This disclosure relates to magnetic field sensors and, more particularly, to magnetic field sensors with error calculation.
Magnetic field sensors are often used to detect a ferromagnetic target. They often act as sensors to detect motion or position of the target. Such sensors are ubiquitous in many areas of technology including robotics, automotive, manufacturing, etc. For example, a magnetic field sensor may be used to detect when a vehicle's wheel locks up, triggering the vehicle's control processor to engage the anti-lock braking system. In this example, the magnetic field sensor may detect rotation of the wheel. Magnetic field sensor may also detect distance to an object. For example, a magnetic field sensor may be used to detect the position of a hydraulic piston.
No magnetic field sensor is perfectly precise. Every magnetic field sensor that detects the position of a target includes at least some error. In some systems, the error may be a nonlinear error that is a function of the position of the target. Compensating for an error that is a function of the position of the target may pose challenges if the target is used as a reference and/or if the position of the target is unknown when attempting to measure and calculate the error.
In an embodiment, a system includes at least one coil configured to generate a first magnetic field having a first frequency that induces a first reflected magnetic field in a conductive target during a first time period, wherein the first reflected magnetic field has a first magnetic field strength. The coil may be configured to generate a second magnetic field having a second frequency that induces a second reflected magnetic field in a conductive target during a second time period, wherein the second reflected magnetic field has a second magnetic field strength that is different than the first magnetic field strength.
At least one first magnetic field sensing element may be configured to detect the first magnetic field and the first reflected magnetic field during the first time period and to detect the second magnetic field and the second reflected magnetic field during the second time period.
At least one second magnetic field sensing element may be configured to detect the first magnetic field and the first reflected magnetic field during the first time period and to detect the second magnetic field and the second reflected magnetic field during the second time period.
A processing circuit may be coupled to receive a respective output signal from the at least one first and at least one second magnet field sensing elements and calculate an error value of the system.
One or more of the following features may be included.
The second frequency may be substantially zero and the second reflected magnetic field strength may be substantially zero.
The first magnetic field may comprise a first frequency that induces eddy currents in the conductive target that generate the first reflected field.
The error value may be based on measurements taken during the first time period and the processing circuit may be configured to apply the error value to measurements taken during the second time period.
The at least one first magnetic field sensing elements may be placed so that its axis of maximum sensitivity is aligned the first magnetic field.
In another embodiment, a system includes: at least one coil configured to generate a first magnetic field having a first non-zero frequency and generate a second magnetic field having a second frequency; a conductive target positioned to generate a reflected magnetic field in response to the first magnetic field; one or more magnetic field sensing elements configured to produce a first signal representing detection of the first magnetic field and the reflected magnetic field produce a second signal representing detection of the second magnetic field.
One or more of the following features may be included.
A processing circuit may receive the first and second signals and calculate an error value of the system as a function of the first and second signals.
The calculated error value may be independent of a position of the conductive target.
The first magnetic field may have a frequency sufficiently high to induce an eddy current in the conductive target.
The reflected magnetic field may be produced by the eddy current.
The second frequency may be substantially low so that it does not induce a reflected field from the conductive target.
The second frequency may be substantially zero.
The first magnetic field may be generated during a first time period and the second magnetic field may be generated during a second time period.
A processing circuit may calculate an error value based on measurements taken during the second time period and apply the error value to measurements taken during the first time period.
The first and second time periods may be non-overlapping time periods.
In another embodiment, a method comprises: generating a first magnetic field having a first, non-zero frequency; generating a second magnetic field having a second frequency; inducing, by the first magnetic field, a reflected magnetic field from a conductive target; producing a first signal, by one or more magnetic field sensing elements, representing the first magnetic field and the reflected magnetic field; and producing a second signal, by the one or more magnetic field sensing elements, representing the second magnetic field.
One or more of the following features may be included.
An error value may be calculated as a function of the first and second signals.
The calculated error value may be independent of a position of the conductive target.
The first magnetic field may have a frequency sufficiently high to induce an eddy current in the conductive target, wherein the reflected magnetic field is produced by the eddy current.
The second frequency may be substantially low so that the second magnetic field does not induce a reflected magnetic field from the conductive target.
The second frequency may be substantially zero.
Generating the first magnetic field may comprise generating the first magnetic field during a first time period, and generating the second magnetic field may comprise generating the second magnetic field during a second time period, wherein the first and second time periods do not overlap.
The first and second time periods may be non-overlapping time periods.
The first signal may be generated during the first time period; the second signal may be generated during the second time period; An error value may be calculated based on the first signal measured during the first time period; and the error value may be applied to the second signal during the second time period.
In another embodiment, a system comprises a first magnetic field sensing element; a second magnetic field sensing element; means for generating a first magnetic field having a first non-zero frequency; means for generating a second magnetic field having a second frequency; a conductive target positioned to generate a reflected magnetic field in response to the first magnetic field; means for producing a first signal representing the first magnetic field and the reflected magnetic field during a first alternating time period; means for producing a second signal representing the second magnetic field during a second alternating time period; means for calculating an error value as a function of the first and second signals, wherein the error value is based, at least in part, on the second signal during the first time period; and means for applying the error value to the first signal during the first alternating time period.
The foregoing features may be more fully understood from the following description of the drawings. The drawings aid in explaining and understanding the disclosed technology. Since it is often impractical or impossible to illustrate and describe every possible embodiment, the provided figures depict one or more exemplary embodiments. Accordingly, the figures are not intended to limit the scope of the invention. Like numbers in the figures denote like elements.
As used herein, the term “magnetic field sensing element” is used to describe a variety of electronic elements that can sense a magnetic field. The magnetic field sensing element can be, but is not limited to, a Hall Effect element, a magnetoresistance element, or a magnetotransistor. As is known, there are different types of Hall Effect elements, for example, a planar Hall element, a vertical Hall element, and a Circular Vertical Hall (CVH) element. As is also known, there are different types of magnetoresistance (MR) elements, for example, a semiconductor magnetoresistance element such as Indium Antimonide (InSb), a giant magnetoresistance (GMR) element, an anisotropic magnetoresistance element (AMR), a tunneling magnetoresistance (TMR) element, and a magnetic tunnel junction (MTJ). The magnetic field sensing element may be a single element or, alternatively, may include two or more magnetic field sensing elements arranged in various configurations, e.g., a half bridge or full (Wheatstone) bridge. Depending on the device type and other application requirements, the magnetic field sensing element may be a device made of a type IV semiconductor material such as Silicon (Si) or Germanium (Ge), or a type III-V semiconductor material like Gallium-Arsenide (GaAs) or an Indium compound, e.g., Indium-Antimonide (InSb).
As is known, some of the above-described magnetic field sensing elements tend to have an axis of maximum sensitivity parallel to a substrate that supports the magnetic field sensing element, and others of the above-described magnetic field sensing elements tend to have an axis of maximum sensitivity perpendicular to a substrate that supports the magnetic field sensing element. In particular, planar Hall elements tend to have axes of sensitivity perpendicular to a substrate, while metal based or metallic magnetoresistance elements (e.g., GMR, TMR, AMR) and vertical Hall elements tend to have axes of sensitivity parallel to a substrate.
As used herein, the term “magnetic field sensor” is used to describe a circuit that uses a magnetic field sensing element, generally in combination with other circuits. Magnetic field sensors are used in a variety of applications, including, but not limited to, an angle sensor that senses an angle of a direction of a magnetic field, a current sensor that senses a magnetic field generated by a current carried by a current-carrying conductor, a magnetic switch that senses the proximity of a ferromagnetic object, a rotation detector that senses passing ferromagnetic articles, for example, magnetic domains of a ring magnet or a ferromagnetic target (e.g., gear teeth) where the magnetic field sensor is used in combination with a back-biased or other magnet, and a magnetic field sensor that senses a magnetic field density of a magnetic field.
As used herein, the terms “target” and “magnetic target” are used to describe an object to be sensed or detected by a magnetic field sensor or magnetic field sensing element.
Target 101 may comprise a conductive material, such as a metal, that allows the magnetic fields produced by coils 104 and 106 to induce eddy currents in target 101.
Although not shown, an MR driver circuit may provide current to MR element 108 and coil driver circuit 110 may provide current to coils 104 and 106.
Coil 104 and 106 may be arranged so that the current flows through coils 104 and 106 in opposite directions, as shown by arrow 109 (indicating a clockwise current in coil 104) and arrow 110 (indicating a counterclockwise current in coil 106). As a result, coil 104 may produce a magnetic field having a magnetic moment in the negative Z direction (i.e. down, in
In an embodiment, MR element 108 may be positioned between coils 104 and 106. In this arrangement, absent any other magnetic fields aside from those produced by coils 104 and 106, the net magnetic field at MR element 108 may be zero. For example, the negative Z component of the magnetic field produced by coil 104 may be canceled out by the positive Z component of the magnetic field produced by coil 106, and the negative X component of the magnetic field shown above substrate 102 may be canceled out by the positive X component of the magnetic field shown below substrate 102. In other embodiments, additional coils may be added to substrate 102 and arranged so that the net magnetic field at MR element 108 is substantially nil.
To achieve a substantially zero magnetic field at the location of MR element 108, coil 104 and coil 106 may be placed so that current through the coils flows in circular patterns substantially in the same plane. For example, the current through coil 104 and 106 is flowing in circular patterns through the coils. As shown, those circular patterns are substantially coplanar with each other, and with the top surface 116 of substrate 102.
A coil driver (not shown in
In operation, as target 101 moves toward and away from MR element 108 (i.e. in the positive and negative Z direction), magnetic field 111 will cause eddy currents to flow within target 101. These eddy currents will create their own magnetic fields, which will produce a non-zero magnetic field in the plane of the MR element 108, which non-zero magnetic field can be sensed to detect the motion or position of target 101.
Referring to
Alternating magnetic field 111 may produce eddy currents 140 and 142 within magnetic target 101. Eddy currents 140 and 142 may be opposite in direction to the current flowing through coils 104 and 106, respectively. As shown, eddy current 148 flows out of the page and eddy current 140 flows into the page, while coil current 151 flows into the page and current 152 flows out of the page. Also, as shown, the direction of eddy current 142 is opposite the direction of the current through coil 106.
Eddy currents 140 and 142 generate a reflected magnetic field 154 that has a direction opposite to magnetic field 111. As noted above, MR element 108 detects a net magnetic field of zero due to magnetic field 111. However, MR element 108 will detect a non-zero magnetic field in the presence of reflected magnetic field 154. As illustrated by magnetic field line 156, the value of reflected magnetic field 154 is non-zero at MR element 108.
As target 101 moves closer to coils 104 and 106, magnetic field 111 may produce stronger eddy currents in target 101. As a result, the strength of reflected magnetic field 154 may change. Magnetic field 111′ (in the right-hand panel of
Also, eddy currents 140′ and 142′ generally occur on or near the surface of target 101. Magnetic field strength diminishes as a function of radius—i.e. as a function of distance from the source of the magnetic field. Therefore, as target 101 moves closer to MR element 108, MR element 108 may experience a stronger magnetic field from the eddy currents because the source of the magnetic field is closer to MR element 108.
Although shown as a single coil, coil 302 may comprise one or more coils. In embodiments, coil 302 may be the same as or similar to coil 104 and/or coil 106 described above. Similarly, MR element 306 may comprise one or more MR elements and may be the same as or similar to MR element 108 described above.
Coil driver 304 may provide a power signal that drives current through coil 302, thus causing coil 302 to generate a magnetic field. MR driver 308 may provide power to MR elements 306, allowing them to detect magnetic fields.
