This invention relates to magnetic stimulation techniques, and more particularly to neural stimulation using a magnetic field.
Repetitive transcranial magnetic stimulation (rTMS) has been used with the goal of treating depression, see, e.g., George et al., The Journal of Neuropsychiatry and Clinical Neurosciences, 8:373, 1996; Kolbinger et al., Human Psychopharmacology, 10:305, 1995.
One example of an rTMS technique uses a figure-8surface coil with loops that are 4 cm in diameter (Cadwell, Kennewick, Wash.). This coil is placed next to the scalp, and is usually positioned to direct the magnetic field at the prefrontal cortex of the brain, see, e.g., George et al., The Journal of Neuropsychiatry and Clinical Neurosciences, 8:373, 1996. An electric current is run through the magnetic coil to generate a magnetic field, specifically a sequence of single-cycle sinusoidal pulses where each pulse has a frequency of approximately 1800 Hz (or about 560 microseconds per pulse). These pulses are delivered at a repetition rate of 1 to 20 Hz (i.e., one pulse every 0.05 to 1 second), see, e.g., George et al, Biological Psychiatry, 48:962, 2000; Eschweiler et al, Psychiatry Research: Neuroimaging Section, 99:161, 2000.
Some subjects have declined participation in rTMS studies due to pain induced in the scalp. In addition, seizures have been reported as a result of rTMS treatment, see, George et al, Biological Psychiatry, 48:962, 2000; Wasserman, Electroencephalography and Clinical Neurophysiology 108:1, 1998.
The invention concerns enhancing brain function using novel magnetic field techniques. These magnetic field techniques use low field strengths, high repetition rates, and uniform gradients to improve brain function.
In one aspect of the present invention, a subject is selected for enhancement of brain function using a magnetic field. The subject's head is then subjected to a time-varying magnetic field having a maximum strength of less than about 50 G.
Advantages of this aspect of the invention include the following. Subjects with cognitive impairments may benefit from the new treatment by the lessening of the severity of the condition. Treatment techniques using this method can be administered inexpensively with relative safety and comfort, and offer a substitute for or complement to treatment by medication. Applications of the new methods include improving the condition of individuals with cognitive disorders, such as depression, and studying the effects of brain stimulation using induced electric fields.
Embodiments of this aspect of the invention can include one or more of the following features. After treating the subject (e.g., a human patient), the subject can be evaluated for enhanced brain function. The magnetic field can have a maximum strength of less than about 10 G. The field can also be a gradient magnetic field that is substantially uniform (i.e., a magnetic field one or more of whose x, y, or z direction components varies approximately linearly in space; that is, has a constant gradient to within, e.g., 10%) and unidirectional over the relevant volume (e.g., the entire brain, or a region of interest of the brain such as the prefrontal cortex). The gradient of the magnetic field can be less than about 5 G/cm. The magnetic field can be generated using a sequence of trapezoidal pulses of alternating polarity, where each pulse has a duration of about 1 millisecond.
In another aspect of the present invention, a subject is selected for enhancement of brain function using a magnetic field. The subject's head is then subjected to a time-varying gradient magnetic field that is substantially uniform and unidirectional.
In another aspect of the present invention, a subject is selected for enhancement of brain function using a magnetic field. The subject's head is then subjected to a time-varying magnetic field generating by a sequence of pulses, each having a duration of less than about 10 milliseconds.
Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. Although methods and materials similar or equivalent to those described herein can be used in the practice or testing of the present invention, suitable methods and materials are described below. All publications, patent applications, patents, and other references mentioned herein are incorporated by reference in their entirety. In case of conflict, the present specification, including definitions, will control. In addition, the materials, methods, and examples are illustrative only and not intended to be limiting.
The details of one or more embodiments of the invention are set forth in the accompanying drawings and the description below. Other features, objects, and advantages of the invention will be apparent from the description and drawings, and from the claims.
Apparatuses and Systems
A device 10 according to the present invention is shown in
The magnetic coil 12 produces a magnetic field in response to electrical signals received from the amplifier 14. Over the region in which the subject's brain is positioned, the magnetic field is a gradient magnetic field that is substantially uniform (i.e., the magnetic field strength varies substantially linearly in only one direction, e.g., at about 5 G/cm, with the variation occurring from anterior to posterior across the subject's head) and unidirectional (i.e., the vectors representing the magnetic field all point in substantially the same direction, e.g., along the long axis of the subject's body). (Alternatively, a magnetic coil can be used that generates a substantially uniform and unidirectional gradient magnetic field over only a region of interest of the brain, e.g., the left prefrontal cortex.) The magnetic coil 12 is large enough to accommodate a subject's head, with a diameter of, e.g., about 35 cm (14 in.).
