 | A |
4823075 | Alley | Apr 1989 | A |
4833406 | Foster | May 1989 | A |
4908685 | Shibasaki et al. | Mar 1990 | A |
4910861 | Dohogne | Mar 1990 | A |
4944028 | Iijima et al. | Jul 1990 | A |
4954777 | Klopfer et al. | Sep 1990 | A |
4970411 | Halg et al. | Nov 1990 | A |
4983916 | Iijima et al. | Jan 1991 | A |
5012322 | Guillotte | Apr 1991 | A |
5021493 | Sandstrom | Jun 1991 | A |
5028868 | Murata et al. | Jul 1991 | A |
5038130 | Eck et al. | Aug 1991 | A |
5045920 | Vig et al. | Sep 1991 | A |
5078944 | Yoshino | Jan 1992 | A |
5084289 | Shin et al. | Jan 1992 | A |
5121289 | Gagliardi | Jun 1992 | A |
5137677 | Murata | Aug 1992 | A |
5139973 | Nagy et al. | Aug 1992 | A |
5167896 | Hirota et al. | Dec 1992 | A |
5185919 | Hickey | Feb 1993 | A |
5196794 | Murata | Mar 1993 | A |
5200698 | Thibaud | Apr 1993 | A |
5210493 | Schroeder et al. | May 1993 | A |
5216405 | Schroeder et al. | Jun 1993 | A |
5244834 | Suzuki et al. | Sep 1993 | A |
5247202 | Popovic et al. | Sep 1993 | A |
5247278 | Pant et al. | Sep 1993 | A |
5250925 | Shinkle | Oct 1993 | A |
5289344 | Gagnon et al. | Feb 1994 | A |
5286426 | Rano, Jr. et al. | Mar 1994 | A |
5304926 | Wu | Apr 1994 | A |
5315245 | Schroeder et al. | May 1994 | A |
5329416 | Ushiyama et al. | Jul 1994 | A |
5332956 | Oh | Jul 1994 | A |
5332965 | Wolf et al. | Jul 1994 | A |
5341097 | Wu | Aug 1994 | A |
5351028 | Krahn | Sep 1994 | A |
5399968 | Sheppard et al. | Mar 1995 | A |
5412255 | Wallrafen | May 1995 | A |
5414355 | Davidson et al. | May 1995 | A |
5424558 | Borden et al. | Jun 1995 | A |
5432444 | Yasohama et al. | Jul 1995 | A |
5434105 | Liou | Jul 1995 | A |
5453727 | Shibasaki et al. | Sep 1995 | A |
5469058 | Dunnam | Nov 1995 | A |
5477143 | Wu | Dec 1995 | A |
5479695 | Grader et al. | Jan 1996 | A |
5486759 | Seiler et al. | Jan 1996 | A |
5488294 | Liddell et al. | Jan 1996 | A |
5491633 | Henry et al. | Feb 1996 | A |
5497081 | Wolf et al. | Mar 1996 | A |
5500589 | Sumcad | Mar 1996 | A |
5500994 | Itaya | Mar 1996 | A |
5508611 | Schroeder et al. | Apr 1996 | A |
5521501 | Dettmann et al. | May 1996 | A |
5545983 | Okeya et al. | Aug 1996 | A |
5551146 | Kawabata et al. | Sep 1996 | A |
5581170 | MammanO et al. | Dec 1996 | A |
5581179 | Engel et al. | Dec 1996 | A |
5583436 | Van De Walle et al. | Dec 1996 | A |
5596272 | Busch | Jan 1997 | A |
5621319 | Bilotti et al. | Apr 1997 | A |
5627315 | Figi et al. | May 1997 | A |
5631557 | Davidson | May 1997 | A |
5640090 | Furuya et al. | Jun 1997 | A |
5691637 | Oswald et al. | Nov 1997 | A |
5696790 | Graham et al. | Dec 1997 | A |
5712562 | Berg | Jan 1998 | A |
5714102 | Highum et al. | Feb 1998 | A |
5719496 | Wolf | Feb 1998 | A |
5729128 | Bunyer et al. | Mar 1998 | A |
5757181 | Wolf et al. | May 1998 | A |
5781005 | Vig et al. | Jul 1998 | A |
5789658 | Henn et al. | Aug 1998 | A |
5789915 | Ingraham | Aug 1998 | A |
5796249 | Andräet et al. | Aug 1998 | A |
5818222 | Ramsden | Oct 1998 | A |
5818223 | Wolf | Oct 1998 | A |
5839185 | Smith et al. | Nov 1998 | A |
5841276 | Makino et al. | Nov 1998 | A |
5859387 | Gagnon | Jan 1999 | A |
5886070 | Honkura et al. | Feb 1999 | A |
5883567 | Mullins, Jr. | Mar 1999 | A |
5896030 | Hasken | Apr 1999 | A |
5912556 | Frazee et al. | Jun 1999 | A |
5963028 | Engel et al. | Oct 1999 | A |
6011770 | Tan | Jan 2000 | A |
6016055 | Jager et al. | Jan 2000 | A |
6043646 | Jansseune | Mar 2000 | A |
6064198 | Wolf et al. | May 2000 | A |
6136250 | Brown | Oct 2000 | A |
6175233 | McCurley et al. | Jan 2001 | B1 |
6180041 | Takizawa | Jan 2001 | B1 |
6184679 | Popovic et al. | Feb 2001 | B1 |
6194893 | Yokotani et al. | Feb 2001 | B1 |
6198373 | Ogawa et al. | Mar 2001 | B1 |
6242604 | Hudlicky et al. | Jun 2001 | B1 |
6242904 | Shirai et al. | Jun 2001 | B1 |
6242905 | Draxelmayr | Jun 2001 | B1 |
6265865 | Engel et al. | Jul 2001 | B1 |
6278269 | Vig et al. | Aug 2001 | B1 |
6297627 | Towne et al. | Oct 2001 | B1 |
6339322 | Loreck et al. | Jan 2002 | B1 |
6351506 | Lewicki | Feb 2002 | B1 |
6356068 | Steiner et al. | Mar 2002 | B1 |
6392478 | Mulder et al. | May 2002 | B1 |
6429640 | Daughton et al. | Aug 2002 | B1 |
6436748 | Forbes et al. | Aug 2002 | B1 |
6437558 | Li et al. | Aug 2002 | B2 |
6452381 | Nakatani et al. | Sep 2002 | B1 |
6462536 | Mednikov et al. | Oct 2002 | B1 |
6492804 | Tsuge et al. | Dec 2002 | B2 |
6501270 | Opie | Dec 2002 | B1 |
6504363 | Dogaru et al. | Jan 2003 | B1 |
6525531 | Forrest et al. | Feb 2003 | B2 |
6542847 | Lohberg et al. | Apr 2003 | B1 |
6545332 | Huang | Apr 2003 | B2 |
6545457 | Goto et al. | Apr 2003 | B2 |
6545462 | Schott et al. | Apr 2003 | B2 |
6566872 | Sugitani | May 2003 | B1 |
6640451 | Vinarcik | Nov 2003 | B1 |