MR element 306 may be responsive to a sensing element drive signal (e.g. the signal produced by MR driver 308) and may be configured to detect a directly-coupled magnetic field generated by coil 302. MR element 306 may produce signal 312, representing the detected magnetic field. MR element 306 may also be configured to detect a reflected magnetic field produced by eddy currents within a target, such as target 101.
As shown, AC driver 310 is coupled to coil driver 304. In this embodiment, coil driver 304 may produce a low-frequency signal to drive coil 302. The frequency may be low enough so that the magnetic field produced by coil 302 does not induce eddy currents and a reflected field from target 101. In some embodiments, the frequency is zero (i.e. a “DC” frequency).
Coil 302 may produce a DC (or substantially low frequency AC) magnetic field that can be detected by MR element 306, but which does not produce eddy currents in the target. The signal produced by detection of the DC (or substantially low frequency AC) magnetic field may be used to adjust sensitivity of the magnetic field sensor.
Coil 302 may also produce an AC magnetic field at higher frequencies that induces eddy currents in the target, which produce a reflected magnetic field at those higher frequencies that can be detected by MR element 306. Coil 302 may alternate between producing the low frequency magnetic field and the high frequency magnetic field.
MR element 306 may produce signal 312, which may include frequency components at DC or substantially low AC frequency (e.g. a “directly coupled” signal or signal component) representing the lower frequency magnetic field that does not cause eddy currents in the target, and/or frequency components at the higher AC frequency (e.g. a “reflected” signal or signal component) that represent the detected reflected field. In embodiments, the directly coupled signals may be used to adjust sensitivity of the sensor while the reflected signals may be used to detect the target. Coil driver 304 and/or MR driver 308 may use the directly coupled signals as a sensitivity signal adjust their respective output drive signals in response to the sensitivity signal.
In embodiments, the directly coupled signal and the reflected signal may be included as frequency components of the same signal. In this case, coil 302 may be driven to produce both frequency components at the same time. In other embodiments, generation of the directly coupled signal and the reflected signals may be generated at different times, for example using a time-division multiplexing scheme.
Sensor 300 may also include a demodulator circuit 350 that can modulate signal 316 to remove the AC component from the signal or shift the AC component within the signal to a different frequency. For example, demodulator circuit 350 may modulate signal 316 at frequency f. As known in the art, because signal 316 includes signal components at frequency f representing the detected magnetic field, modulating signal 316 at frequency f may shift the signal elements representing the detected magnetic field to 0 Hz or DC. Other frequency components within signal 316 may be shifted to higher frequencies so they can be removed by low-pass filter 318. In embodiments, the DC or low frequency component of signal 316, which may represent a sensitivity value, can be fed back to coil driver 304 to adjust the output of coil 302 in response to the signal, and/or to MR driver 308 to adjust drive signal 309 in response to the sensitivity value. DC output signal 352 may represent proximity of the target to MR element 306.
In other embodiments, a time-division multiplexing scheme may be used. For example, coil driver 304 may drive coil 302 at a first frequency during a first time period, at a second frequency during a second time period, etc. In some instances, the first and second (and subsequent) time periods do not overlap. In other instances, the first and second time periods may overlap. In these instances, coil driver 304 may drive coil 302 at two or more frequencies simultaneously. When the first and second time periods do not overlap, demodulator 350 may operate at the same frequency as the coil driver 304. When the time periods overlap, multiple modulators can be used, the first running at the first frequency, and the second running at the second frequency to separate out the signals at each frequency.
While it can be advantageous to reduce the directly coupled magnetic field that the MR element 306 detects to achieve an accurate read of the reflected field (and thus the detected target), it may also be advantageous to have some amount of direct coupling (i.e., to directly detect the magnetic field produced by coil 302) to permit a sensitivity value to be computed. The simultaneous measure of both the field reflected by the target and the field directly generated by the coil allows accurate detection of the distance of the object independent of the sensitivity of the MR elements, coil drive current, etc. The sensitivity of MR elements may vary with temperature and/or with the presence of unwanted DC or AC stray fields in the plane of the MR array. The ratio between the reflected field and the directly coupled field is just dependent on geometrical design and is hence a good parameter to accurately determine a distance.
In embodiments, a frequency hopping scheme may be used. For example, coil driver 304 may drive coil 302 at different frequencies (e.g. alternate between frequencies over time, or produce a signal containing multiple frequencies). In such embodiments, sensor 300 may include multiple demodulator circuits and/or filters to detect a signal at each frequency.
Additional examples of magnetic field sensors that use a coil and reflected field may be found in U.S. Patent Application entitled COIL ACTUATED POSITION SENSOR WITH REFLECTED MAGNETIC FIELD, which lists Mr. A. Latham as an inventor, is commonly owned with this application, was filed on the same day as this application, was assigned U.S. application Ser. No. 15/606,358, and which is incorporated here by reference in its entirety.
Magnetic field sensing elements 406 and 408 may be MR elements, Hall effect elements, or other types of magnetic field sensing element. In embodiments, magnetic field sensing elements 406 and 408 shown in
Magnetic field sensing elements 406 and 408 may detect a directly coupled magnetic field (i.e. they may directly detect the magnetic field produced by coil 402), and may detect a reflected field produced by eddy currents in the conductive target (e.g. target 101 in
Referring to
Coil 452 may include traces 454A, 454B, 456A, and 456B, and countercoil portions 454 and 456. The countercoil portions 454 and 456 may produce a local magnetic field around MR elements that reduces the response of MR elements 1-8 to the reflected magnetic field and increases the response of MR elements 108 to the directly coupled field. The local magnetic field produced by countercoil portions 454 and 456 may have a direction opposite to that of the magnetic field produced by traces 454A, 454B, 456A, and 456B.
In
The differential output of the bridge comprising MR elements 1-4 may be defined as the voltage at the series connection node between MR elements 1 and 4 less the voltage at the series connection node between MR elements 2 and 3, and the differential output of the bridge comprising MR elements 5-8 may be defined as the voltage at the series connection node between MR elements 5 and 8 less the voltage at the series connection node between MR elements 6 and 7. Considering the case where there is no reflected field, the directly coupled field experienced by MR elements 1 and 4 may be opposed to the directly coupled field experienced by MR elements 2 and 3. In other words, the MR elements may be positioned so that the resistance of MR elements 1 and 3 may increase and the resistance of MR elements 2 and 4 may decrease as they experience a stronger directly coupled magnetic field. Also, MR elements may be positioned so the resistance of MR elements 5 and 7 may increase and the resistance of MR elements 6 and 8 may decrease as they experience a stronger directly coupled magnetic field.
Considering now the situation where a target and reflected field are present, despite the countercoils 454 and 456, the MR elements 1-8 may experience the reflected field as a uniform field that is common to both bridges. Thus, the reflected field may cause the differential output of the bridge comprising MR elements 1-4 to shift in the same direction as the differential output of the bridge comprising MR elements 5-8. This, the reflected field component can be distinguished from the directly coupled field component of the outputs of the MR bridges by summing or subtracting the differential outputs of the MR bridges.
Referring again to
In embodiments, coil driver 402 may drive coil 402 at one frequency (F1) during a first time period and at another frequency (F2) during a second time period. Thus, modulators 420 and 422 may be configured to multiply the signals from the MR elements by frequency F1 during the first time period and by frequency F2 during the second time period. Modulators 420 and 422 may shift the signal to DC by multiplying the signals by the same frequency that drives coil 402.
Magnetic field sensor 400 may also include an MR driver 410 which may provide power to magnetic field sensing elements. MR driver may apply or remove power from either magnetic field sensing element 406 or 408 during alternating time periods. For example, magnetic field sensing element 406 may be active and magnetic field sensing element 408 may be inactive during one time period. During a second time period, magnetic field sensing element 408 may be active and magnetic field sensing element 406 inactive. Alternatively, MR driver may provide power to or remove power from both magnetic field sensing elements 406 and 408 at the same time.
Magnetic field sensor 400 may also include processing circuitry to calculate an error value of the magnetic field sensor. Summation circuit 428 may produce a sum of signal V1 and signal V2. Subtraction circuit 430 may calculate the value V1-V2. Division circuit 432 may divide the signal from summation circuit 428 by the signal from subtraction circuit 430 to produce output signal 434, which may represent the value of (V1+V2)/(V1−V2). Recall that V1 may be a digital representation of signal 412 produced by magnetic field sensing element 406 and signal V2 may be a digital representation of signal 414 produced by magnetic field sensing element 408.
Sampling circuits 436 and 438 may selectively couple the output of summation circuit 428 and subtraction circuit 430 to the inputs of division circuit 432, respectively. For example, in an embodiment, the signal (V1+V2) from summation circuit 428 may be sampled during the first time period and the signal (V1−V2) from subtraction circuit 430 may be sampled during the second time period. Accordingly, division circuit may divide the (V1−V2) factor sampled during the first time period by the (V1+V2) factor sampled during the second time period to produce signal 434.
During operation, magnetic field sensor 400 may alternate states during a first time period and a second time period. During the first time period, coil driver 404 may drive coil 402 with current having a frequency F1. The magnetic field produced by coil 402 may induce eddy currents and a reflected magnetic field at frequency F1. Magnetic field sensing elements 406 and 408 may detect the directly coupled field from coil 402 and the reflected field from the target during the first time period. As noted above, magnetic field sensing elements may be arranged so that magnetic field sensing elements 406 and 408 detect the directly coupled field with opposite sign, and detect the reflected magnetic field with the same sign.
During the first time period, sampling circuit 436 may allow the signal (V1+V2) to pass to division circuit 432, while sampling circuit 438 does not pass the signal (V1−V2) to division circuit 432.
During the second time period, coil driver 404 may drive coil 402 with current having a frequency F2. The magnetic field produced by coil 402 may induce eddy currents and a reflected magnetic field at frequency F2. Magnetic field sensing elements 406 and 408 may detect the directly coupled field from coil 402 and the reflected field from the target during the first time period. In some embodiments, frequency F2 is low enough so that it does not induce significant eddy currents or a reflected magnetic field that can be detected by magnetic field sensing elements 406 and 408. In such an embodiment, magnetic field sensing elements 406 and 408 may detect only the directly coupled field during the second time period.
During the second time period, sampling circuit 438 may allow the signal (V1−V2) to pass to division circuit 432, while sampling circuit 436 does not pass the signal (V1+V2) to division circuit 432.
After the samples taken during the first and second time periods are available, division circuit 432 may calculate output signal 434, representing (V1+V2)/(V1−V2), where (V1+V2) was sampled during the first time period and (V1-V2) was sampled during the second time period. In embodiments where frequency F2 does not induce a reflected magnetic field during the second time period, the term (V1+V2) may represent the directly coupled and reflected magnetic fields, while the term (V1−V2) may represent only the directly coupled magnetic field.
In embodiments, signal 434 may be used to determine an error of magnetic field of magnetic field sensor 400, e.g. a mismatch error between the magnetic field sensing elements. The error may also be based on noise, interference, external magnetic fields, etc. In some cases, for example when magnetic field sensing elements 406 and 408 are detecting a reflected magnetic field from the target, the magnetic field sensor's error may be a function of the position or distance of the target from magnetic field sensing elements 406 and 408, and the frequency and strength of the reflected magnetic field. For example, the portion of the error due to the reflected field (the “reflected field error”) may be a non-linear error. By measuring the directly coupled and reflected field at two frequencies, as described above, magnetic field sensor 400 may compensate for the error due to the reflected field.
