The present invention relates to a magnetic field sensor.
Flux gate sensors for measuring magnetic fields are believed to be generally understood. In one variant of such flux gate sensors, a magnetically soft core is exposed to a magnetic alternating field, which drives the core into magnetic saturation using alternating field directions. A remagnetization of the core takes place whenever the magnetic alternating field is compensating an external magnetic field. The external magnetic field is able to be determined on the basis of an instant of the remagnetization in relation to the generated magnetic alternating field. Such sensors, often also referred to as MEMS sensors, can be produced as thin-film technology on a semiconductor substrate.
Unpublished German patent application DE 10 2009 028 815.5 refers to a magnetic field sensor implemented in MEMS technology, in which a coil generates a magnetic field in a block-shaped core.
The exemplary embodiments and/or exemplary methods of the present invention are based on the objective of providing a magnetic field sensor, with whose aid the instant of the remagnetization is able to be determined more precisely.
The exemplary embodiments and/or exemplary methods of the present invention are intended to solve the stated objective by a magnetic field sensor having the features described herein. The further embodiments indicate advantageous configuration variations.
A magnetic field sensor includes a magnetizable core, a magnetization device for magnetizing the core, and a determination device for determining a magnetic field in the core, the core having a curved surface, at least in sections. In particular in a miniaturized magnetic field sensor (MEMS), the curvature of the surface of the core is able to prevent the occurrence of areas that are poorly magnetizable, so that magnetic domains of the core require no greatly differing fields for the remagnetization. A statistical fluctuation of the remagnetization instant is therefore able to be reduced and the measuring accuracy of the magnetic field sensor is improved as a result.
The core may include a longitudinal section having a positive curvature. The curvature may be positive along the entire longitudinal section. In particular, it is possible for the curvature not to exceed a predefined value along the longitudinal section. This results in a core having rounded contours, so that poorly magnetizable domains are able to be reduced further.
The core may be symmetrical in relation to its longitudinal axis. In contrast to a flat development, this makes it possible to avoid additional corners and edges of the core, so that the magnetization ability of the domains of the core becomes more uniform. This may lead to further improvements in the magnetic field determinations.
The core may have a pointed or conical end section. Because of an attendant reduction or avoidance of end domains, the remagnetization is able to be shifted to a still narrower time range, so that the measuring accuracy of the magnetic field sensor is able to be improved further.
Moreover, the core may have an asymmetrical form, e.g., in that a geometric centroid of the core is shifted along the longitudinal axis of the core through distortion of the outer dimensions of the core in the direction of an end section. For instance, this may be achieved by an essentially trapezoidal development of the core. A beginning of a remagnetization process of the core is thus able to be defined more optimally, so that a temporal reproducibility of the core's remagnetization may be improved further.
In additional specific developments, the core may have a plurality of sections which have differently sized longitudinal section surfaces along the core's longitudinal axis, so that areas having a defined magnetization are specified for starting the remagnetization process.
The exemplary embodiments and/or exemplary methods of the present invention will now be described more accurately with reference to the accompanying figures.
DETAILED DESCRIPTION OF THE DRAWINGS
A periodic (e.g., triangular) voltage characteristic is applied at first coil 110, so that a magnetic field which periodically decreases and increases is generated in the region of core 130. Core 130 may be made of a magnetically soft material that has a low hysteresis.
Because of the magnetic alternating field caused by first coil 110, core 130 is subjected to periodic remagnetization when a direction of the magnetization of core 130 changes. At the remagnetization instants, a voltage U2 is induced in second coil 120 (“pickup coil”). As will be explained in the following text, an external magnetic field is able to be determined based on an instant of such a voltage pulse 220. In order to measure the instant of the pulse as precisely as possible, the pulse must be as narrow as possible in relation to a period of delta voltage U1. For this purpose, a material of core 130 is usually selected in such a way that the hysteresis of core 130 is as low as possible.
In miniaturized flux gate magnetic field sensors, there is a limit to the optimization of the smallness of the hysteresis of core 130 via a corresponding selection of material and manufacturing process of core 130 within the framework of a production process of a miniaturized system. Furthermore, as the miniaturization of coils 110, 120 and core 130 continues, the strength of pulse 220 drops, so that an evaluation of signal voltage U2 becomes more difficult.
Characteristic 210 is a symmetrical delta signal. A magnetization of core 130 is proportional to characteristic 210. At instants t1, t4, t5 and t8, voltage U1 of characteristic 210 has the value of 0. If no external magnetic field is applied, then a remagnetization of core 130 takes place at these instants in
If core 130 has been premagnetized by an external magnetic field, remagnetizations of core 130 take place at instants when the external magnetic field is compensated by the magnetic field produced by first coil 110. In the illustration of
From a relative position of pulses 220 with respect to each other or with respect to characteristic 210, it is possible to determine the intensity or direction of the external magnetic field. In order to perform a measurement of pulses 220 or of instants t1 through t8 as precisely as possible, pulses 220 of voltage U2 must reach a predefined voltage and be as small as possible in the process.