6653968 | Schneider | Nov 2003 | B1 |
6687644 | Zinke et al. | Feb 2004 | B1 |
6692676 | Vig et al. | Feb 2004 | B1 |
6707298 | Suzuki et al. | Mar 2004 | B2 |
6759843 | Furlong | Jul 2004 | B2 |
6768301 | Hohe et al. | Jul 2004 | B1 |
6770163 | Kuah et al. | Aug 2004 | B1 |
6781233 | Zverev et al. | Aug 2004 | B2 |
6781359 | Stauth et al. | Aug 2004 | B2 |
6798193 | Zimmerman et al. | Sep 2004 | B2 |
6815944 | Vig et al. | Nov 2004 | B2 |
6822443 | Dogaru | Nov 2004 | B1 |
6853178 | Hayat-Dawoodi | Feb 2005 | B2 |
6896407 | Nomiyama et al. | May 2005 | B2 |
6902951 | Goller et al. | Jun 2005 | B2 |
6917321 | Haurie et al. | Jul 2005 | B1 |
6956366 | Butzmann | Oct 2005 | B2 |
7026808 | Vig et al. | Apr 2006 | B2 |
7031170 | Daeche et al. | Apr 2006 | B2 |
7038448 | Schott et al. | May 2006 | B2 |
7049924 | Hayashi et al. | May 2006 | B2 |
7112955 | Buchhold | Sep 2006 | B2 |
7112957 | Bicking | Sep 2006 | B2 |
7126327 | Busch | Oct 2006 | B1 |
7132825 | Martin | Nov 2006 | B2 |
7190784 | Li | Mar 2007 | B2 |
7193412 | Freeman | Mar 2007 | B2 |
7199579 | Scheller et al. | Apr 2007 | B2 |
7253614 | Forrest et al. | Aug 2007 | B2 |
7259545 | Stauth et al. | Aug 2007 | B2 |
7265531 | Stauth et al. | Sep 2007 | B2 |
7269992 | Lamb et al. | Sep 2007 | B2 |
7285952 | Hatanaka et al. | Oct 2007 | B1 |
7292095 | Burt et al. | Nov 2007 | B2 |
7295000 | Werth | Nov 2007 | B2 |
7319319 | Jones et al. | Jan 2008 | B2 |
7323780 | Daubenspeck et al. | Jan 2008 | B2 |
7323870 | Tatschl et al. | Jan 2008 | B2 |
7325175 | Momtaz | Jan 2008 | B2 |
7345468 | Okada et al. | Mar 2008 | B2 |
7355388 | Ishio | Apr 2008 | B2 |
7361531 | Sharma et al. | Apr 2008 | B2 |
7362094 | Voisine et al. | Apr 2008 | B2 |
7365530 | Bailey et al. | Apr 2008 | B2 |
7368904 | Scheller et al. | May 2008 | B2 |
7385394 | Auburger et al. | Jun 2008 | B2 |
7425821 | Monreal et al. | Sep 2008 | B2 |
7474093 | Ausserlechner | Jan 2009 | B2 |
7476953 | Taylor et al. | Jan 2009 | B2 |
7518354 | Stauth et al. | Apr 2009 | B2 |
7592801 | Bailey et al. | Sep 2009 | B2 |
7598601 | Taylor et al. | Oct 2009 | B2 |
7605647 | Romero et al. | Oct 2009 | B1 |
7635993 | Boeve | Dec 2009 | B2 |
7694200 | Forrest et al. | Apr 2010 | B2 |
7701208 | Nishikawa | Apr 2010 | B2 |
7729675 | Krone | Jun 2010 | B2 |
7746056 | Stauth et al. | Jun 2010 | B2 |
7746065 | Pastre et al. | Jun 2010 | B2 |
7764118 | Kusuda et al. | Jul 2010 | B2 |
7768083 | Doogue et al. | Aug 2010 | B2 |
7769110 | Momtaz | Aug 2010 | B2 |
7772838 | Bailey et al. | Aug 2010 | B2 |
7800389 | Friedrich et al. | Sep 2010 | B2 |
7808074 | Knittl | Oct 2010 | B2 |
7816772 | Engel et al. | Oct 2010 | B2 |
7816905 | Doogue et al. | Oct 2010 | B2 |
7839141 | Werth et al. | Nov 2010 | B2 |
7915886 | Stolfus et al. | Mar 2011 | B2 |
7923996 | Doogue et al. | Apr 2011 | B2 |
7936144 | Vig et al. | May 2011 | B2 |
7956604 | Ausserlechner | Jun 2011 | B2 |
7961823 | Kolze et al. | Jun 2011 | B2 |
7990209 | Romero | Aug 2011 | B2 |
8030918 | Doogue et al. | Oct 2011 | B2 |
8058870 | Sterling | Nov 2011 | B2 |
8063631 | Fermon et al. | Nov 2011 | B2 |
8063634 | Sauber et al. | Nov 2011 | B2 |
8080993 | Theuss et al. | Dec 2011 | B2 |
8106654 | Theuss et al. | Jan 2012 | B2 |
8128549 | Testani et al. | Mar 2012 | B2 |
8134358 | Charlier et al. | Mar 2012 | B2 |
8143169 | Engel et al. | Mar 2012 | B2 |
8253210 | Theuss et al. | Aug 2012 | B2 |
8274279 | Gies | Sep 2012 | B2 |
8362579 | Theuss et al. | Jan 2013 | B2 |
8610430 | Werth et al. | Dec 2013 | B2 |
8729890 | Donovan et al. | May 2014 | B2 |
8773124 | Ausserlechner | Jul 2014 | B2 |
9116018 | Frachon | Aug 2015 | B2 |
9164156 | Elian et al. | Oct 2015 | B2 |
9201123 | Elian et al. | Dec 2015 | B2 |
20010002791 | Tsuge et al. | Jun 2001 | A1 |
20010009367 | Seitzer et al. | Jul 2001 | A1 |
20020027488 | Hayat-Dawoodi et al. | Mar 2002 | A1 |
20020084923 | Li | Jul 2002 | A1 |
20020097639 | Ishizaki et al. | Jul 2002 | A1 |
20030001563 | Turner | Jan 2003 | A1 |
20030038675 | Gailus et al. | Feb 2003 | A1 |
20030062891 | Slates | Apr 2003 | A1 |
20030102909 | Motz | Jun 2003 | A1 |
20030107366 | Busch et al. | Jun 2003 | A1 |
20030151406 | Wan et al. | Aug 2003 | A1 |
20030222642 | Butzmann | Dec 2003 | A1 |
20040032251 | Zimmerman et al. | Feb 2004 | A1 |
20040046248 | Waelti et al. | Mar 2004 | A1 |
20040062362 | Matsuya | Apr 2004 | A1 |
20040080314 | Tsujii et al. | Apr 2004 | A1 |
20040135220 | Goto | Jul 2004 | A1 |
20040056647 | Stauth et al. | Aug 2004 | A1 |
20040184196 | Jayasekara | Sep 2004 | A1 |
20040196045 | Larsen | Oct 2004 | A1 |
20050120782 | Kishibata et al. | Jun 2005 | A1 |
20050122099 | Imamoto et al. | Jun 2005 | A1 |
20050167790 | Khor et al. | Aug 2005 | A1 |