In the case where the first frequency F1 and second frequency F2 are non-zero, magnetic field sensor 400 may compensate for the reflected field error by extrapolating or interpolating the magnetic field error using the two frequency points. The technique may also be used in the case where F1 is non-zero and F2 is zero, or low enough so that no reflected field is detectable by magnetic field sensors 406 and 408. In this case, the computations that determine the error value may be simplified because, at one of the frequency points, the reflected field strength is zero. For example, in the example above where F2 is zero, the error value (V1−V2) may not be dependent on the reflected field, and thus not dependent on the position of the target, because no reflected magnetic field is present when the error value (V1−V2) is measured.
In a typical system, V1 and V2 may be described by the following formulas:
where I is the current through coil 402, K1 and K2 are coupling factors of the magnetic field sensing elements 406 and 408, respectively, r(x) is a ration between the reflected field and the directly coupled field, and S is a sensitivity mismatch factor representing a mismatch in sensitivity between magnetic field sensing elements 406 and 408. Note that r(x) may be a function of the position of the target. The value q is a ratio between K1 and K2 such that K2=q*K1.
Additionally, the position of the target PN can be described with the following formula:
Substituting V1 and V2, the formula for PN may be rearranged as:
Formula 4 may be rewritten as:
PN=off+G*r(x) (5)
where:
If we assume that q=−1 (corresponding to magnetic field sensing elements 406 and 408 detecting the directly coupled magnetic field with opposite signs described above), then formula 4 may be simplified to:
As an example, if r(x) is 0.5 and SM=0.01 (representing a 1% mismatch between magnetic field sensing elements), formula 8 gives us:
This indicates that, in this example, a 1% mismatch between magnetic field sensing elements correlates to a 0.7% error in the position. Moreover, this error may be a function of the position of the target, as shown in formula 4 above. However, time multiplexing and changing the frequency of the magnetic field during operation and calibration can reduce the error in position.
Referring now to
During calibration mode, the error value (V1−V2) may be calculated, as described above. Because (V1−V2) is calculated during calibration mode, the term (V1−V2) may not include measurements of the reflected magnetic field and may not include errors due to position of the target.
During normal mode, the term (V1+V2) may be calculated, as described above. Because (V1+V2) is calculated during normal mode, the term (V1+V2) may include measurements of the reflected magnetic field and thus may include errors due to position of the target.
In embodiments, magnetic field sensor 400 may alternate operation between calibration mode and normal mode. In other embodiments, because the measurements taken during calibration mode do not depend on the reflected field, magnetic field sensor 400 may operate in calibration mode less frequently than in normal mode. In some embodiments, calibration mode may only be performed once during startup and the term (V1−V2) may be stored and reused during calculation of the system error. In other words:
[V1−V2]T1=[V1−V2]T2 (10)
Where T1 corresponds to the normal mode and T2 corresponds to calibration mode. Using formulas 5 and 10, we can derive:
The terms off and G′ are both independent of r(x), and thus independent of error due to position of the target. Thus, the target position PN may be calculated without the inclusion of the nonlinearity error due to target position.
Referring now to
Referring to
In
Having described preferred embodiments, which serve to illustrate various concepts, structures and techniques, which are the subject of this patent, it will now become apparent to those of ordinary skill in the art that other embodiments incorporating these concepts, structures and techniques may be used. Accordingly, it is submitted that that scope of the patent should not be limited to the described embodiments but rather should be limited only by the spirit and scope of the following claims. All references cited herein are hereby incorporated herein by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
3132337 | Martin | May 1964 | A |
3195043 | Burig et al. | Jul 1965 | A |
3281628 | Bauer et al. | Oct 1966 | A |
3607528 | Gassaway | Sep 1971 | A |
3611138 | Winebrener | Oct 1971 | A |
3661061 | Tokarz | May 1972 | A |
3728786 | Lucas et al. | Apr 1973 | A |
4048670 | Eysermans | Sep 1977 | A |
4180753 | Cook, II | Dec 1979 | A |
4188605 | Stout | Feb 1980 | A |
4204317 | Winn | May 1980 | A |
4236832 | Komatsu et al. | Dec 1980 | A |
4283643 | Levin | Aug 1981 | A |
4315523 | Mahawili et al. | Feb 1982 | A |
4438347 | Gehring | Mar 1984 | A |
4573258 | Io et al. | Mar 1986 | A |
4614111 | Wolff | Sep 1986 | A |
4649796 | Schmidt | Mar 1987 | A |
4670715 | Fuzzell | Jun 1987 | A |
4703378 | Imakoshi et al. | Oct 1987 | A |
4719419 | Dawley | Jan 1988 | A |
4733455 | Nakamura et al. | Mar 1988 | A |
4745363 | Carr et al. | May 1988 | A |
4746859 | Malik | May 1988 | A |
4752733 | Petr et al. | Jun 1988 | A |
4758943 | Aström et al. | Jul 1988 | A |
4760285 | Nelson | Jul 1988 | A |
4764767 | Ichikawa et al. | Aug 1988 | A |
4769344 | Sakai et al. | Sep 1988 | A |
4772929 | Manchester | Sep 1988 | A |
4789826 | Willett | Dec 1988 | A |
4796354 | Yokoyama et al. | Jan 1989 | A |
4823075 | Alley | Apr 1989 | A |
4833406 | Foster | May 1989 | A |
4893027 | Kammerer et al. | Jan 1990 | A |
4908685 | Shibasaki et al. | Mar 1990 | A |
4910861 | Dohogne | Mar 1990 | A |
4935698 | Kawaji et al. | Jun 1990 | A |
4944028 | Iijima et al. | Jul 1990 | A |
4954777 | Klopfer et al. | Sep 1990 | A |
4970411 | Halg et al. | Nov 1990 | A |
4983916 | Iijima et al. | Jan 1991 | A |
4991447 | Yahagi et al. | Feb 1991 | A |
5012322 | Guillotte et al. | Apr 1991 | A |
5021493 | Sandstrom | Jun 1991 | A |
5028868 | Murata et al. | Jul 1991 | A |
5045920 | Vig et al. | Sep 1991 | A |
5078944 | Yoshino | Jan 1992 | A |
5084289 | Shin et al. | Jan 1992 | A |
5121289 | Gagliardi | Jun 1992 | A |
5137677 | Murata | Aug 1992 | A |
5139973 | Nagy et al. | Aug 1992 | A |
5167896 | Hirota et al. | Dec 1992 | A |
5185919 | Hickey | Feb 1993 | A |
5196794 | Murata | Mar 1993 | A |
5200698 | Thibaud | Apr 1993 | A |
5210493 | Schroeder et al. | May 1993 | A |
5216405 | Schroeder et al. | Jun 1993 | A |
5244834 | Suzuki et al. | Sep 1993 | A |
5247202 | Popovic et al. | Sep 1993 | A |
5247278 | Pant et al. | Sep 1993 | A |
5250925 | Shinkle | Oct 1993 | A |
5286426 | Rano, Jr. et al. | Feb 1994 | A |
5289344 | Gagnon et al. | Feb 1994 | A |
5315245 | Schroeder et al. | May 1994 | A |
5329416 | Ushiyama et al. | Jul 1994 | A |
5332956 | Oh | Jul 1994 | A |
5332965 | Wolf et al. | Jul 1994 | A |
5351028 | Krahn | Sep 1994 | A |
5399968 | Sheppard et al. | Mar 1995 | A |
5412255 | Wallrafen | May 1995 | A |
5414355 | Davidson et al. | May 1995 | A |
5424558 | Borden et al. | Jun 1995 | A |
5432444 | Yasohama et al. | Jul 1995 | A |
5434105 | Liou | Jul 1995 | A |
5453727 | Shibasaki et al. | Sep 1995 | A |
5469058 | Dunnam | Nov 1995 | A |
5479695 | Grader et al. | Jan 1996 | A |
5486759 | Seiler et al. | Jan 1996 | A |
5488294 | Liddell et al. | Jan 1996 | A |
5491633 | Henry et al. | Feb 1996 | A |
5497081 | Wolf et al. | Mar 1996 | A |
5500589 | Sumcad | Mar 1996 | A |
5500994 | Itaya | Mar 1996 | A |
5508611 | Schroeder et al. | Apr 1996 | A |
5514953 | Schultz et al. | May 1996 | A |
5521501 | Dettmann et al. | May 1996 | A |
5545983 | Okeya et al. | Aug 1996 | A |
5551146 | Kawabata et al. | Sep 1996 | A |
5581170 | Mammano et al. | Dec 1996 | A |
5581179 | Engel et al. | Dec 1996 | A |
5596272 | Busch | Jan 1997 | A |
5621319 | Bilotti et al. | Apr 1997 | A |
5627315 | Figi et al. | May 1997 | A |
5631557 | Davidson | May 1997 | A |
5640090 | Furuya et al. | Jun 1997 | A |
5691637 | Oswald et al. | Nov 1997 | A |
5696790 | Graham et al. | Dec 1997 | A |
5712562 | Berg | Jan 1998 | A |
5714102 | Highum et al. | Feb 1998 | A |
5719496 | Wolf | Feb 1998 | A |
5729128 | Bunyer et al. | Mar 1998 | A |
5757181 | Wolf et al. | May 1998 | A |
5781005 | Vig et al. | Jul 1998 | A |
5789658 | Henn et al. | Aug 1998 | A |
5789915 | Ingraham | Aug 1998 | A |
5796249 | Andräet et al. | Aug 1998 | A |
5798462 | Briefer et al. | Aug 1998 | A |
5818222 | Ramsden | Oct 1998 | A |
5818223 | Wolf | Oct 1998 | A |
5839185 | Smith et al. | Nov 1998 | A |
5841276 | Makino et al. | Nov 1998 | A |
5859387 | Gagnon | Jan 1999 | A |
5883567 | Mullins, Jr. | Mar 1999 | A |
5886070 | Honkura et al. | Mar 1999 | A |
5896030 | Hasken | Apr 1999 | A |
5912556 | Frazee et al. | Jun 1999 | A |
5963028 | Engel et al. | Oct 1999 | A |
6011770 | Tan | Jan 2000 | A |