A ferromagnetic material like core 130 frequently has a crystal structure that includes magnetized domains. These domains are referred to as Weiss domains and have an extension in the range of approximately 10−8 to 10−4 m. The boundaries between the Weiss domains are called Bloch walls. In general, the Weiss domains are magnetized until saturated and the magnetization of different Weiss domains has different directions. In an increasing magnetic field, the Bloch walls dislocate in favor of the particular Weiss domains that are aligned in the direction of the external field. In an external field that continues to increase, more and more Weiss domains ultimately change their magnetic alignment.
The dislocation motion of the Bloch walls may be hampered by lattice faults in the crystal of the ferromagnetic material, by grain boundaries or a limitation of the magnetic material itself. This effect is called pinning. The magnetization of the ferromagnetic material thus does not increase in accordance with the externally steadily increasing magnetic field, but by small differences, the Barkhausen jumps. This prevents a uniform remagnetization of the ferromagnetic material, so that in the case of core 130 in
In one variant of the exemplary embodiments and/or exemplary methods of the present invention, core 130 is developed in axial symmetry with respect to a longitudinal axis L of core 130, so that the three-dimensional form of core 130 is able to be defined by the rotation of longitudinal sections 310 through 370 about their longitudinal axes, and the particular core has circular cross-sections exclusively. Intermediate forms between a flat and a round development, such as flattened or elliptical cross-sections, are likewise possible. The production of such cores may require a production method other than thin-film technology.
Longitudinal sections 310 through 370 all have sections at which a surface O of core 130 is curved. In these sections, shifting of Bloch walls through a delimitation of core 130 is hampered to a lesser degree. In all longitudinal sections 310 through 370, a ratio between length and width of the particular longitudinal section is selected such that the movement of the Bloch walls is hampered as little as possible. A core 130 formed in this way is known as “narrow core” in the literature.
First longitudinal section 310 has the shape of a rectangle with rounded end sections E. The roundings of end sections E may merge in pair-wise manner, so that end sections E have the form of semicircles or elliptical sections.
Second longitudinal section 320 corresponds to first longitudinal section 310, but additionally includes a tapered section in a center section M between the ends. Transitions between end sections E and tapered section M may be rounded. Because of tapered section M, the field strength required for the abrupt magnetization of core 130 is able to be controlled via the form of core 130. There is increased magnetic flux density in the region of tapered section M, which promotes rapid remagnetization of section M. Given an identical electrical signal shape 210, thickened end sections E lead to smaller magnetic fields in
Third longitudinal section 330 includes a rectangular center region M, which transitions into two end sections E having a triangular form in each case. The peaked shape of triangular end sections E avoids poor magnetization in these regions and furthermore offers a starting and end point for a Bloch wall that is shifting through core 130. Due to the lack of end domains, the entire material of core 130 in longitudinal section 330 is able to contribute to signal 220.
Fourth longitudinal section 340 has the form of a symmetrical ellipse. With regard to the advantages of this longitudinal section, the above comments in connection with third longitudinal section 330 apply. In addition, the elliptical form of longitudinal section 340 prevents the occurrence of regions that are poorly accessible to an external magnetic field.
Fifth longitudinal section 350 corresponds to first longitudinal cross-section 310 but has a pronounced narrow region in a center section M. This pronounced narrow region causes an extreme flux density excess in this area, which immediately leads to a remagnetization of adjoining regions.
Sixth longitudinal section 360 results from the basic form of first longitudinal section 310 and has end sections E that have an even flatter form; it also has a segmented center region M. In segmented center region M, segments Al having a first width alternate with segments A2 having a second width (in the horizontal direction). Transitions between adjacent segments A1, A2 may be rectangular, as illustrated, or also rounded as shown in center region M of fifth longitudinal section 350. The serrated edge of longitudinal section 360 reduces pinning of Bloch walls; at the same time, regions of defined magnetization are offered for starting the remagnetization process. A ratio of widths of adjacent segments A1, A2 may be selected as desired and need not have the 1:1 ratio illustrated.
Seventh longitudinal section 370 results from a trapezoidal distortion of first longitudinal section 310. The distortion images a rectangle into a trapezoid; the base line of the trapezoid may extend parallel to longitudinal axis L of core 130 or perpendicular to longitudinal axis L, as in core 370. Because of the defined asymmetry of longitudinal section 370, a more optimally defined start of the remagnetization process and thus an improved temporal reproducibility of pulses 220 from
A temporally precisely defined and rapid remagnetization of core 130 in miniaturized system 100 from
Number | Date | Country | Kind |
---|---|---|---|
10 2009 047 624.5 | Dec 2009 | DE | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP10/65922 | 10/22/2010 | WO | 00 | 8/30/2012 |