20050179429 | Lohberg | Aug 2005 | A1 |
20050225318 | Bailey et al. | Oct 2005 | A1 |
20050258820 | Forster | Nov 2005 | A1 |
20050280411 | Bicking | Dec 2005 | A1 |
20060033487 | Nagano et al. | Feb 2006 | A1 |
20060038559 | Lamb et al. | Feb 2006 | A1 |
20060038561 | Honkura et al. | Feb 2006 | A1 |
20060068237 | Murphy | Mar 2006 | A1 |
20060125473 | Frachon et al. | Jun 2006 | A1 |
20060175674 | Taylor | Aug 2006 | A1 |
20060181263 | Doogue et al. | Aug 2006 | A1 |
20060202692 | Tatschl et al. | Sep 2006 | A1 |
20060261801 | Busch | Nov 2006 | A1 |
20070110199 | Momtaz et al. | May 2007 | A1 |
20070170533 | Doogue et al. | Jul 2007 | A1 |
20070247141 | Pastre et al. | Oct 2007 | A1 |
20070285089 | Ibuki et al. | Dec 2007 | A1 |
20080013298 | Sharma et al. | Jan 2008 | A1 |
20080094055 | Monreal et al. | Apr 2008 | A1 |
20080116884 | Rettig | May 2008 | A1 |
20080116885 | Van Zon et al. | May 2008 | A1 |
20080137784 | Krone | Jun 2008 | A1 |
20080143329 | Ishihara | Jun 2008 | A1 |
20080204011 | Shoji | Aug 2008 | A1 |
20080237818 | Engel et al. | Oct 2008 | A1 |
20080238410 | Charlier et al. | Oct 2008 | A1 |
20080270067 | Eriksen et al. | Oct 2008 | A1 |
20090001964 | Strzalkowski | Jan 2009 | A1 |
20090001972 | Fernandez et al. | Jan 2009 | A1 |
20090009163 | Yamada | Jan 2009 | A1 |
20090058404 | Kurumado | Mar 2009 | A1 |
20090085706 | Baarman et al. | Apr 2009 | A1 |
20090102467 | Snell et al. | Apr 2009 | A1 |
20090115412 | Fuse | May 2009 | A1 |
20090137398 | Bozovic et al. | May 2009 | A1 |
20090140725 | Ausserlechner | Jun 2009 | A1 |
20090146647 | Ausserlechner | Jun 2009 | A1 |
20090152696 | Dimasacat et al. | Jun 2009 | A1 |
20090167298 | Kreutzbruck et al. | Jul 2009 | A1 |
20090168286 | Berkley et al. | Jul 2009 | A1 |
20090206831 | Fermon et al. | Aug 2009 | A1 |
20090212765 | Doogue et al. | Aug 2009 | A1 |
20090212771 | Cummings et al. | Aug 2009 | A1 |
20090243601 | Feldtkeller | Oct 2009 | A1 |
20090251134 | Uenoyama | Oct 2009 | A1 |
20090256552 | Guo et al. | Oct 2009 | A1 |
20100026279 | Vig et al. | Feb 2010 | A1 |
20100026288 | Sauber et al. | Feb 2010 | A1 |
20100033175 | Boeve et al. | Feb 2010 | A1 |
20100052667 | Kohama et al. | Mar 2010 | A1 |
20100141249 | Ararao et al. | Jun 2010 | A1 |
20100188078 | Foletto et al. | Jul 2010 | A1 |
20100201356 | Koller et al. | Aug 2010 | A1 |
20100211347 | Friedrich et al. | Aug 2010 | A1 |
20100237450 | Doogue et al. | Sep 2010 | A1 |
20100276769 | Theuss et al. | Nov 2010 | A1 |
20100295140 | Theuss et al. | Nov 2010 | A1 |
20100330708 | Engel et al. | Dec 2010 | A1 |
20110018533 | Cesaretti et al. | Jan 2011 | A1 |
20110031960 | Hohe et al. | Feb 2011 | A1 |
20110048102 | Fernandez et al. | Mar 2011 | A1 |
20110074405 | Doogue et al. | Mar 2011 | A1 |
20110127998 | Elian et al. | Jun 2011 | A1 |
20110267040 | Frachon | Nov 2011 | A1 |
20110285384 | Nomura | Nov 2011 | A1 |
20110298448 | Foletto et al. | Dec 2011 | A1 |
20120013333 | Ararao et al. | Jan 2012 | A1 |
20120019236 | Tiernan et al. | Jan 2012 | A1 |
20120062215 | Ide et al. | Mar 2012 | A1 |
20120086090 | Sharma et al. | Apr 2012 | A1 |
20120249133 | Friedrich | Oct 2012 | A1 |
20120274314 | Cesaretti et al. | Nov 2012 | A1 |
20130138372 | Ausserlechner | May 2013 | A1 |
20130214774 | Cesaretti et al. | Aug 2013 | A1 |
20130214777 | Itoi | Aug 2013 | A1 |
20130241543 | Stenson et al. | Sep 2013 | A1 |
20130249029 | Vig et al. | Sep 2013 | A1 |
20130278246 | Stegerer et al. | Oct 2013 | A1 |
20130300401 | Krapf et al. | Nov 2013 | A1 |
20130300406 | Pepka et al. | Nov 2013 | A1 |
20140266181 | Milano et al. | Sep 2014 | A1 |
20140327435 | Rohrer | Nov 2014 | A1 |
20140333295 | Fernandez et al. | Nov 2014 | A1 |
20140347044 | Monreal et al. | Nov 2014 | A1 |
20150022186 | Ausserlechner | Jan 2015 | A1 |
20150022187 | Taylor et al. | Jan 2015 | A1 |
20150022193 | Burdette et al. | Jan 2015 | A1 |
20150022197 | David et al. | Jan 2015 | A1 |
20150022198 | David et al. | Jan 2015 | A1 |
20150346289 | Ausserlechner | Dec 2015 | A1 |
20150354985 | Judkins, III et al. | Dec 2015 | A1 |
20150377648 | Sirohiwala et al. | Dec 2015 | A1 |
20160011281 | Sander | Jan 2016 | A1 |
20160123771 | David et al. | May 2016 | A1 |
20160123774 | Foletto | May 2016 | A1 |
Number | Date | Country |
---|---|---|
683 469 | Mar 1994 | CH |
102483443 | May 2012 | CN |
102713654 | Oct 2012 | CN |
102954808 | Mar 2013 | CN |
25 18 054 | Nov 1976 | DE |
40 31 560 | Apr 1992 | DE |
195 39 458 | Apr 1997 | DE |
196 34 715 | Mar 1998 | DE |
196 50 935 | Jun 1998 | DE |
198 38 433 | Mar 1999 | DE |
199 61 504 | Jun 2001 | DE |
102 10 184 | Sep 2003 | DE |
103 14 602 | Oct 2004 | DE |
10 2004017191 | Oct 2005 | DE |