6016055 | Jager et al. | Jan 2000 | A |
6032536 | Peeters et al. | Mar 2000 | A |
6043644 | de Coulon et al. | Mar 2000 | A |
6043646 | Jansseune | Mar 2000 | A |
6064198 | Wolf et al. | May 2000 | A |
6136250 | Brown | Oct 2000 | A |
6169396 | Yokotani et al. | Jan 2001 | B1 |
6175232 | De Coulon et al. | Jan 2001 | B1 |
6175233 | McCurley et al. | Jan 2001 | B1 |
6180041 | Takizawa | Jan 2001 | B1 |
6184679 | Popovic et al. | Feb 2001 | B1 |
6198373 | Ogawa et al. | Mar 2001 | B1 |
6242604 | Hudlicky et al. | Jun 2001 | B1 |
6242904 | Shirai et al. | Jun 2001 | B1 |
6242905 | Draxelmayr | Jun 2001 | B1 |
6265865 | Engel et al. | Jul 2001 | B1 |
6278269 | Vig et al. | Aug 2001 | B1 |
6297627 | Towne et al. | Oct 2001 | B1 |
6339322 | Loreck et al. | Jan 2002 | B1 |
6351506 | Lewicki | Feb 2002 | B1 |
6356068 | Steiner et al. | Mar 2002 | B1 |
6366079 | Uenoyama | Apr 2002 | B1 |
6392478 | Mulder et al. | May 2002 | B1 |
6429640 | Daughton et al. | Aug 2002 | B1 |
6436748 | Forbes et al. | Aug 2002 | B1 |
6437558 | Li et al. | Aug 2002 | B2 |
6452381 | Nakatani et al. | Sep 2002 | B1 |
6462536 | Mednikov et al. | Oct 2002 | B1 |
6492804 | Tsuge et al. | Dec 2002 | B2 |
6501270 | Opie | Dec 2002 | B1 |
6504363 | Dogaru et al. | Jan 2003 | B1 |
6525531 | Forrest et al. | Feb 2003 | B2 |
6528992 | Shinjo et al. | Mar 2003 | B2 |
6542847 | Lohberg et al. | Apr 2003 | B1 |
6545332 | Huang | Apr 2003 | B2 |
6545457 | Goto et al. | Apr 2003 | B2 |
6545462 | Schott et al. | Apr 2003 | B2 |
6566862 | Goto et al. | May 2003 | B1 |
6566872 | Sugitani | May 2003 | B1 |
6640451 | Vinarcik | Nov 2003 | B1 |
6653968 | Schneider | Nov 2003 | B1 |
6674679 | Perner et al. | Jan 2004 | B1 |
6687644 | Zinke et al. | Feb 2004 | B1 |
6692676 | Vig et al. | Feb 2004 | B1 |
6707298 | Suzuki et al. | Mar 2004 | B2 |
6759843 | Furlong | Jul 2004 | B2 |
6770163 | Kuah et al. | Aug 2004 | B1 |
6781233 | Zverev et al. | Aug 2004 | B2 |
6781359 | Stauth et al. | Aug 2004 | B2 |
6798193 | Zimmerman et al. | Sep 2004 | B2 |
6815944 | Vig et al. | Nov 2004 | B2 |
6822443 | Dogaru | Nov 2004 | B1 |
6853178 | Hayat-Dawoodi | Feb 2005 | B2 |
6896407 | Nomiyama et al. | May 2005 | B2 |
6902951 | Goller et al. | Jun 2005 | B2 |
6917321 | Haurie et al. | Jul 2005 | B1 |
6956366 | Butzmann | Oct 2005 | B2 |
7023205 | Krupp | Apr 2006 | B1 |
7026808 | Vig et al. | Apr 2006 | B2 |
7031170 | Daeche et al. | Apr 2006 | B2 |
7038448 | Schott et al. | May 2006 | B2 |
7049924 | Hayashi et al. | May 2006 | B2 |
7112955 | Buchhold | Sep 2006 | B2 |
7112957 | Bicking | Sep 2006 | B2 |
7126327 | Busch | Oct 2006 | B1 |
7132825 | Martin | Nov 2006 | B2 |
7190784 | Li | Mar 2007 | B2 |
7193412 | Freeman | Mar 2007 | B2 |
7199579 | Scheller et al. | Apr 2007 | B2 |
7259545 | Stauth et al. | Aug 2007 | B2 |
7265531 | Stauth et al. | Sep 2007 | B2 |
7269992 | Lamb et al. | Sep 2007 | B2 |
7285952 | Hatanaka et al. | Oct 2007 | B1 |
7292095 | Burt et al. | Nov 2007 | B2 |
7295000 | Werth | Nov 2007 | B2 |
7319319 | Jones et al. | Jan 2008 | B2 |
7323780 | Daubenspeck et al. | Jan 2008 | B2 |
7323870 | Tatschl et al. | Jan 2008 | B2 |
7325175 | Momtaz | Jan 2008 | B2 |
7345468 | Okada et al. | Mar 2008 | B2 |
7355388 | Ishio | Apr 2008 | B2 |
7361531 | Sharma et al. | Apr 2008 | B2 |
7362094 | Voisine et al. | Apr 2008 | B2 |
7365530 | Bailey et al. | Apr 2008 | B2 |
7385394 | Auburger et al. | Jun 2008 | B2 |
7425821 | Monreal et al. | Sep 2008 | B2 |
7474093 | Ausserlechner | Jan 2009 | B2 |
7476953 | Taylor et al. | Jan 2009 | B2 |
7518354 | Stauth et al. | Apr 2009 | B2 |
7592801 | Bailey et al. | Sep 2009 | B2 |
7598601 | Taylor et al. | Oct 2009 | B2 |
7605647 | Romero et al. | Oct 2009 | B1 |
7635993 | Boeve | Dec 2009 | B2 |
7694200 | Forrest et al. | Apr 2010 | B2 |
7701208 | Nishikawa | Apr 2010 | B2 |
7705586 | Van Zon et al. | Apr 2010 | B2 |
7729675 | Krone | Jun 2010 | B2 |
7746056 | Stauth et al. | Jun 2010 | B2 |
7746065 | Pastre et al. | Jun 2010 | B2 |
7764118 | Kusuda et al. | Jul 2010 | B2 |
7768083 | Doogue et al. | Aug 2010 | B2 |
7769110 | Momtaz | Aug 2010 | B2 |
7800389 | Friedrich et al. | Sep 2010 | B2 |
7808074 | Knittl | Oct 2010 | B2 |
7816772 | Engel et al. | Oct 2010 | B2 |
7816905 | Doogue et al. | Oct 2010 | B2 |
7839141 | Werth et al. | Nov 2010 | B2 |
7923996 | Doogue et al. | Apr 2011 | B2 |
7936144 | Vig et al. | May 2011 | B2 |
7956604 | Ausserlechner | Jun 2011 | B2 |
7961823 | Kolze et al. | Jun 2011 | B2 |
7982454 | Fernandez et al. | Jul 2011 | B2 |
7990209 | Romero | Aug 2011 | B2 |
8030918 | Doogue et al. | Oct 2011 | B2 |
8058870 | Sterling | Nov 2011 | B2 |
8063631 | Fermon et al. | Nov 2011 | B2 |
8063634 | Sauber et al. | Nov 2011 | B2 |
8080993 | Theuss et al. | Dec 2011 | B2 |
8106649 | Kaita et al. | Jan 2012 | B2 |
8106654 | Theuss et al. | Jan 2012 | B2 |
8128549 | Testani et al. | Mar 2012 | B2 |
8134358 | Charlier et al. | Mar 2012 | B2 |
8143169 | Engel et al. | Mar 2012 | B2 |
8253210 | Theuss et al. | Aug 2012 | B2 |
8274279 | Gies | Sep 2012 | B2 |
8299783 | Fernandez et al. | Oct 2012 | B2 |
8362579 | Theuss et al. | Jan 2013 | B2 |
8447556 | Friedrich et al. | May 2013 | B2 |
8461677 | Ararao et al. | Jun 2013 | B2 |
8486755 | Ararao et al. | Jul 2013 | B2 |
8542010 | Cesaretti et al. | Sep 2013 | B2 |
8559139 | Theuss | Oct 2013 | B2 |
8577634 | Donovan et al. | Nov 2013 | B2 |
8610430 | Werth et al. | Dec 2013 | B2 |
8624588 | Vig et al. | Jan 2014 | B2 |
8629520 | Doogue et al. | Jan 2014 | B2 |
8629539 | Milano et al. | Jan 2014 | B2 |
8680846 | Cesaretti et al. | Mar 2014 | B2 |
8680848 | Foletto et al. | Mar 2014 | B2 |
8754640 | Vig et al. | Jun 2014 | B2 |
8773124 | Ausserlechner | Jul 2014 | B2 |
9081041 | Friedrich et al. | Jul 2015 | B2 |
9116018 | Frachon | Aug 2015 | B2 |
9164156 | Elian et al. | Oct 2015 | B2 |
9201122 | Cesaretti et al. | Dec 2015 | B2 |
9201123 | Elian et al. | Dec 2015 | B2 |
9228860 | Sharma et al. | Jan 2016 | B2 |
9411025 | David et al. | Aug 2016 | B2 |
9664494 | Fernandez et al. | May 2017 | B2 |
20010002791 | Tsuge et al. | Jun 2001 | A1 |
20010009367 | Seitzer et al. | Jul 2001 | A1 |
20010026153 | Nakamura et al. | Oct 2001 | A1 |
20020027488 | Hayat-Dawoodi et al. | Mar 2002 | A1 |
20020084923 | Li | Jul 2002 | A1 |
20020097639 | Ishizaki et al. | Jul 2002 | A1 |
20030001563 | Turner | Jan 2003 | A1 |
20030038675 | Gailus et al. | Feb 2003 | A1 |
20030062891 | Slates | Apr 2003 | A1 |
20030102909 | Motz | Jun 2003 | A1 |
20030222642 | Butzmann | Dec 2003 | A1 |
20030227286 | Dunisch et al. | Dec 2003 | A1 |
20040032251 | Zimmerman et al. | Feb 2004 | A1 |
20040046248 | Waelti et al. | Mar 2004 | A1 |
20040062362 | Matsuya | Apr 2004 | A1 |
20040080314 | Tsujii et al. | Apr 2004 | A1 |
20040135220 | Goto | Jul 2004 | A1 |
20040174164 | Ao | Sep 2004 | A1 |
20040184196 | Jayasekara | Sep 2004 | A1 |
20040189285 | Uenoyama | Sep 2004 | A1 |
20040196045 | Larsen | Oct 2004 | A1 |
20040263014 | Miya | Dec 2004 | A1 |
20050017709 | Stolfus et al. | Jan 2005 | A1 |
20050120782 | Kishibata et al. | Jun 2005 | A1 |
20050122095 | Dooley | Jun 2005 | A1 |
20050122099 | Imamoto et al. | Jun 2005 | A1 |
20050140355 | Yamada et al. | Jun 2005 | A1 |
20050167790 | Khor et al. | Aug 2005 | A1 |
20050179429 | Lohberg | Aug 2005 | A1 |
20050225318 | Bailey et al. | Oct 2005 | A1 |
20050280411 | Bicking | Dec 2005 | A1 |
20060033487 | Nagano et al. | Feb 2006 | A1 |
20060038559 | Lamb et al. | Feb 2006 | A1 |
20060038561 | Honkura et al. | Feb 2006 | A1 |
20060068237 | Murphy et al. | Mar 2006 | A1 |
20060097717 | Tokuhara et al. | May 2006 | A1 |
20060125473 | Frachon et al. | Jun 2006 | A1 |
20060181263 | Doogue et al. | Aug 2006 | A1 |
20060202692 | Tatschl et al. | Sep 2006 | A1 |
20060261801 | Busch | Nov 2006 | A1 |
20070110199 | Momtaz et al. | May 2007 | A1 |
20070170533 | Doogue et al. | Jul 2007 | A1 |
20070247141 | Pastre et al. | Oct 2007 | A1 |
20070285089 | Ibuki et al. | Dec 2007 | A1 |
20080013298 | Sharma et al. | Jan 2008 | A1 |
20080137784 | Krone | Jun 2008 | A1 |
20080211492 | Tsukada et al. | Sep 2008 | A1 |
20080237818 | Engel et al. | Oct 2008 | A1 |
20080238410 | Charlier et al. | Oct 2008 | A1 |
20080258722 | Zon et al. | Oct 2008 | A1 |
20080270067 | Eriksen et al. | Oct 2008 | A1 |
20090001964 | Strzalkowski | Jan 2009 | A1 |
20090009163 | Yamada | Jan 2009 | A1 |
20090058404 | Kurumado | Mar 2009 | A1 |
20090085706 | Baarman et al. | Apr 2009 | A1 |
20090102467 | Snell et al. | Apr 2009 | A1 |
20090137398 | Bozovic et al. | May 2009 | A1 |
20090140725 | Ausserlechner | Jun 2009 | A1 |
20090146647 | Ausserlechner | Jun 2009 | A1 |
20090152696 | Dimasacat et al. | Jun 2009 | A1 |
20090167298 | Kreutzbruck et al. | Jul 2009 | A1 |
20090167301 | Ausserlechner | Jul 2009 | A1 |
20090168286 | Berkley et al. | Jul 2009 | A1 |
20090206831 | Fermon et al. | Aug 2009 | A1 |
20090243601 | Feldtkeller | Oct 2009 | A1 |