When being treated with device 10, the subject 18 lays down on a standard patient gurney 20 with a head support 22, with his or her head positioned inside the coil 12.
Other devices can also be used for administering the present treatment method. For instance, a conventional magnetic resonance imaging apparatus can be used. Alternatively, instead of using a device such as device 10 that consists of separate components, the device can instead integrate one or more components, e.g., to make the device easily portable. Alternatively or additionally, the magnetic coil can be included in a hat-like structure, and the waveform generator, amplifier, and power source (e.g., a battery) integrated into a control mechanism that the subject carries or wears, i.e., on his or her subject's belt. The subject can self-administer the treatment, and the treatment can be applied while the subject is lying down, standing, sitting, or in motion. Alternatively or additionally, the control device can be pre-set to administer the treatment for specific periods at specific intervals or continuously.
Methods
Prior to receiving treatment using device 10, a subject is selected as a candidate for enhancement of brain function. This selection is generally performed by medical professionals, e.g., because the subject has been diagnosed as suffering a cognitive impairment. Alternatively, a subject could self-select based on a perceived need or desire to enhance brain function. Selection can be based on either subjective or objective criteria, including, e.g. anxiety, moodiness, depression, lethargy, sleepiness, learning difficulties, and memory impairments.
To administer the treatment, the subject's head is positioned inside coil 12, and subjected to a time-varying magnetic field. (Alternatively, the subject's entire body could be positioned inside a full-body coil, and subjected to a magnetic field.)
The magnetic pulse train used to generate the time-varying magnetic field is shown in
For example, each pulse has a trapezoidal shape, with 128 microsecond ramp times (from zero to plateau) and 768 microsecond plateau times (for a total duration of 1.024 milliseconds). The pulses alternate in polarity, with a short gap between successive pulses. A single pulse train comprises 512 successive pulses, and so lasts for about a half-second. After a delay of about a second-and-a-half, the pulse train is repeated (giving one pulse train every two seconds), and the treatment concludes after about six hundred repetitions (for a total treatment time of about 20 minutes). Alternatively, the second-and-a-half delay between successive pulse trains can be eliminated.
At the plateau of each trapezoidal pulse, the maximum magnetic field strength is on the order of 5-10 G, with a magnetic field gradient of 0.33 G/cm.
These magnetic fields induce electric fields in the subject's brain. The characteristics of these electric fields are defined by the magnetic field parameters according to Maxwell's equation: ∇×E(x, y, z, t)=−∂B(x, y, z, t)/∂t, where ∇×E is the curl of the electric field and
is the rate of change of the magnetic field over time. In Cartesian coordinates, this equation becomes:
∂Ex/∂y−∂Ey/∂x=−∂Bz/∂t,
∂Ey/∂z−∂Ez/∂y=−∂Bx/∂t,
∂Ez/∂x−∂Ex/∂z=−∂By/∂t,
where the subscripts x, y, and z denote the component of the fields along those respective axes, see, e.g., J. D. Jackson, Classical Electrodynamics, 1975, which is incorporated herein by reference.
These equations describe fields in free space (i.e., fields produced in the absence of other material). When conductive matter, such as brain tissue, is placed in the changing magnetic field, a charge distribution is also induced, resulting in an electric field. This electric field will affect the overall electric field in the head. This charge distribution can alter the free space electric field by up to about 50%, see Roth et al, Electroencephalography and Clinical Neurophysiology, 81:47, 1991, which is incorporated herein by reference. The pattern of the effect of the charge distribution will depend on the shape and placement of the subject's head.
Two local field distributions are of particular interest. In the first, the z-component (superior-inferior component) of the magnetic field has a uniform gradient in the y-direction (anterior-posterior direction), and they-component has a uniform gradient in the z-direction: (Bx=0, By=G(t)z, Bz=G(t)y), where G(t) is the value of the gradient. In this case, the electric field is given by: (Ex=E0(t)+½(∂G(t)/∂t)·(y2−z2), Ey=0, Ez=0), where E0(t) is a spatially constant field term that depends on the size of the coil and, consequently, the extent of the magnetic field. The preceding field description applies equally for the two other orientations, which is obtained by replacement of x with y, y with z, and z with x or by replacement of x with z, y with x and z with y, in both the vector components and coordinates. In addition, a given vector combination of these three field components, which forms an equivalent but rotated field, is also appropriate. Thus, one approach to applying the new treatment techniques involves using a magnetic field that has a vector component with a gradient that is substantially uniform, e.g., to within 10%, in value or direction over a relevant volume of the subject's brain, e.g., a 8 cm3 volume or the left prefrontal cortex.