10 2006 037 226 | Feb 2008 | DE |
10 2007 018 238 | Oct 2008 | DE |
10 2007 041 230 | Apr 2009 | DE |
10 2010 016 584 | Nov 2010 | DE |
10 2011 102483 | Nov 2012 | DE |
0 289 414 | Nov 1988 | EP |
0 289 414 | Nov 1988 | EP |
0 357 013 | Mar 1990 | EP |
0 357 013 | Mar 1990 | EP |
0 361 456 | Apr 1990 | EP |
0 361 456 | Apr 1990 | EP |
0 680 103 | Nov 1995 | EP |
0 898 180 | Feb 1999 | EP |
0 944 888 | Oct 2001 | EP |
1306687 | May 2003 | EP |
1 443 332 | Aug 2004 | EP |
1 580 560 | Sep 2005 | EP |
1 637 898 | Mar 2006 | EP |
1 662 353 | May 2006 | EP |
1 679 524 | Jul 2006 | EP |
1 850 143 | Oct 2007 | EP |
2 063 229 | May 2009 | EP |
2 063 229 | May 2009 | EP |
2 748 105 | Oct 1997 | FR |
2 909 756 | Jun 2008 | FR |
2276727 | Oct 1994 | GB |
2481482 | Dec 2011 | GB |
60-152950 | Aug 1985 | JP |
61-48777 | Mar 1986 | JP |
S61-48777 | Mar 1986 | JP |
S6367583 | Mar 1988 | JP |
363 084176 | Apr 1988 | JP |
63 -263782 | Oct 1988 | JP |
63-300911 | Dec 1988 | JP |
H02-116753 | May 1990 | JP |
02-149013 | Jun 1990 | JP |
H03-29817 | Feb 1991 | JP |
H04-095817 | Mar 1992 | JP |
04-152688 | May 1992 | JP |
H06-273437 | Sep 1994 | JP |
08-97486 | Apr 1996 | JP |
H08-511348 | Nov 1996 | JP |
09-166612 | Jun 1997 | JP |
10-332725 | Dec 1998 | JP |
11-064363 | Mar 1999 | JP |
11-74142 | Mar 1999 | JP |
2000-183241 | Jun 2000 | JP |
2001-043475 | Feb 2001 | JP |
2001-141738 | May 2001 | JP |
2001-165702 | Jun 2001 | JP |
2001-1659951 | Jun 2001 | JP |
2002-117500 | Apr 2002 | JP |
2002-149013 | May 2002 | JP |
2002-357920 | Dec 2002 | JP |
2003-177171 | Jun 2003 | JP |
2003-202365 | Jul 2003 | JP |
2004-055932 | Feb 2004 | JP |
2004-093381 | Mar 2004 | JP |
2004-152688 | May 2004 | JP |
2004-356338 | Dec 2004 | JP |
2004-357858 | Dec 2004 | JP |
2005-517928 | Jun 2005 | JP |
2005-337866 | Dec 2005 | JP |
2005-345302 | Dec 2005 | JP |
2006-003096 | Jan 2006 | JP |
2006-3116 | Jan 2006 | JP |
2006-275764 | Oct 2006 | JP |
2007-012582 | Jan 2007 | JP |
2007-218799 | Aug 2007 | JP |
2008-180550 | Aug 2008 | JP |
2008-264569 | Nov 2008 | JP |
2008-286667 | Nov 2008 | JP |
2009-002911 | Jan 2009 | JP |
2009-222524 | Oct 2009 | JP |
2009-250725 | Oct 2009 | JP |
2009-250931 | Oct 2009 | JP |
2010-537207 | Dec 2010 | JP |
2011086479 | Apr 2011 | JP |
4880874 | Dec 2011 | JP |
2012-501446 | Jan 2012 | JP |
2012-0040247 | Apr 2012 | KR |
WO 8809026 | Nov 1988 | WO |
WO 9312403 | Jun 1993 | WO |
WO 9408203 | Apr 1994 | WO |
WO 9429672 | Dec 1994 | WO |
WO 9518982 | Jul 1995 | WO |
WO 96 02849 | Feb 1996 | WO |
WO 9602849 | Feb 1996 | WO |
WO 9949322 | Sep 1999 | WO |
WO 200174139 | Oct 2001 | WO |
WO 200174139 | Oct 2001 | WO |
WO 2003069358 | Aug 2003 | WO |
WO 2003069358 | Aug 2003 | WO |
WO 2003107018 | Dec 2003 | WO |
WO 2004027436 | Apr 2004 | WO |
WO 2004072672 | Aug 2004 | WO |
WO 2005013363 | Feb 2005 | WO |
WO 2005013363 | Feb 2005 | WO |
WO 2006056829 | Jun 2006 | WO |
WO 2006083479 | Aug 2006 | WO |
WO2007095971 | Aug 2007 | WO |
WO 2007138508 | Dec 2007 | WO |
WO 2008008140 | Jan 2008 | WO |
WO 2008008140 | Jan 2008 | WO |
WO 2008048379 | Apr 2008 | WO |
WO 2008121443 | Oct 2008 | WO |
WO 2008145662 | Dec 2008 | WO |
WO 2009108422 | Sep 2009 | WO |
WO 2009108422 | Sep 2009 | WO |
WO 2010014309 | Feb 2010 | WO |
WO 2010027658 | Mar 2010 | WO |
WO 2010065315 | Jun 2010 | WO |
WO 2010096367 | Aug 2010 | WO |
WO 2011011479 | Jan 2011 | WO |
WO 2012148646 | Nov 2012 | WO |
WO 2013169455 | Nov 2013 | WO |
WO2015058733 | Apr 2015 | WO |
Entry |
---|
Voluntary Amendment with English Calims dated Nov. 7, 2016 for Korean App. No. 10-2016-7004178; 15 Pages. |
European Response filed on Aug. 24, 2016 to the official communication dated Feb. 23, 2016; for European Pat. App. No. 14742423.8; 17 pages. |
Voluntary Amendment dated Nov. 2, 2016 with English claims for Chinese Application No. 201480040243.6; 13 pages. |
European Extended Search Report dated Dec. 22, 2016; for European Pat. App. No. 16193227.2; 11 pages. |
Japanese Voluntary Amendment with English Claims dated Dec. 12, 2016; for Japanese Pat. App. No. 2016-528006; 7 pages. |
Response filed on Jan. 19, 2017 to Final Office Action dated Oct. 20, 2016; for U.S. Appl. No. 13/946,400;; 13 Pages. |
Japanese Office Action (with English Translation) dated Jan. 13, 2017 for Japanese Application No. 2015-511491; 11 Pages. |
U.S. Final Office Action dated Feb. 10, 2017 for U.S. Appl. No. 13/468,478; 27 Pages. |
U.S. Advisory Action dated Feb. 16, 2017 for U.S. Appl. No. 13/946,400; 4 Pages. |
Response to U.S. Final Office Action dated Oct. 20, 2016 (w/RCE) for U.S. Appl. No. 13/946,400; Response filed on Feb. 23, 2017; 17 Pages. |
Applicant-Initiated Interview Summary dated Mar. 10, 2017 for U.S. Appl. No. 13/946,400; 2 pages. |