20090251134 | Uenoyama | Oct 2009 | A1 |
20090256552 | Guo et al. | Oct 2009 | A1 |
20090315543 | Guo et al. | Dec 2009 | A1 |
20100033175 | Boeve et al. | Feb 2010 | A1 |
20100052667 | Kohama et al. | Mar 2010 | A1 |
20100053789 | Duric et al. | Mar 2010 | A1 |
20100072988 | Hammerschmidt et al. | Mar 2010 | A1 |
20100188078 | Foletto et al. | Jul 2010 | A1 |
20100201356 | Koller et al. | Aug 2010 | A1 |
20100207620 | Gies | Aug 2010 | A1 |
20100276769 | Theuss et al. | Nov 2010 | A1 |
20100295140 | Theuss et al. | Nov 2010 | A1 |
20100330708 | Engel et al. | Dec 2010 | A1 |
20110004278 | Aghassian et al. | Jan 2011 | A1 |
20110018533 | Cesaretti et al. | Jan 2011 | A1 |
20110031960 | Hohe et al. | Feb 2011 | A1 |
20110050220 | Bootle et al. | Mar 2011 | A1 |
20110127998 | Elian et al. | Jun 2011 | A1 |
20110187354 | Zieren et al. | Aug 2011 | A1 |
20110224537 | Brunner | Sep 2011 | A1 |
20110267040 | Frachon | Nov 2011 | A1 |
20110285384 | Nomura | Nov 2011 | A1 |
20120019236 | Tiernan et al. | Jan 2012 | A1 |
20120019239 | Decitre | Jan 2012 | A1 |
20120062215 | Ide et al. | Mar 2012 | A1 |
20120293167 | Kitanaka et al. | Nov 2012 | A1 |
20120303305 | Bergqvist et al. | Nov 2012 | A1 |
20130113474 | Elian | May 2013 | A1 |
20130147470 | Mulholland et al. | Jun 2013 | A1 |
20130207648 | Zibold et al. | Aug 2013 | A1 |
20130214777 | Itoi | Aug 2013 | A1 |
20130241543 | Stenson et al. | Sep 2013 | A1 |
20130249029 | Vig et al. | Sep 2013 | A1 |
20130249544 | Vig et al. | Sep 2013 | A1 |
20130278246 | Stegerer et al. | Oct 2013 | A1 |
20130300401 | Krapf et al. | Nov 2013 | A1 |
20130300402 | Liu et al. | Nov 2013 | A1 |
20130300406 | Pepka et al. | Nov 2013 | A1 |
20140184214 | Schäffer et al. | Jul 2014 | A1 |
20140327435 | Rohrer | Nov 2014 | A1 |
20140333295 | Fernandez | Nov 2014 | A1 |
20150022187 | Taylor et al. | Jan 2015 | A1 |
20150022193 | Burdette et al. | Jan 2015 | A1 |
20150022197 | David et al. | Jan 2015 | A1 |
20150022198 | David | Jan 2015 | A1 |
20150211895 | Reitsma et al. | Jul 2015 | A1 |
20150236869 | Vreeland et al. | Aug 2015 | A1 |
20150323612 | Latham | Nov 2015 | A1 |
20160069662 | Mullenix et al. | Mar 2016 | A1 |
20160123771 | David et al. | May 2016 | A1 |
20160123774 | Foletto et al. | May 2016 | A1 |
20160139230 | Petrie et al. | May 2016 | A1 |
Number | Date | Country |
---|---|---|
683 469 | Mar 1994 | CH |
102323554 | Jan 2012 | CN |
102483443 | May 2012 | CN |
102713654 | Oct 2012 | CN |
10 2011 102483 | Nov 2012 | CN |
102954808 | Mar 2013 | CN |
25 18 054 | Nov 1976 | DE |
40 31 560 | Apr 1992 | DE |
195 39 458 | Apr 1997 | DE |
196 34 715 | Mar 1998 | DE |
196 50 935 | Jun 1998 | DE |
198 38 433 | Mar 1999 | DE |
198 51 839 | Nov 1999 | DE |
199 61 504 | Jun 2001 | DE |
102 10 184 | Sep 2003 | DE |
103 14 602 | Oct 2004 | DE |
10 2006 037 226 | Feb 2008 | DE |
10 2007 018 238 | Oct 2008 | DE |
10 2007 041 230 | Apr 2009 | DE |
10 2010 016 584 | Nov 2010 | DE |
10 2011 102483 | Nov 2012 | DE |
0 289 414 | Nov 1988 | EP |
0 289 414 | Nov 1988 | EP |
0 357 013 | Mar 1990 | EP |
0 357 013 | Mar 1990 | EP |
0 361 456 | Apr 1990 | EP |
0 361 456 | Apr 1990 | EP |
0629834 | Dec 1994 | EP |
0 680 103 | Nov 1995 | EP |
0 898 180 | Feb 1999 | EP |
0 944 888 | Oct 2001 | EP |
1306687 | May 2003 | EP |
1 443 332 | Aug 2004 | EP |
1 580 560 | Sep 2005 | EP |
1 637 898 | Mar 2006 | EP |
1 662 353 | May 2006 | EP |
1 679 524 | Jul 2006 | EP |
1 850 143 | Oct 2007 | EP |
2 063 229 | May 2009 | EP |
1797496 16 | Jul 2009 | EP |
2402719 | Jan 2012 | EP |
2 685 273 | Jan 2014 | EP |
3 139 190 | Aug 2017 | EP |
2 748 105 | Oct 1997 | FR |
2 909 756 | Jun 2008 | FR |
2135060 | Aug 1984 | GB |
2276727 | Oct 1994 | GB |
2 481 482 | Dec 2011 | GB |
S5771504 | May 1982 | JP |
60-152950 | Aug 1985 | JP |
S60182503 | Sep 1985 | JP |
61-48777 | Mar 1986 | JP |
2009-250725 | Mar 1988 | JP |
S6367583 | Mar 1988 | JP |
363 084176 | Apr 1988 | JP |
63-263782 | Oct 1988 | JP |
63-300911 | Dec 1988 | JP |
H02-116753 | May 1990 | JP |
H03-29817 | Feb 1991 | JP |
H0335182 | Feb 1991 | JP |
H04-095817 | Mar 1992 | JP |
H06-273437 | Sep 1994 | JP |
08-097486 | Apr 1996 | JP |
H08-511348 | Nov 1996 | JP |
09-166612 | Jun 1997 | JP |
10-332725 | Dec 1998 | JP |
H10-318784 | Dec 1998 | JP |
11-064363 | Mar 1999 | JP |
11-074142 | Mar 1999 | JP |
2000-183241 | Jun 2000 | JP |
2001-043475 | Feb 2001 | JP |
2001-141738 | May 2001 | JP |
2001-165702 | Jun 2001 | JP |
2001-1659951 | Jun 2001 | JP |
2002-117500 | Apr 2002 | JP |
2002-149013 | May 2002 | JP |
2002-357920 | Dec 2002 | JP |
2003-177171 | Jun 2003 | JP |
2003-202365 | Jul 2003 | JP |
2003-287439 | Oct 2003 | JP |
2004-055932 | Feb 2004 | JP |
2004-093381 | Mar 2004 | JP |
2004-152688 | May 2004 | JP |
2004-356338 | Dec 2004 | JP |
2004-357858 | Dec 2004 | JP |
2005-517928 | Jun 2005 | JP |
2005-337866 | Dec 2005 | JP |
2005-345302 | Dec 2005 | JP |
2006-003096 | Jan 2006 | JP |
2006-3116 | Jan 2006 | JP |
2006-003116 | Jan 2006 | JP |
2006-275764 | Oct 2006 | JP |
2006-284466 | Oct 2006 | JP |
2007-012582 | Jan 2007 | JP |
2007-218799 | Aug 2007 | JP |
2007-240202 | Sep 2007 | JP |
2008-180550 | Aug 2008 | JP |
2008-264569 | Nov 2008 | JP |
2008-286667 | Nov 2008 | JP |
2009-002911 | Jan 2009 | JP |
2009-222524 | Oct 2009 | JP |
2009-250931 | Oct 2009 | JP |
2010-537207 | Dec 2010 | JP |
2011086479 | Apr 2011 | JP |
2012-501446 | Jan 2012 | JP |
2012-0040247 | Apr 2012 | KR |
2013 0019872 | Feb 2013 | KR |
WO 8809026 | Nov 1988 | WO |
WO 199312403 | Jun 1993 | WO |
WO 199408203 | Apr 1994 | WO |
WO 9429672 | Dec 1994 | WO |
WO 199518982 | Jul 1995 | WO |
WO 9602849 | Feb 1996 | WO |
WO 199949322 | Sep 1999 | WO |
WO 200140790 | Jun 2001 | WO |
WO 200174139 | Oct 2001 | WO |
WO 200174139 | Oct 2001 | WO |
WO 2003069358 | Aug 2003 | WO |
WO 2003069358 | Aug 2003 | WO |
WO 2003107018 | Dec 2003 | WO |
WO 2004027436 | Apr 2004 | WO |
WO 2004072672 | Aug 2004 | WO |
WO 2005013363 | Feb 2005 | WO |
WO 2005013363 | Feb 2005 | WO |
WO 2006035342 | Apr 2006 | WO |
WO 2006056829 | Jun 2006 | WO |
WO 2006083479 | Aug 2006 | WO |
WO 2007095971 | Aug 2007 | WO |
WO 2007138508 | Dec 2007 | WO |
WO 2008008140 | Jan 2008 | WO |
WO 2008008140 | Jan 2008 | WO |
WO 2008048379 | Apr 2008 | WO |
WO 2008121443 | Oct 2008 | WO |
WO 2008145662 | Dec 2008 | WO |
WO 2009108422 | Sep 2009 | WO |
WO 2009108422 | Sep 2009 | WO |
WO 2010014309 | Feb 2010 | WO |
WO 2010027658 | Mar 2010 | WO |
WO 2010065315 | Jun 2010 | WO |
WO 2010096367 | Aug 2010 | WO |
WO 2011011479 | Jan 2011 | WO |
WO 2012148646 | Nov 2012 | WO |
WO 2013169455 | Nov 2013 | WO |
WO 2014105302 | Jul 2014 | WO |
WO2015058733 | Apr 2015 | WO |
Entry |
---|
Response to Korean Office Action dated May 30, 2018 for Korean Application No. 10-2016-7004178; Response (with English claims) filed Jul. 19, 2018; 41 pages. |
Japanese Office Action (with English translation) dated Jun. 1, 2018 for Japanese Application No. 2016-528006; 7 pages. |
Response to U.S. Non-Final Office Action dated Jan. 9, 2018 for U.S. Appl. No. 15/709,739; Response filed Jun. 25, 2018; 11 pages. |
Korean Notice of Allowance (with English translation and allowed claims) dated Jun. 29, 2018 for Korean Application No. 10-2014-7032857; 8 pages. |
PCT International Search Report and Written Opinion of the ISA dated Aug. 10, 2018 for PCT/US2018/028816; 23 Pages. |
Response to Chinese Office Action dated Feb. 1, 2018 for Chinese Application No. 201480040243.6; Response filed Jun. 14, 2018; 11 pages. |
Japanese Office Action (with English Translation) dated May 16, 2018 for Japanese Application No. 2015-511491; 9 pages. |
Korean Office Action (with English Translation) dated May 30, 2018 for Korean Application No. 10-2016-7004178; 11 Pages. |
U.S. Appl. No. 15/709,739, filed Sep. 20, 2017, Pepka et al. |
Response to Official Communication dated Mar. 13, 2017 for European Application No. 16193227.2; 7 pages. |
U.S. Final Office Action dated Oct. 5, 2017 for U.S. Appl. No. 13/946,400; 39 pages. |
U.S. Appl. No. 15/606,332, filed May 26, 2017, Latham et al. |
U.S. Appl. No. 15/606,325, filed May 26, 2017, Romero. |
Japanese Office Action (with English Translation) dated Jan. 13, 2017 for Japanese Application No. 2015-511491; 14 Pages. |
Ahn et al.; “A New Toroidal-Meander Type Integrated Inductor with a Multilevel Meander Magnetic Core;” IEEE Transaction on Magnetics; vol. 30; No. 1; Jan. 1, 1994; 7 pages. |
Allegro “Two-Wire True Zero Speed Miniature Differential Peak-Detecting Gear Tooth Sensor;” ATS645LSH; 2004; Allegro MicroSystems, Inc., Worcester, MA 01615; 14 pages. |
Allegro Microsystems, Inc., “Gear-Tooth Sensor for Automotive Applications,” Aug. 3, 2001; 2 pages. |
Allegro MicroSystems, Inc., Hall-Effect IC Applications Guide, http://www.allegromicro.com/en/Products/Design/an/an27701.pdf, Copyright 1987, 1997; 36 pages. |
Alllegro “True Zero-Speed Low-Jitter High Accuracy Gear Tooth Sensor;” ATS625LSG; 2005; Allegro MicroSystems, Inc. Worcester, MA 01615; 21 pages. |
