The invention pertains to methods of attaching removable fins and stabilizing devices to watercraft specifically such as surfboards but not excluding all and any type and size of floating watercraft.
Watercraft such as surfboards, windsurfing craft, rowing sculls, yachts and other craft are provided with fins or keels for the purposes of stabilisation and control. Removable fins have been a feature of such watercraft and particularly surf boards and rowing sculls in the past with a variety of mechanical attachment and removal methods. The removal of fins is a feature that enables the changing of fins to suit conditions or to simplify transport or storage. Until now attachment and removal systems, particularly in surfboards, have relied on slotted receptacles on the watercraft into which the fin or stabilizing device fits and is secured with mechanical locking devices or clips or screws. Screws are a common means of retention and security and which require an allen key or other device to unlock and remove. The disadvantages of such systems include stripping of screw threads, loss of keying devices and removed screws and length of time taken to remove or change fins or attachments. The advent of what is commonly known as rare earth magnet materials has enabled quantum steps in arts that employ magnets, such as clamping. The rare earths such as neodymium/boron/iron and somarium/cobalt are capable of producing magnetic field intensities many times greater than older ferrite and alnico materials. A method for magnetic attachment has previously been described in Australian Patent 2009100060 by Heard and Kobelke (Jan. 20, 2009). It has been subsequently and surprisingly found that a magnetic system comprising magnet elements each comprising an anisotropic neodymium/boron/iron or other rare earth magnet fixed between two parallel soft iron or steel pole plates and so arranged upon both the fin or stabilizing device and within its opposing receptacle on the watercraft that they attract and clamp to each other, and specifically where the pole plates on one magnet element are thicker than those on the opposite polarity other, provides stronger clamping force than one parallel pole magnet element within one member clamping to an iron or steel plate within the other member. The current invention describes the above magnetic fin or stabilizing device attachment system and also claims for variations of the parallel pole magnets in the form of circular or rectangular pot magnets and a magnetic element clamping only to a soft iron or steel plate.
The present invention is illustrated by way of example and not by way of limitation, in the figures of the accompanying drawings and in which like reference numerals refer to similar elements and in which:
To achieve the foregoing and other objects and in accordance with the purpose of the invention, a variety of techniques are herein described. It will be recognized by those familiar with the art that a number of mechanical methods exist for attaching removable fins or stabilizing devices to surfboards and other various types of watercraft. The method disclosed herein employs in a preferred embodiment, one or more parallel pole permanent magnet assemblies within or upon the fin or fins or other stabilizing devices as used on watercraft and one or more opposite magnetically polarized parallel pole permanent magnet assembly with thicker pole plates within or upon the watercraft itself, preferably within a fin housing such as those customarily used in such watercraft. The preferred embodiment could also have the at least one magnetic element with thicker pole plates within the fin and the other parallel pole at least one magnet element having thinner pole plates within the fin housing. Other embodiments may include at least one parallel pole permanent magnet assembly in either the fin or fins or the body of the watercraft and a steel or soft iron plate to respond to the said magnet assembly and within or upon the opposite member. Alternative embodiments may include at least one permanent magnetic assembly such as the neodymium/iron/boron magnet material within a soft iron or steel cup being round or rectangular in shape and known in magnetic art as pot magnets within one member and similar at least one assemblies of opposite polarity and having a greater wall thickness of the cup and within or upon the other member. The opposite polarity magnetic assemblies are so disposed and positioned on the fin or stabilizing device and within its receptacle on the watercraft that they magnetically attract and clamp together with great strength when the fin is inserted into the receptacle. In a further embodiment the at least one magnet elements within the fin receptacle and upon the fin consist of magnetizing components within soft iron or steel channels to produce three magnetic poles of opposite and attracting polarities. Of the said channels the at least one on either the fin or the receptacle comprises thicker soft iron or steel than the at least one opposite attracting channel and magnet assembly.
Watercraft such as those described above frequently feature removable fins or stabilizing devices and have one or more receptacles upon the underside of the craft itself, into which a fin or fins or stabilizing devices engage and are fixed with means other than a magnetic means. Such means include screws, clips and mechanical catches of a variety of types.
In a preferred embodiment of the current invention an un-magnetized rectangular block or blocks of neodymium/boron/iron anisotropic magnet material of suitable dimensions within the constraints of fins and fin receptacles is sandwiched between two soft iron or steel plates of suitable thickness and with said pole plates protruding somewhat beyond and below the depth of the unmagnetized magnet material block. The at least one assembly thus formed is preferably bonded together with suitable adhesive and then magnetised as an assembly in a magnetizer as used in the art. The at least one magnetized assembly is then attached to a surfboard or other watercraft fin in such a manner that the magnet assembly forms part of that portion of the fin that engages with the fin receptacle on the surfboard, rowing scull, windsurfing board or other watercraft and has the magnet assembly's active edges facing in the direction that will cause them to engage with similar but opposite polarity at least one magnet assemblies within and on the base of the fin receptacle on the watercraft.
In the invention, the at least one receptacles on the watercraft, also known as fin boxes to those familiar with the art, also features in the bottom of its open area an at least one magnetic assembly similar to that attached to the fin or fins but having opposite and attracting magnetic polarity. In a preferred embodiment the soft iron or steel pole plates of one of the magnetic assemblies will be thicker than those of the opposite polarity assembly. The magnetic assemblies will preferably be moulded respectively within both the one or more fins and the one or more fin receptacles to form an integral part of the one or more fins and the one or more fin receptacles. The magnet assembly forming part of the one or more fins should be no thicker nor any longer than the portion of the fin designed to reside within the receptacle. The magnetic assembly that forms part of the one or more receptacles will be dimensioned so as to fit within the constraints of the dimensions of the one or more receptacles and will form the floor of the receptacle.
In a preferred embodiment the magnet assemblies will be encased in a thin covering of resin or other suitable material to protect them from corrosion.
In an alternative embodiment the said soft iron or steel pole plates may be machined or otherwise manufactured to an ‘L’ shape or and inverted ‘T’ shape and applied to the rectangular neodymium/boron/iron block so as to provide a larger magnetic footprint at the attaching edge of the pole plates.
A further alternative embodiment illustrated in
The present Utility patent application claims priority benefit of the U.S. provisional application for patent No. 61/207,850 filed on Feb. 18, 2009 The present Utility patent application references Australian Innovation Patent number 2009100060 titled ‘Magnetic Fin Attachment System’
Number | Date | Country | |
---|---|---|---|
61207850 | Feb 2009 | US |