U.S. Non-Final Office Action dated Apr. 6, 2017 for U.S. Appl. No. 13/946,400; 36 Pages. |
Response (with Amended Claims in English) to Japanese Office Action dated Feb. 13, 2017 for Japanese Application No. 2015-511491; Response filed on Apr. 11, 2017; 9 Pages. |
Response to U.S. Final Office Action dated Feb. 10, 2017 for U.S. Appl. No. 13/468,478; Response filed on May 3, 2017; 9 Pages. |
Notice of Allowance dated May 15, 2017 for U.S. Appl. No. 13/468,478; 15 Pages. |
Request for Continued Examination for U.S. Appl. No. 13/468,478, filed Jun. 5, 2017; 3 Pages. |
Japanese Office Action (with English Translation) dated May 18, 2017 for Japanese Application No. 2015-511491; 8 Pages. |
Response to Office Action filed on Jun. 30, 2017 for U.S. Appl. No. 13/946,400; 12 Pages. |
Japanese Office Action (with English Translation) dated May 18, 2017 for Japanese Application No. 2015-511491; 5 Pages. |
PCT International Search Report and Written Opinion dated Jul. 20, 2017 for PCT Appl. No. PCT/US2017/033530; 15 pages. |
PCT International Search Report and Written Opinion dated Jul. 20, 2017 for PCT/US2017/033526; 17 pages. |
Japanese Office Action with English translation dated May 18, 2017 for Japanese Application No. 2015-511491, 5 pages. |
Final Office Action dated Oct. 20, 2016 for U.S. Appl. No. 13/946,400; 20 pages. |
Korean Office Action (with English Translation) dated Dec. 20, 2017 corresponding to Korean Appl. No. 10-2014-7032857; 14 Pages. |
U.S. Non-Final Office Action dated Jan. 9, 2018 corresponding to U.S. Appl. No. 15/709,739; 12 Pages. |
U.S. Appl. No. 15/709,739, filed Sep. 20, 2017, Pepka et al. |
Response to Official Communication dated Mar. 13, 2017 for European Application No. 16193227.2; Response filed Oct. 2, 2017; 7 pages. |
U.S. Final Office Action dated Oct. 5, 2017 for U.S. Appl. No. 13/946,400; 39 pages. |
Response to U.S. Final Office Action dated Oct. 5, 2017 for U.S. Appl. No. 13/946,400; Response filed on Feb. 27, 2018; 14 Pages. |
Japanese Petition (with Machine English Translation) filed Jan. 24, 2018 for Japanese Application No. 2015-511491; 10 Pages. |
Response (with English Translation) to Korean Notice of Reasons for Refusal dated Dec. 20, 2017 for Korean Application No. 10-2014-7032857; Response filed Feb. 14, 2018; 47 Pages. |
Chinese Office Action (w/English Translation) dated Feb. 1, 2018 for Chinese Application No. 201480040243.6; 26 Pages. |
Ahn et al., “A New Toroidal-Meander Type Integrated Inductor With a Multilevel Meander Magnetic Core”, IEEE Transactions on Magnetics, vol. 30, No. 1, Jan. 1994, pp. 73-79. |
Allegro “Two-Wire True Zero Speed Miniature Differential Peak-Detecting Gear Tooth Sensor;” ATS645LSH; 2004; Allegro MicroSystems, Inc., Worcester, MA 01615; pp. 1-14. |
Allegro Microsystems, Inc. Data Sheet A1341; “High Precision, Highly Programmable Linear Hall Effect Sensor IC with EEPROM, Output Protocols SENT and PWM, and Advanced Output Linearization Capabilities;” May 17, 2010; 46 pages. |
Allegro Microsystems, Inc. Data Sheet ATS601LSG; “Non-TPOS, Tooth Detecting Speed Sensor;” Nov. 1, 2011; 9 pages. |
Allegro Microsystems, Inc., “Gear-Tooth Sensor for Automotive Applications,” Aug. 3, 2001. |
Allegro MicroSystems, Inc., Hall-Effect IC Applications Guide, http://www.allegromicro.com/en/Products/Design/an/an27701.pdf, Copyright 1987, 1997, pp. 1-36. |
Alllegro “True Zero-Speed Low-Jitter High Accuracy Gear Tooth Sensor;” ATS625LSG; 2005; Allegro MicroSystems, Inc. Worcester, MA 01615; pp. 1-21. |
Ausserlechner et al.; “Compensation of the Piezo-Hall Effect in Integrated Hall Sensors on (100)-Si;” IEEE Sensors Journal, vol. 7, No. 11; Nov. 2007; ISBN: 1530-437X; pp. 1475-1482. |
Ausserlechner et al.; “Drift of Magnetic Sensitivity of Small Hall Sensors Due to Moisture Absorbed by the IC-Package;” Proceedings of IEEE Sensors, 2004; vol. 1; Oct. 24, 2004; ISBN:0-7803-8692-2; pp. 455-458. |
Ausserlechner; “Limits of Offset Cancellation by the Principle of Spinning Current Hall Probe;” Proceedings of IEEE Sensors; Oct. 2004; pp. 1117-1120. |
Ausserlechner; “The piezo-Hall effect in n-silicon for arbitrary crystal orientation;” Proceedings of IEEE Sensors; vol. 3; Oct. 24, 2004; ISBN: 0-7803-8692-2; pp. 1149-1152. |
Bahreyni, et al.; “A Resonant Micromachined Magnetic Field Sensor;” IEEE Sensors Journal; vol. 7, No. 9, Sep. 2007; pp. 1326-1334. |
Barrettino, et al.; “CMOS-Based Monolithic Controllers for Smart Sensors Comprising Micromembranes and Microcantilevers;” IEEE Transactions on Circuits and Systems-I Regular Papers vol. 54, No. 1; Jan. 2007; pp. 141-152. |