Amendment and RCE dated Jun. 9, 2015; for U.S. Appl. No. 13/946,400; 12 pages. |
Ausserlechner et al.; “Compensation of the Piezo-Hall Effect in Integrated Hall Sensors on (100)-Si;” IEEE Sensors Journal, vol. 7, No. 11; Nov. 2007; ISBN: 1530-437X; 8 pages. |
Ausserlechner et al.; “Drift of Magnetic Sensitivity of Small Hall Sensors Due to Moisture Absorbed by the IC-Package;” Proceedings of IEEE Sensors, 2004; vol. 1; Oct. 24, 2004; ISBN:0-7803-8692-2; 4 pages. |
Ausserlechner; “Limits of Offset Cancellation by the Principle of Spinning Current Hall Probe;” Proceedings of IEEE Sensors; Oct. 2004; 4 pages. |
Ausserlechner; “The piezo-Hall effect in n-silicon for arbitrary crystal orientation;” Proceedings of IEEE Sensors; vol. 3; Oct. 24, 2004; ISBN: 0-7803-8692-2; 4 pages. |
Bahreyni, et al.; “A Resonant Micromachined Magnetic Field Sensor;” IEEE Sensors Journal; vol. 7, No. 9, Sep. 2007; 9 pages. |
Barrettino, et al.; “CMOS-Based Monolithic Controllers for Smart Sensors Comprising Micromembranes and Microcantilevers;” IEEE Transactions on Circuits and Systems-I Regular Papers vol. 54, No. 1; Jan. 2007; 12 pages. |
Baschirotto et al.; “Development and Analysis of PCB Vector 2-D Magnetic Field Sensor System for Electronic Compass;” IEEE Sensors Journal vol. 6, No. 2; Apr. 2006; 7 pages. |
Bilotti et al.; “Monolithic Magnetic Hall Sensor Using Dynamic Quadrature Offset Cancellation;” IEEE Journal of Solid-State Circuits; vol. 32, Issue 6; Jun. 1997; 8 pages. |
Bowers et al., “Microfabrication and Process Integration of Powder-Based Permanent Magnets”, Interdisciplinary Microsystems Group, Dept. Electrical and Computer Engineering, University of Florida, USA; Technologies for Future Micro-Nano Manufacturing Workshop, Napa, California, Aug. 8-10; 4 pages. |
Communication Pursuant to Rule 161(1) and 162 EPC dated Feb. 23, 2016; for European Pat. App. No. 14742423.8; 2 pages. |
Communication Pursuant to Rules 161(1) and 162 dated Nov. 12, 2015 for European Application No. 14726492.3-1560; 2 pages. |
Daughton J: “Spin-dependent sensors”, Proceedings of the IEEE New York, US, vol. 91. No. 5 May 1, 2003; 6 pages. |
Decision to Grant dated Oct. 27, 2016; for European Pat. App. No. 13722619.7; 2 pages. |
Demierre, et al.; “Reference Magnetic Actuator for Self-Calibration of a Very Small Hall Sensor Array;” Sensors and Actuators A97-98; Apr. 2002; 8 pages. |
Dwyer, “Back-Biased Packaging Advances (SE, SG & SH versus SA & SB),” http://www.allegromicio.com/en/Products/Design/packaging_advances/index.asp, Copyright 2008; 5 pages. |
European Communication under Rule 71(3) EPC, Intention to Grant dated Jun. 2, 2016 corresponding to European Application No. 13722619.7; 26 Pages. |
European Extended Search Report dated Dec. 22, 2016; for European Pat. App. No. 16193227.2; 11 pages. |
European Response filed on Aug. 24, 2016 to the official communication dated Feb. 23, 2016; for European Pat. App. No. 14742423.8; 13 pages. |
European Response to Written Opinion filed on May 21, 2015; for European Pat. App. No. 13722619.7, 9 pages. |
Final Office Action dated Aug. 28, 2015; for U.S. Appl. No. 13,946,417; 30 pages. |
Final Office Action dated Jun. 9, 2015; for U.S. Appl. No. 13/946,400; 17 pages. |
Final Office Action dated Oct. 20, 2016 for U.S. Appl. No. 13/946,400; 34 pages. |
Final Office Action dated Oct. 6, 2016; for U.S. Appl. No. 13/946,417; 29 pages. |
Frick, et al.; “CMOS Microsystem for AC Current Measurement with Galvanic Isolation;” IEEE Sensors Journal; vol. 3, No. 6; Dec. 2003; 9 pages. |
Halg; “Piezo-Hall Coefficients of n-Type Silicon;” Journal of Applied Physics; vol. 64, No. 1; Jul. 1, 1988; 7 pages. |
Honeywell International, Inc., “Hall Effect Sensing and Application,” Micro Switch Sensing and Control, Chapter 3, http://content honeywell.com/sensing/prodinfo/solidstate/technical/hallbook.pdf, date unavailable but believed to be before Jan. 2008; 11 pages. |
Hosticka; “CMOS Sensor Systems;” Sensors and Actuators A66; Apr. 1998; 7 pages. |
Infineon Product Brief, TLE 4941plusC, Differential Hall IC for Wheel Speed Sensing, Oct. 2010, www.infineon.com/sensors, 2 pages. |
International Preliminary Report on Patentability dated Jan. 19, 2016 for Int'l PCT Application PCT/US2014/044993; 8 pages. |
International Search Report and Written Opinion dated Nov. 3, 2014 for Int'l PCT Application PCT/US2014/044993; 13 pages. |
International Search Report and Written Opinion dated Oct. 28, 2014 for Int'l PCT Application PCT/US2014/044991; 13 pages. |
Japanese Office Action (with English Translation) dated May 18, 2017 for Japanese Application No. 2015-511491; 8 Pages. |
Japanese Office Action dated Jan. 18, 2017 for Japanese Application No. 2016-512930; 7 pages. |
Japanese Voluntary Amendment with English Claims dated Dec. 28, 2016; for Japanese Pat. App. No. 2016-528006; 8 pages. |
Johnson et al., “Hybrid Hall Effect Device,” Appl. Phys. Lett., vol. 71, No. 7, Aug. 1997; 3 pages. |
Kanda et al.; “The Piezo-Hall Effect in n-Silicon;” 22nd International Conference on the Physics of Semiconductors; vol. 1, Jan. 1995; 4 pages. |
Kapser et al.; “Integrated GMR Based Wheel Speed Sensor for Automotive Applications;” IEEE 2007 Conference on Sensors; Oct. 2007; 4 pages. |
Kammerer et al.: “A Hall effect sensors network insensitive to mechanical stress;” Proceedings of IEEE Sensors; vol. 3, Oct. 2004; 4 pages. |
Lagorce et al.; “Magnetic and Mechanical Properties of Micromachined Strontium Ferrite/Polyimide Composites;” Journal of Microelectromechanical Systems; vol. 6, No. 4; Dec. 1997; 6 pages. |
Lequesne et al.; “High-Accuracy Magnetic Position Encoder Concept;” IEEE Transactions on Industry Applications; vol. 35, No. 3; May/Jun. 1999; 9 pages. |
Magnani et al.; “Mechanical Stress Measurement Electronics Based on Piezo-Resistive and Piezo-Hall Effects;” 9th International Conference on Electronics, Circuits and Systems 2002; vol. 1; SBN: 0-7803-7596-3; Dec. 2002; 4 pages. |
Manic et al.; “Short and Long-Term Stability Problems of Hall Plates in Plastic Packages;” IEEE 38th Annual International Reliability Physics Symposium; Apr. 2000; 6 pages. |
Manic; “Drift in Silicon Integrated Sensors and Circuits Due to the Thermo-Mechanical Stresses;” Lausanne, École Polytechnique Fédérale De Lausanne 2000; 176 pages. |
Melexis Microelectronic Systems, Hall Applications Guide, Section 3—Applications,1997; 48 pages. |
Motz et al.; “An Integrated Magnetic Sensor with Two Continuous-Time ΔΣ-Converters and Stress Compensation Capability;” IEEE International Solid-State Circuits Conference; Digest of Technical Papers; Feb. 6, 2006; ISBN: 1-4244-0079-1; 7 pages. |
Motz, et al.; “A Chopped Hall Sensor with Small Jitter and Programmable “True Power-On” Function;” IEEE Journal of Solid-State Circuits; vol. 40, No. 7; Jul. 2005; 8 pages. |
Motz, et al.; “An Integrated Hall Sensor Platform Design for Position, Angle and Current Sensing;” IEEE Sensors 2006; Exco, Daegu, Korea / Oct. 22-25, 2006; 4 pages. |
Munter; “A Low-offset Spinning-current Hall Plate;” Sensors and Actuators A21-A23; 1990; 4 pages. |
Munter; “Electronic Circuitry for a Smart Spinning-current Hall Plate with Low Offset;” Sensors and Actuators A; Jun. 1991; 5 pages. |
Non-Final Office Action dated Dec. 3, 2015; for U.S. Appl. No. 13/946,417; 26 pages. |
Non-Final Office Action dated Nov. 19, 2015; for U.S. Appl. No. 13/946,400; 24 pages. |
Notice of Allowance dated Apr. 19, 2017 for U.S. Appl. No. 13/891,519; 11 pages. |
Notice of Allowance dated Jul. 25, 2017 for U.S. Appl. No. 13/468,478; 10 Pages. |
Notice of Allowance dated Mar. 1, 2017 for U.S. Appl. No. 13/891,519; 7 pages. |
Notice of Allowance dated May 15, 2017 for U.S. Appl. No. 13/468,478; 15 Pages. |
Office Action dated Mar. 20, 2015; for U.S. Appl. No. 13/946,417; 20 pages. |
Office Action dated Oct. 20, 2016; for U.S. Appl. No. 13/946,400; 34 pages. |
Office Action in U.S. Appl. No. 13/468,478 dated Jan. 15, 2014, 36 pages. |
Oniku et al.; “High-Energy-Density Permanent Micromagnets Formed from Heterogeneous Magnetic Powder Mixtures;” IEEE 25th International Conference on Micro Electro Mechanical Systems, Jan. 2012; 4 pages. |
Park et al.; “Ferrite-Based Integrated Planar Inductors and Transformers Fabricated at Low Temperature;” IEEE Transactions on Magnetics; vol. 33; No. 5; Sep. 1997; 3 pages. |
Park et al.;“Batch-Fabricated Microinductors with Electroplated Magnetically Anisotropic and Laminated Alloy Cores”, IEEE Transactions on Magnetics, vol. 35, No. 5, Sep. 1999, 10 pages. |
Partin et al.; “Temperature Stable Hall Effect Sensors;” IEEE Sensors Journal, vol. 6, No. 1; Feb. 2006; 5 pages. |
Pastre, et al.; “A Hall Sensor Analog Front End for Current Measurement with Continuous Gain Calibration;” IEEE Sensors Journal; vol. 7, No. 5; May 2007; 8 pages. |
Pastre, et al.; “A Hall Sensor-Based Current Measurement Microsystem With Continuous Gain Calibration;” Research in Microelectronics and Electronics, IEEE vol. 2; Jul. 25, 2005; ISBN: 0-7803-9345-7; 4 pages. |