In another magnetic field distribution, the magnetic field is uniform over a local volume, which can be expressed as: (Bx=0, By=0, Bz=B(t)). The corresponding local electric field is: (Ex=E0(t)−a(∂B(t)/∂t)·(y, Ey=E0(t)−(1−a)(∂B(t)/∂t)·y, Ez=0), where a is an arbitrary parameter determined by the details of coil winding.
In both situations, if E0(t) is sufficiently large compared to ∂G(t)/∂t·(R2 or ∂B(t)/∂t·(R, where R is an effective radius of the volume of interest, e.g., the radius of a subject's brain, then the local electric field is substantially uniform. The preceding field description applies equally for other orientations and rotations.
Experiment
Twenty-one people exhibiting symptoms of depression were selected by medical professionals and subjected to the present method. Twelve subjects reported a post-treatment overall mood improvement of at least one point on the Brief Affect Scale, which involves asking a subject to rate his mood after treatment compared to his mood at an earlier time, using a seven point scale: (1) very much improved, (2) much improved, (3) minimally improved, (4) no change, (5) minimally worse, (6) much worse, (7) very much worse. The results for forty-three visits by the twenty subjects are given in the table in
The treatments were administered using a General Electric 1.5T Signa MRI scanner. After optional water suppression, slice selective excitation, and a spatial phase encoding pulse, the device applied a train of 512 trapezoidal alternating-polarity magnetic field pulses. These pulses were about one millisecond long, with ramp times of 128 microseconds and 768 microsecond plateau times. During the plateau of each pulse, the gradient was 0.33 G/cm, and the maximum magnetic field in the cortex was about 5 G. The entire train of 512 pulses was repeated every 2 seconds, six hundred times, for a total treatment time of 20 minutes.
The magnetic field induced an electric field in the brains of the subjects. This electric field was oriented from right to left, from the subject's perspective, and had a magnitude of approximately 0.7 V/m.
One example of an rTMS technique uses a figure-8 surface coil with loops that are 4 cm in diameter (Cadwell, Kennewick, Wash.). This coil is placed next to the scalp, and is usually positioned to direct the magnetic field at the prefrontal cortex of the brain, see, e.g., George et al., The Journal of Neuropsychiatry and Clinical Neurosciences, 8:373, 1996. An electric current is run through the magnetic coil to generate a magnetic field, specifically a sequence of single-cycle sinusoidal pulses where each pulse has a frequency of approximately 1800 Hz (or about 560 microseconds per pulse). These pulses are delivered at a repetition rate of 1 Hz (i.e., one single-cycle sinusoidal pulse every 1 second), see, e.g., George et al, Biological Psychiatry, 48:962, 2000; Eschweiler et al, Psychiatry Research: Neuroimaging Section, 99:161, 2000. This waveform is shown in
The magnetic field generated by the
A number of embodiments of the invention have been described. Nevertheless, it will be understood that various modifications may be made without departing from the spirit and scope of the invention. Accordingly, other embodiments are within the scope of the following claims.
This application is a continuation application of and claims priority to U.S. patent application Ser. No. 10/452,947, filed Jun. 2, 2003, which now is U.S. Pat. No. 7,033,312, which is a continuation application of U.S. patent application Ser. No. 09/839,258, filed Apr. 20, 2001, which now is U.S. Pat. No. 6,572,528.
Number | Name | Date | Kind |
---|---|---|---|
3952751 | Yarger | Apr 1976 | A |
4428366 | Findl et al. | Jan 1984 | A |
5290409 | Liboff et al. | Mar 1994 | A |
5441495 | Liboff et al. | Aug 1995 | A |
5620463 | Drolet | Apr 1997 | A |
5669868 | Markoll | Sep 1997 | A |
5725471 | Davey et al. | Mar 1998 | A |
5769778 | Abrams et al. | Jun 1998 | A |
5813970 | Abrams et al. | Sep 1998 | A |
5833600 | Young | Nov 1998 | A |
6029090 | Herbst | Feb 2000 | A |
6086525 | Davey et al. | Jul 2000 | A |
6132361 | Epstein et al. | Oct 2000 | A |
6155966 | Parker | Dec 2000 | A |
6161048 | Sluijter et al. | Dec 2000 | A |
6198958 | Ives et al. | Mar 2001 | B1 |
6366813 | DiLorenzo | Apr 2002 | B1 |
6402678 | Fischell et al. | Jun 2002 | B1 |
6491620 | Davey | Dec 2002 | B1 |
6572528 | Rohan et al. | Jun 2003 | B2 |
7033312 | Rohan et al. | Apr 2006 | B2 |
Number | Date | Country |
---|---|---|
WO9806342 | Feb 1998 | WO |
Number | Date | Country | |
---|---|---|---|
20060264691 A1 | Nov 2006 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10452947 | Jun 2003 | US |
Child | 11404051 | US | |
Parent | 09839258 | Apr 2001 | US |
Child | 10452947 | US |