Baschirotto et al.; “Development and Analysis of PCB Vector 2-D Magnetic Field Sensor System for Electronic Compass;” IEEE Sensors Journal vol. 6, No. 2; Apr. 2006; pp. 365-371. |
Bilotti et al.; “Monolithic Magnetic Hall Sensor Using Dynamic Quadrature Offset Cancellation;” IEEE Journal of Solid-State Circuits; vol. 32, Issue 6; Jun. 1997; pp. 829-836. |
Bowers et al., “Microfabrication and Process Integration of Powder-Based Permanent Magnets”, Interdisciplinary Microsystems Group, Dept. Electrical and Computer Engineering, University of Florida, USA; Technologies for Future Micro-Nano Manufacturing Workshop, Napa, California, Aug. 8-10, 2011, pp. 162-165. |
Demierre, et al.; “Reference Magnetic Actuator for Self-Calibration of a Very Small Hall Sensor Array;” Sensors and Actuators A97-98; Apr. 2002; pp. 39-46. |
Dwyer, “Back-Biased Packaging Advances (SE, SG & SH versus SA & SB),” http://www.allegromicro.com/en/Products/Design/packaging_advances/index.asp, Copyright 2008, pp. 1-5. |
Frick, et al.; “CMOS Microsystem for AC Current Measurement with Galvanic Isolation;” IEEE Sensors Journal; vol. 3, No. 6; Dec. 2003; pp. 752-760. |
Halg; “Piezo-Hall Coefficients of n-Type Silicon;” Journal of Applied Physics; vol. 64, No. 1; Jul. 1, 1988; pp. 276-282. |
Honeywell International, Inc., “Hall Effect Sensing and Application,” Micro Switch Sensing and Control, Chapter 3, http://content.honeywell.com/sensing/prodinfo/solidstate/technical/hallbook.pdf, date unavailable but believed to be before Jan. 2008, pp. 9-18. |
Hosticka; “CMOS Sensor Systems;” Sensors and Actuators A66; Apr. 1998; pp. 335-341. |
Infineon Product Brief, TLE 4941plusC, Differential Hall IC for Wheel Speed Sensing, Oct. 2010, www.infineon.com/sensors, 2 pages. |
Infineon Technologies; “Differential Two-Wire Hall Effect Sensor IC;” TLE4942 Preliminary Data Sheet; Jun. 2000; pp. 1-13. |
Johnson et al., “Hybrid Hall Effect Device,” Appl. Phys. Lett., vol. 71, No. 7, Aug. 1997, pp. 974-976. |
Kanda et al.; “The Piezo-Hall Effect in n-Silicon;” 22nd International Conference on the Physics of Semiconductors; vol. 1, Jan. 1995; pp. 89-92. |
Krammerer et al.: “A Hall effect sensors network insensitive to mechanical stress;” Proceedings of IEEE Sensors; vol. 3, Oct. 2004; pp. 1071-1074. |
Lagorce et al.; “Magnetic and Mechanical Properties of Micromachined Strontium Ferrite/Polyimide Composites;” Journal of Microelectromechanical Systems; vol. 6, No. 4; Dec. 1997; pp. 307-312. |
Lequesne et al.; “High-Accuracy Magnetic Position Encoder Concept;” IEEE Transactions on Industry Applications; vol. 35, No. 3; May/Jun. 1999; pp. 568-576. |
Magnani et al.; “Mechanical Stress Measurement Electronics Based on Piezo-Resistive and Piezo-Hall Effects;” 9th International Conference on Electronics, Circuits and Systems 2002; vol. 1; SBN: 0-7803-7596-3; Dec. 2002; pp. 363-366. |
Manic et al.; “Short and Long-Term Stability Problems of Hall Plates in Plastic Packages;” IEEE 38th Annual International Reliability Physics Symposium; Apr. 2000; pp. 225-230. |
Manic; “Drift in Silicon Integrated Sensors and Circuits Due to the Thermo-Mechanical Stresses;” Lausanne, École Polytechnique Fédérale De Lausanne 2000; Part 1 of 2; 74 pages. |
Manic; “Drift in Silicon Integrated Sensors and Circuits Due to the Thermo-Mechanical Stresses;” Lausanne, École Polytechnique Fédérale De Lausanne 2000; Part 2 of 2; 102 pages. |
Melexis Microelectronic Systems, Hall Applications Guide, Section 3—Applications,1997 (48 pages). |
Motz et al.; “An Integrated Magnetic Sensor with Two Continuous-Time ΔΣ-Converters and Stress Compensation Capability;” IEEE International Solid-State Circuits Conference; Digest of Technical Papers; Feb. 6, 2006; ISBN: 1-4244-0079-1; pp. 1151-1160. |
Motz, et al.; “A Chopped Hall Sensor with Small Jitter and Programmable “True Power-On” Function;” IEEE Journal of Solid-State Circuits; vol. 40, No. 7; Jul. 2005; pp. 1533-1540. |
Motz, et al.; “An Integrated Hall Sensor Platform Design for Position, Angle and Current Sensing;” IEEE Sensors 2006; Exco, Daegu, Korea / Oct. 22-25, 2006; pp. 1008-1011. |
Munter; “A Low-offset Spinning-current Hall Plate;” Sensors and Actuators A21-A23; 1990; pp. 742-746. |
Munter; “Electronic Circuitry for a Smart Spinning-current Hall Plate with Low Offset;” Sensors and Actuators A; Jun. 1991;.pp. 747-751. |
Oniku et al., “High-Energy-Density Permanent Micromagnets Formed From Heterogeneous Magnetic Powder Mixtures”, Interdisciplinary Microsystems Group, Dept. of Electrical and Computer Engineering, University of Florida, Gainesville, FL 32611, USA; Preprint of MEMS 2012 Conf. Paper, 4 pages. |
Park et al.: “Batch-Fabricated Microinductors with Electroplated Magnetically Anisotropic and Laminated Alloy Cores”, IEEE Transactions on Magnetics, vol. 35, No. 5, Sep. 1999, 10 pages. |