PCT International Preliminary Report and Written Opinion dated Jan. 28, 2016 for International Application No. PCT/US2014/044991; 9 pages. |
PCT International Preliminary Report dated Nov. 19, 2015 for International Application No. PCT/US2014/035594; 13 pages. |
PCT International Preliminary Report on Patentability and Written Opinion of the ISA dated Nov. 20, 2014; for PCT Pat. App. No. PCT/US2013/037065; 10 pages. |
PCT International Search Report and Written Opinion dated Jul. 13, 2013 for International Application No. PCT/US2013/037065; 13 pages. |
PCT International Search Report and Written Opinion dated Sep. 12, 2014 for International Application No. PCT/US2014/035594; 16 pages. |
Popovic; “Sensor Microsystems;” Proc. 20th International Conference on Microelectronics (MWIL 95); vol. 2, NIS, Serbia, 12-14; Sep. 1995; 7 pages. |
Randhawa; “Monolithic Integrated Hall Devices in Silicon Circuits;” Microelectronics Journal; vol. 12, No. 6; Sep. 14-17, 1981; 6 pages. |
Response (with Amended Claims in English) to Japanese Office Action dated Feb. 13, 2017 for Japanese Application No. 2015-511491; Response filed on Apr. 11, 2017; 10 Pages. |
Response (with RCE) to U.S. Final Office Action dated Sep. 16, 2015 for U.S. Appl. No. 13/468,478; Response filed Jan. 14, 2016; 18 Pages. |
Response and RCE to U.S. Final Office Action dated Feb. 16, 2016 for U.S. Appl. No.13/891,519; Response filed on May 12, 2016; 13 pages. |
Response and RCE to U.S. Final Office Action dated Nov. 25, 2016 for U.S. Appl. No. 13/891,519; Response filed on Feb. 6, 2017; 18 pages. |
Response filed Mar. 3, 2016 to Office Action dated Dec. 3, 2015; for U.S. Appl. No. 13/946,417; 17 pages. |
Response filed Nov. 9, 2015 to Final Office Action dated Aug. 28, 2015; for U.S. Appl. No. 13/946,417; 14 pages. |
Response filed Apr. 3, 2015; to Office Action dated Jan. 5, 2015; for U.S. Appl. No. 13/946,400; 13 pages. |
Response filed on Jan. 19, 2017 to Final Office Action dated Oct. 20, 2016; for U.S. Appl. No. 13/946,400; 12 Pages. |
Response filed on Jun. 19, 2015 to Office Action dated Mar. 20, 2015; for U.S. Appl. No. 13/946,417; 15 pages. |
Response filed on Oct. 3, 2016 to the Office Action dated May 10, 2016; for U.S. Appl. No. 13/468,478; 17 pages. |
Response to Communication dated Dec. 11, 2015 for European Application No. 14726492.3-1560; 17 pages. |
Response to Japanese Office Action dated Jan. 18, 2017 for Japanese Application No. 2016-512930; Response Filed Apr. 18, 2017; 13 pages. |
Response and RCE to Oct. 6, 2016 Final Office Action from U.S. Appl. No. 13/946,417, filed Jan. 24, 2017; 14 Pages. |
Response to Office Action filed on Jun. 30, 2017 for U.S. Appl. No. 13/946,400; 12 pages. |
Response to U.S. Final Office Action dated Feb. 10, 2017 for U.S. Appl. No. 13/468,478; Response filed on May 3, 2017; 9 Pages. |
Response and RCE to U.S. Final Office Action dated Jul. 17, 2014 for U.S. Appl. No. 13/468,478; Response Filed Jan. 19, 2015; 12 Pages. |
Response to U.S. Final Office Action dated Oct. 20, 2016 (w/RCE) for U.S. Appl. No. 13/946,400; Response filed on Feb. 23, 2017; 17 Pages. |
Response to U.S. Non-Final Office Action dated Apr. 24, 2015 for U.S. Appl. No. 13/891,519; Response filed on Nov. 20, 2015; 11 pages. |
Response to U.S. Non-Final Office Action dated Feb. 12, 2015 for U.S. Appl. No. 13/468,478; Response filed Jun. 18, 2015; 11 Pages. |
Response to U.S. Non-Final Office Action dated Jan. 15, 2014 for U.S. Appl. No. 13/468,478; Response filed on Jun. 12, 2014; 11 Pages. |
Response to U.S. Non-Final Office Action dated Jun. 3, 2016 for U.S. Appl. No. 13/891,519; Response filed on Sep. 1, 2016; 14 pages. |
Response to U.S. Non-Final Office Action dated Mar. 15, 2017 for U.S. Appl. No. 13/946,417; Response filed on Jun. 14, 2017; 10 pages. |
Response to U.S. Non-Final Office Action dated Nov. 19, 2015 for U.S. Appl. No. 13/946,400; Response filed Feb. 17, 2016; 11 Pages. |
Ruther et al.; “Integrated CMOS-Based Sensor Array for Mechanical Stress Mapping;” 5th IEEE Conference on Sensors, Oct. 2007; 4 pages. |
Ruther et al.; “Thermomagnetic Residual Offset in Integrated Hall Plates;” IEEE Sensors Journal; vol. 3, No. 6; Dec. 2003; 7 pages. |
Sargent; “Switched-capacitor IC controls feedback loop;” EDN; Design Ideas; Feb. 17, 2000; 2 pages. |
Schneider; “Temperature Calibration of CMOS Magnetic Vector Probe for Contactless Angle Measurement System,” IEDM 1996 4 Pages. |
Schott et al.; “Linearizing Integrated Hall Devices;” 1997 International Conference on Solid-State Sensors and Actuators, Jun. 16-19, 1997; 4 Pages. |
Schott, et al.; “CMOS Single-Chip Electronic Compass with Microcontroller;” IEEE Journal of Solid-State Circuits; vol. 42, No. 12; Dec. 2007; 11 pages. |
Simon et al.; “Autocalibration of Silicon Hall Devices;” 8th International Conference on Solid-State Sensors and Actuators; vol. 2; Jun. 25, 1995; 4 pages. |
Smith et al.; “Low Magnetic Field Sensing with GMR Sensors;” Sensor Magazine; Part 1; Sep. 1999; http://archives.sensorsmag.com/articles/0999/76mail.shtml; pp. 1-8. |
Smith et al.; “Low Magnetic Field Sensing with GMR Sensors;” Sensor Magazine; Part 2; Oct. 1999; http://archives.sensorsmag.com/articles/1099/84/mail.shtml; pp. 1-11. |
Steiner et al.; “Double-Hall Sensor with Self-Compensated Offset;” International Electron Devices Meeting; Dec. 7, 1997; ISBN: 0-7803-4100-7; 4 pages. |
Steiner et al; Offset Reduction in Hall Devices by Continuous Spinning Current Method; Sensors and Actuators A66; 1998; 6 pages. |
Stellrecht et al.; Characterization of Hygroscopic Swelling Behavior of Mold Compounds and Plastic Packages; IEEE Transactions on Components and Packaging Technologies; vol. 27, No. 3; Sep. 2004; 8 pages. |
Tian et al.; “Multiple Sensors on Pulsed Eddy-Current Detection for 3-D Subsurface Crack Assessment;” IEEE Sensors Journal, vol. 5, No. 1; Feb. 2005; 7 pages. |
Trontelj et al; “CMOS Integrated Magnetic Field Source Used as a Reference in Magnetic Field Sensors on Common Substrate;” WEP 1-6; IMTC; May 1994; 3 pages. |
U.S. Advisory Action dated Feb. 16, 2017 for U.S. Appl. No. 13/946,400; 4 Pages. |
U.S. Final Office Action dated Feb. 10, 2017 for U.S. Appl. No. 13/468,478; 27 Pages. |
U.S. Final Office Action dated Feb. 16, 2016 for U.S. Appl. No. 13/891,519; 14 pages. |
U.S. Final Office Action dated Jul. 17, 2014 for U.S. Appl. No. 13/468,478; 13 Pages. |
U.S. Final Office Action dated Nov. 25, 2016 for U.S. Appl. No. 13/891,519; 13 pages. |
U.S. Final Office Action dated Sep. 16, 2015 for U.S. Appl. No. 13/468,478; 19 Pages. |
U.S. Final Office Action dated Sep. 8, 2017 for U.S. Appl. No. 13/946,417; 56 pages. |
U.S. Non-Final Office Action dated Apr. 6, 2017 for U.S. Appl. No. 13/946,400; 36 Pages. |
U.S. Non-Final Office Action dated Aug. 24, 2015 for U.S. Appl. No. 13/891,519; 14 pages. |
U.S. Non-Final Office Action dated Feb. 12, 2015 for U.S. Application No. 13/468,478; 14 Pages. |
U.S. Non-Final Office Action dated Jan. 5, 2015 for U.S. Appl. No. 13/946,400; 56 Pages. |
U.S. Non-Final Office Action dated Jun. 3, 2016 for U.S. Appl. No. 13/891,519; 19 pages. |
U.S. Non-Final Office Action dated Mar. 15, 2017 from U.S. Appl. No. 13/946,417; 25 Pages. |
U.S. Non-Final Office Action dated May 10, 2016 corresponding to U.S. Appl. No. 13/468,478; 20 Pages. |
Udo; “Limits of Offset Cancellation by the Principle of Spinning Current Hall Probe;” Proceedings of IEEE Sensors; Oct. 2004; 4 pages. |
Voluntary Amendment dated Nov. 2, 2016 with English claims for Chinese Application No. 201480040243.6; 13 pages. |
Voluntary Amendment with English Claims dated Nov. 7, 2016 for Korean App. No. 10-2016-7004178; 11 Pages. |
Wu, et al.; “A Chopper Current-Feedback Instrumentation Amplifier with a 1mHz 1/f Noise Corner and an AC-Coupled Ripple-Reduction Loop;” IEEE International Solid-State Circuits Conference; Feb. 10, 2009; 3 pages. |
Zou et al.; “Three-Dimensional Die Surface Stress Measurements in Delaminated and Non-Delaminated Plastic Packages;” 48th Electronic Components and Technology Conference; May 25, 1998; 12 pages. |
Japanese Office Action with English Translations for Japanese Application No. 2017-178549 dated Jul. 30, 2018; 4 Pages. |
Response to Japanese Office Action with English translations of Amended Claims for Japanese Application No. 2016-528006 as filed on Aug. 3, 2018; 7 Pages. |
Japanese Notice of Allowance (with English Translation) dated Sep. 28, 2018, for Japanese Application No. 2016-528006; 6 Pages. |
Korean Notice of Allowance (with English Translation) dated Oct. 2, 2018, for Korean Application No. 10-2016-7004178; 5 Pages. |
U.S. Non-Final Office Action dated Oct. 5, 2018, for U.S. Appl. No. 16/029,826; 61 Pages. |
Appeal Brief dated Sep. 19, 2017 from Japanese Application No. 2015-511491 with English translations; 14 Pages. |
Pre-Trial Report dated Nov. 2, 2017 from Japanese Application No. 2015-511491 with English translations and Claims on File; 7 Pages. |
Response to Japanese Office Action (with English claims) dated Oct. 3, 2017 for Japanese Application No. 2016-528006; Response filed Dec. 26, 2017; 8 Pages. |
Response to U.S. Final Office Action dated Oct. 5, 2017 for U.S. Appl. No. 13/946,400; Response filed Jan. 5, 2018; 11 Pages. |
Korean Office Action (with English Translation) dated Dec. 20, 2017 corresponding to Korean Appl. No. 10-2014-7032857; 14 Pages. |
U.S. Non-Final Office Action dated Jan. 9, 2018 corresponding to U.S. Appl. No. 15/709,739; 12 Pages. |
Response to U.S. Final Office Action dated Oct. 5, 2017 for U.S. Appl. No. 13/946,400; Response filed on Feb. 27, 2018; 14 Pages. |
Chinese Office Action (w/English Translation) dated Feb. 1, 2018 for Chinese Application No. 201480040243.6; 26 Pages. |
Response to Final Office Action dated Jun. 15, 2018 for U.S. Appl. No. 13/946,417, filed Sep. 14, 2018; 15 Pages. |
Korean Office Action with English Translation dated Nov. 22, 2017 for Korean Application No. 10-2016-7004178; 17 Pages. |
U.S. Final Office Action dated Jun. 15, 2018 for U.S. Appl. No. 13/946,417; 33 Pages. |
U.S. Non-Final Office Action dated Feb. 8, 2018 for U.S. Appl. No. 13/946,417; 27 Pages. |
Response to U.S. Non-Final Office Action dated Feb. 8, 2018 for U.S. Appl. No. 13/946,417; Response filed Apr. 19, 2018; 14 Pages. |
Response to Final Office Action dated Sep. 8, 2017 for U.S. Appl. No. 13/946,417; Response filed Nov. 29, 2017; 13 Pages. |
Japanese Petition (with Machine English Translation) filed Jan. 24, 2018 for Japanese Application No. 2015-511491; 10 Pages. |
Response (with English Translation) to Korean Notice of Reasons for Refusal dated Dec. 20, 2017 for Korean Application No. 10-2014-7032857; Response filed Feb. 14, 2018; 47 Pages. |
Korean Response (with English Language Summary) dated Jan. 19, 2018 for Korean Application No. 10-2016-7004178; 25 Pages. |
PCT International Search Report and Written Opinion dated Nov. 23, 2018 for International Application No. PCT/US2018/028475; 17 pages. |
PCT International Search Report and Written Opinion dated Nov. 30, 2018 for International Application No. PCT/US2018/028821; 12 pages. |
U.S. Non-Final Office Action dated Jan. 24, 2019 for U.S. Appl. No. 15/606,358; 27 pages. |
Response to Final Office Action dated Jun. 15, 2018 for U.S. Appl. No. 13/946,417, filed Nov. 14, 2018; 14 Pages. |
Response filed on Nov. 14, 2018 for Japanese Application No. 2015-511491 with English Translation; 11 Pages. |
Response filed on Nov. 14, 2018 for Japanese Application No. 2017-178549 with English Translation; 13 Pages. |
Notice of Allowance dated Apr. 16, 2019 for Japanese Application No. 2017-178549 with English Translation of Allowed claims; 8 Pages. |
Office Action dated Mar. 22, 2019 for Chinese Application No. 201480040243.6 with English Translation; 22 Pages. |
Response to Non-Final Office Action dated Jan. 24, 2019 for U.S. Appl. No. 15/606,358, filed Apr. 17, 2019; 12 Pages. |
Response to Final Office Action dated Oct. 25, 2018 for U.S. Appl. No. 15/709,739, filed Jan. 18, 2019; 10 Pages. |
U.S. Non-Final Office Action dated Feb. 7, 2019 for U.S. Appl. No. 13/946,417; 35 pages. |
Response to U.S. Non-Final Office Action dated Oct. 5, 2018 for U.S. Appl. No. 16/029,826; Response filed Feb. 1, 2019; 10 pages. |
Final Office Action dated Oct. 25, 2018 for U.S. Appl. No. 15/709,739; 14 Pages. |
Second Office Action dated Oct. 9, 2018 for Chinese Application No. 201480040243.6 with English Translations; 23 Pages. |
Non-Final Office Action dated Mar. 8, 2019 for U.S. Appl. No. 15/709,739; 15 Pages. |
Response filed on Mar. 14, 2019 for Japanese Application No. 2015-511491 with English Machine Translation; 12 Pages. |
Japanese Office Action dated Dec. 17, 2018 for Japanese Application No. 2015-511491; 10 pages. |
Chinese Response (w/English Claims and Remarks) filed Dec. 24, 2018 for Chinese Application No. 201480040243.6; 14 pages. |
Response to U.S. Non-Final Office Action dated Feb. 7, 2019 for U.S. Appl. No. 13/946,417; Response filed Apr. 22, 2019; 14 pages. |
Japanese Notice of Allowance (with English Translation of Allowed Claims) dated May 16, 2019 for Japanese Application No. 2015-511491; 6 Pages. |
Response (with English Translation & Amended Claims) to Chinese Office Action dated Mar. 22, 2019 for Chinese Application No. 201480040243.6; Response filed on Jun. 6, 2019; 17 Pages. |
Response to U.S. Non-Final Office Action dated Mar. 8, 2019 for U.S. Appl. No. 15/709,739; Response filed Jun. 10, 2019; 15 Pages. |
U.S. Non-Final Office Action dated Jun. 13, 2019 for U.S. Appl. No. 15/606,332; 24 Pages. |
Response to Office Action and Request for Continued Examination (RCE) filed Feb. 7, 2020 for U.S. Appl. No. 15/606,332; 19 pages. |
Examination Report dated Jan. 27, 2020 for European Application No. 14742423.8; 10 pages. |
Communication pursuant to Rules 161(1) and 162 EPC dated Jan. 10, 2020 for European Application No. 18726263.9; 3 pages. |
Communication pursuant to Rules 161(1) and 162 EPC dated Jan. 10, 2020 for European Application No. 18723635.1; 3 pages. |
Communication pursuant to Rules 161(1) and 162 EPC dated Jan. 10, 2020 for European Application No. 18723644.3; 3 pages. |
Response with English Translation and with Amended Claims in English to Chinese Office Action dated Sep. 3, 2019 for Chinese Application No. 2014800402436; Response filed on Dec. 17, 2019; 17 Pages. |
PCT International Preliminary Report dated Dec. 5, 2019 for International Application No. PCT/US2018/028475; 11 Pages. |
PCT International Preliminary Report dated Dec. 5, 2019 for International Application No. PCT/US2018/028816; 18 Pages. |
PCT International Preliminary Report dated Dec. 5, 2019 for International Application No. PCT/US2018/028821; 8 Pages. |
Chinese Notice of Grant (with English Translation and Allowed Claims) dated Jan. 9, 2020 for Chinese Application No. 201480040243.6; 11 Pages. |
Response to Office Action dated Jan. 17, 2020 for U.S. Appl. No. 16/029,826; 14 pages. |
Non-Final Office Action dated Aug. 22, 2019 for U.S. Appl. No. 15/606,358; 32 Pages. |
Response to Office Action dated Jun. 13, 2019 for U.S. Appl. No. 15/606,332, filed Aug. 26, 2019; 18 Pages. |
Chinese Decision on Rejection (with English Translation) dated Sep. 3, 2019 for Chinese Application No. 201480040243.6; 23 Pages. |
U.S. Final Office Action dated Sep. 19, 2019 for U.S. Appl. No. 15/709,739; 24 Pages. |
U.S. Final Office Action dated Sep. 19, 2019 for U.S. Appl. No. 16/029,826; 22 Pages. |
Response to U.S. Final Office Action dated Sep. 19, 2019 for U.S. Appl. No. 16/029,826; Response filed Oct. 21, 2019; 12 Pages. |
U.S. Notice of Allowance dated Sep. 11, 2019 for U.S. Appl. No. 13/946,417; 10 Pages. |
U.S. Appl. No. 16/856,582, filed Apr. 23, 2020, David et al. |
U.S. Non-Final Office Action dated Nov. 29, 2019 for U.S. Appl. No. 16/029,826; 30 Pages. |
Response to U.S. Non-Final Office Action dated Aug. 22, 2019 for U.S. Appl. No. 15/606,358; Response filed Dec. 4, 2019; 20 Pages. |
U.S. Final Office Action dated Nov. 27, 2019 for U.S. Appl. No. 15/606,332; 29 Pages. |
U.S. Supplemental Notice of Allowability dated Oct. 2, 2019 for U.S. Appl. No. 13/946,417; 7 Pages. |
U.S. Non-Final Office Action dated Apr. 2, 2020 for U.S. Appl. No. 15/606,332; 35 Pages. |
U.S. Final Office Action dated Mar. 6, 2020 for U.S. Appl. No. 15/606,358; 43 Pages. |
Appeal Brief filed on Mar. 19, 2020 for U.S. Appl. No. 15/709,739; 18 Pages. |
U.S. Notice of Allowance dated Mar. 23, 2020 for U.S. Appl. No. 16/029,826; 13 Pages. |
Response (with Amended Claims) to European Examination Report dated Jan. 27, 2020 for European Application No. 14742423.8; Response Filed May 27, 2020; 10 Pages. |
European Examination Report dated May 15, 2020 for European Application No. 16193227.2; 8 Pages. |
Response to U.S. Non-Final Office Action dated Apr. 2, 2020 for U.S. Appl. No. 15/606,332; Response filed Jun. 15, 2020; 20 Pages. |
Notice of Allowance dated Apr. 4, 2018 for U.S. Appl. No. 13/946,400; 11 pages. |
Response to European Rules 161/162 Communication dated Jan. 10, 2020 for European Application No. 18723635.1; Response filed Jul. 17, 2020; 18 Pages. |
Response to European Rules 161/162 Communication dated Jan. 10, 2020 for European Application No. 18726263.9; Response filed Jul. 10, 2020; 18 Pages. |
Response to U.S. Final Office Action dated Mar. 6, 2020 for U.S. Appl. No. 15/606,358; Response filed Jul. 1, 2020; 16 Pages. |
U.S. Non-Final Office Action dated Jul. 28, 2020 for U.S. Appl. No. 15/709,739; 19 Pages. |
Response (with Amended Claims) to European 161/162 Communication dated Jan. 10, 2020 for European Application No. 18723644.3; Response Filed Jul. 17, 2020; 15 Pages. |
Final Office Action dated Sep. 17, 2020 for U.S. Appl. No. 15/606,332; 21 pages. |
Number | Date | Country | |
---|---|---|---|
20180340911 A1 | Nov 2018 | US |