Park et al.; “Ferrite-Based Integrated Planar Inductors and Transformers Fabricated at Low Temperature;” IEEE Transactions on Magnetics; vol. 33, No. 5; Sep. 1997; pp. 3322-3324. |
Partin et al.; “Temperature Stable Hall Effect Sensors;” IEEE Sensors Journal, vol. 6, No. 1; Feb. 2006; pp. 106-110. |
Pastre, et al.; “A Hall Sensor Analog Front End for Current Measurement with Continuous Gain Calibration;” IEEE Sensors Journal; vol. 7, No. 5; May 2007; pp. 860-867. |
Pastre, et al.; “A Hall Sensor-Based Current Measurement Microsystem With Continuous Gain Calibration;” Research in Microelectronics and Electronics, IEEE vol. 2; Jul. 25, 2005; ISBN: 0-7803-9345-7; pp. 95-98. |
Popovic; “Sensor Microsystems;” Proc. 20th International Conference on Microelectronics (MWIL 95); vol. 2, NIS, Serbia, Sep. 12-14, 1995; pp. 531-537. |
Randhawa; “Monolithic Integrated Hall Devices in Silicon Circuits;” Microelectronics Journal; vol. 12, No. 6; Sep. 14-17, 1981; pp. 24-29. |
Robert Bosch GMBH Stuttgart; “Active Sensor for ABS/ASR/VDC-Systems with 2-Wire-Current Interface;” Specification TLE4941/TLE4942; Version 5; Jun. 25, 2000; 44 pages. |
Ruther et al.; “Integrated CMOS-Based Sensor Array for Mechanical Stress Mapping;” 5th IEEE Conference on Sensors, Oct. 2007; pp. 1131-1134. |
Ruther et al.; “Thermomagnetic Residual Offset in Integrated Hall Plates;” IEEE Sensors Journal; vol. 3, No. 6; Dec. 2003; pp. 693-699. |
Sargent; “Switched-capacitor IC controls feedback loop;” EDN; Design Ideas; Feb. 17, 2000; pp. 154 and 156. |
Schneider; “Temperature Calibration of CMOS Magnetic Vector Probe for Contactless Angle Measurement System,” IEDM 1996 pp. 533-536. |
Schott et al.; “Linearizing Integrated Hall Devices;” 1997 International Conference on Solid-State Sensors and Actuators, Jun. 16-19, 1997; pp. 393-396. |
Schott, et al.; “CMOS Single-Chip Electronic Compass with Microcontroller;” IEEE Journal of Solid-State Circuits; vol. 42, No. 12; Dec. 2007; pp. 2923-2933. |
Simon et al.; “Autocalibration of Silicon Hall Devices;” 8th International Conference on Solid-State Sensors and Actuators; vol. 2; Jun. 25, 1995; pp. 237-240. |
Smith et al.; “Low Magnetic Field Sensing with GMR Sensors;” Sensor Magazine; Part 1; Sep. 1999; http://archives.sensormag.com/articles/0999/76mail.shtm; pp. 1-8. |
Smith et al.; “Low Magnetic Field Sensing with GMR Sensors;” Sensor Magazine; Part 2; Oct. 1999; http://archives.sensormag.com/articles/1099/84/mail.shtml; pp. 1-11. |
Steiner et al.; “Double-Hall Sensor with Self-Compensated Offset;” International Electron Devices Meeting; Dec. 7, 1997; ISBN: 0-7803-4100-7; pp. 911-914. |
Steiner et al; Offset Reduction in Hall Devices by Continuous Spinning Current Method; Sensors and Actuators A66; 1998; pp. 167-172. |
Stellrecht et al.; Characterization of Hygroscopic Swelling Behavior of Mold Compounds and Plastic Packages; IEEE Transactions on Components and Packaging Technologies; vol. 27, No. 3; Sep. 2004; pp. 499-506. |
Tian et al.; “Multiple Sensors on Pulsed Eddy-Current Detection for 3-D Subsurface Crack Assessment;” IEEE Sensors Journal, vol. 5, No. 1; Feb. 2005; pp. 90-96. |
Trontelj et al; “CMOS Integrated Magnetic Field Source Used as a Reference in Magnetic Field Sensors on Common Substrate;” WEP 1-6; IMTC; May 1994; pp. 461-463. |
Wu, et al.; “A Chopper Current-Feedback Instrumentation Amplifier with a 1mHz 1/f Noise Corner and an AC-Coupled Ripple-Reduction Loop;” IEEE International Solid-State Circuits Conference; Feb. 10, 2009; pp. 322-324. |
Zou et al.; “Three-Dimensional Die Surface Stress Measurements in Delaminated and Non-Delaminated Plastic Packages;” 48th Electronic Components and Technology Conference; May 25, 1998; pp. 1223-1234. |
U.S. Appl. No. 12/840,324, filed Jul. 21, 2010, Cesaretti et al. |
U.S. Appl. No. 12/959,672, filed Dec. 3, 2010, Doogue et al. |
U.S. Appl. No. 12/968,353, filed Dec. 15, 2010, Donovan et al. |
U.S. Appl. No. 13/095,371, filed Apr. 27, 2011, Cesaretti et al. |
U.S. Appl. No. 13/350,970, filed Jan. 16, 2012, Milano et al. |
U.S. Appl. No. 13/398,127, filed Feb. 16, 2012, Cesaeretti et al. |
U.S. Appl. No. 13/424,618, filed Mar. 20, 2012, Doogue et al. |
U.S. Appl. No. 13/526,106, filed Jun. 18, 2012, Vig et al. |
U.S. Appl. No. 15/176,688, filed Jun. 8, 2016, David et al. |
Daughton J: “Spin-dependent sensors”, Proceedings of the IEEE New York, US, vol. 91. No. 5 May 1, 2003; 6 pages. |
Donovan et al.; “Systems and Methods for Synchronizing Sensor Data;” U.S. Appl. No. 12/968,353, filed Dec. 15, 2010; 37 pages. |
Kapser et al; “Integrated GMR Based Wheel Speed Sensor for Automotive Applications;” IEEE 2007 Conference on Sensors; Oct. 27, 2007; pp. 848-851. |
Udo; “Limits of Offset Cancellation by the Principle of Spinning Current Hall Probe;” Proceedings of IEEE Sensors; Oct. 2004; pp. 1117-1120. |
Amendment and RCE dated Sep. 9, 2015; for U.S. Appl. No. 13/946,400; 9 pages. |
Decision to Grant dated Oct. 27, 2016; For European Pat. App. No. 13722619.7; 2 pages. |
European Response filed on Aug. 24, 2016 to Official Communication dated Feb. 23, 2016; For European Pat. App. No. 14742423.8; 17 pages. |
Final Office Action dated Jun. 9, 2015; for U.S. Appl. No. 13/946,400; 17 pages. |
Final Office Action dated Jul. 17, 2014; for U.S. Appl. No. 13/486,478; 13 pages. |
Final Office Action dated Sep. 16, 2015; for U.S. Appl. No. 13/468,478; 19 pages. |
Final Office Action dated Oct. 20, 2016; for U.S. Appl. No. 13/946,400; 34 pages. |
Office Action dated Jan. 15, 2014; for U.S. Appl. No. 13/468,478; 36 pages. |
Office Action dated Jan. 5, 2015; for U.S. Appl. No. 13/946,400; 56 pages. |
Office Action dated Feb. 12, 2015; for U.S. Appl. No. 13/468,478; 14 pages. |
Office Action dated Nov. 19, 2015; for U.S. Appl. No. 13/946,400; 24 pages. |
Office Action dated May 10, 2016; for U.S. Appl. No. 13/468,478; 20 Pages. |
Request for Continued Examination dated Jan. 19, 2015; For U.S. Appl. No. 13/468,478; 3 pages. |
Request for Continued Examination dated Sep. 9, 2015; For U.S. Appl. No. 13/946,400; 2 pages. |
Request for Continued Examination filed Jan. 14, 2016, For U.S. Appl. No. 13/468,478, 3 pages. |
Response dated Jun. 12, 2014 to Office Action dated Jan. 15, 2014; For U.S. Appl. No. 13/468,478; 11 pages. |
Response dated Jan. 19, 2015 to Final Office Action dated Jul. 17, 2014; For U.S. Appl. No. 13/468,478; 12 pages. |
Response dated Apr. 3, 2015 to Office Action dated Jan. 5, 2015; for U.S. Appl. No. 13/946,400; 13 pages. |
Response filed Jun. 16, 2015; to Office Action dated Feb. 12, 2015; for U.S. Appl. No. 13/468,478; 11 pages. |
Response dated Jan. 14, 2016 to Final Office Action dated Sep. 16, 2015; For U.S. Appl. No. 13/468,478, 15 pages. |
Response dated Feb. 17, 2016 to Non-Final Office Action dated Nov. 19, 2015; For U.S. Appl. No. 13/946,400; 11 pages. |
Response dated Oct. 3, 2016 to Office Action dated May 10, 2016 for U.S. Appl. No. 13/468,478; 17 pages. |
Rule 56 letter; for U.S. Appl. No. 13/946,400; 2 pages. |
European Communication under Rule 71(3) EPC, Intention to Grant dated Jun. 2, 2016 corresponding to European Application No. 13722619.7; 7 Pages. |
European Response dated May 21, 2015 to Written Opinion; for European Pat. App. No. 13722619.7, 15 pages. |
Voluntary Amendment with English Claims dated Nov. 7, 2016 for Korean Pat. App. No. 10-2016-7004178; 15 pages. |
Voluntary Amendment dated Nov. 2, 2016 with English claims for Chinese App. No. 201480040243.6; 13 pages. |
Voluntary Amendment dated Dec. 28, 2016 with English claims; For Japanese Pat. App. No. 2016-528006; 8 pages. |
Extended Search Report dated Dec. 22, 2016; For European Pat. App. No. 16193227.2-1586; 11 pages. |
International Search Report and Written Opinion of the ISA dated Jul. 17, 2013; For PCT Pat. App. No. PCT/US2013/037065; 9 pages. |
PCT International Preliminary Report on Patentability and Written Opinion of the ISA dated Nov. 20, 2014; For PCT Pat. App. No. PCT/US2013/037065; 11 pages. |
International Search Report and Written Opinion dated Nov. 3, 2014 for Int'l PCT Application PCT/US2014/044993; 13 pages. |
PCT International Preliminary Report on Patentability dated Jan. 28, 2016; For PCT Pat. App. No. PCT/US2014/044993; 9 pages. |
Response to Japanese Office Action (with English claims) dated Oct. 3, 2017 for Japanese Application No. 2016-528006; Response filed Dec. 26, 2017; 8 Pages. |
Response to U.S. Final Office Action dated Oct. 5, 2017 for U.S. Appl. No. 13/946,400; Response filed Jan. 5, 2018; 11 Pages. |
Appeal Brief dated Sep. 19, 2017 from Japanese Application No. 2015-511491 with English translations; 14 Pages. |
Pre-Trial Report dated Nov. 2, 2017 from Japanese Application No. 2015-511491 with English translations and Claims on File; 7 Pages. |
Korean Office Action with English Translation dated Nov. 22, 2017 for Korean Application No. 10-2016-7004178; 17 Pages. |
Non-final Office Action dated Dec. 15, 2017 for U.S. Appl. No. 15/176,688; 27 pages. |
Korean Response (with English Language Summary) dated Jan. 19, 2018 for Korean Application No. 10-2016-7004178; 25 Pages. |
Response to U.S. Office Action dated Dec. 15, 2017 for U.S. Appl. No. 15/176,668; Response filed on Feb. 9, 2018; 13 Pages. |
Notice of Allowance dated Apr. 4, 2018 for U.S. Appl. No. 13/946,400; 11 pages. |
Number | Date | Country | |
---|---|---|---|
20170356759 A1 | Dec 2017 | US |