This invention relates to implantable devices and to methods of using the devices to target and capture therapeutic agents attached to, or encapsulated within, magnetic or magnetizable carriers within a body or a subject. In particular, the invention relates to magnetic gradient targeting of therapeutic formulations and concomitant magnetic sequestering of magnetic or magnetizable carriers during therapy via peripheral intravenous administering of magnetic or magnetizable therapeutic formulations.
Implantable devices, such as stents, are commonly used in a variety of biomedical applications. For example, stents are routinely implanted in patients to keep blood vessels open in the coronary arteries, to keep the esophagus from closing due to strictures of cancer, to keep the ureters open for maintenance of kidney drainage, and to keep the bile duct open in patients with pancreatic cancer. Stents typically comprise a tube made of metal or polymer, in a wide range of physiologically appropriate diameters and lengths, which are inserted into a vessel or passage to keep the lumen open and prevent closure due to a stricture or external compression.
Drug eluting stents, which consist of polymer coated metallic stents containing either taxol or sirolimus, represent a major improvement over bare metal stents. However, there is a fundamental problem with the use of drug eluting stents. They contain only one therapeutic agent, with one small dose of this agent, for one course of the administration, with no possibility for re-administration of the same or different therapeutic agent. There is no circumstance in medicine where this therapeutic approach has been a successful long term treatment for any chronic disease, such as arteriosclerosis. Furthermore, there are numerous reports of failed drug eluting stents in patients, demonstrating the need for an advanced local delivery approach for the use of metallic stents to treat vascular disease.
Methods and devices have been proposed for delivery of magnetizable therapeutic agent or agent-containing magnetic carrier to specific locations in the body. See, for example, Chen, U.S. Pat. No. 5,921,244, the disclosure of which is incorporated herein by reference. However, these magnetically susceptible therapeutic agents must be administered in the vicinity of the treatment site.
Thus, a need exists for a therapeutic system that uses stents, and/or other implantable devices, for local delivery of a therapeutic agent that would allow for the repeated administration of the same or different therapeutic agent, and, further, would have the option of locally injecting, or alternatively, peripherally administering, the therapeutic agent.
In one aspect, the invention is a therapeutic system that uses stents, and/or other implantable devices, for local delivery of a therapeutic agent. In another aspect, the invention is a method for using stents, and/or other implantable devices, for local delivery of a therapeutic agent. The method allows for the repeated re-administration of the same or different therapeutic agent, and, further, has the option of locally injecting, or alternatively, peripherally administering, the therapeutic agent. The therapeutic system and method can be used in the treatment of chronic diseases, such as, for example, arteriosclerosis.
In one aspect, the invention comprises a magnetically assisted therapeutic system comprising:
(a) a therapeutic formulation administered to a mammalian subject by peripheral intravenous administration, in which the therapeutic formulation comprises particles, such as nanoparticles, of a magnetic or magnetizable material that carry a therapeutic agent;
(b) an implantable device implanted in a vascular system of a mammalian subject, the implanted implantable device comprising a biocompatible magnetic or magnetizable material; and
(c) a retrieval system having a magnetic or magnetizable mesh operably connected to the mammalian subject.
In one aspect of the invention, the implantable device is a stent.
In another aspect, the invention is a method for administering a therapeutic agent that comprises the steps of:
(a) intravenously administering a therapeutic formulation to a vascular system of a mammalian subject, in which the therapeutic formulation comprises particles of a biocompatible magnetic or magnetizable material that carry the therapeutic agent;
(b) delivering a portion of the therapeutic formulation to the proximity of an implantable device implanted in the vascular system in the mammalian subject by externally generating a magnetic field gradient on the implantable device, in which the implantable device comprises a biocompatible magnetic or magnetizable material; and
(c) removing a portion of the therapeutic formulation that is not delivered to the proximity of the implantable device from the vascular system.
The magnetic or magnetizable particles that carry the therapeutic agent are sequestered in the proximity of the implanted device. Particles that do not localize on the implanted device are retrieved by the mesh to prevent them from accumulating in a reticulo-endothelial system of the mammalian subject. A directable magnetic field gradient is also provided for directing the magnetic or magnetizable carrier in proximity to the implanted device.
For therapeutic treatment, the steps can be repeated, in order, as often and as frequently as required to provide the desired level of treatment.
The invention will be described in conjunction with the following drawings in which like reference numerals designate like elements and in which:
The invention provides magnetic gradient targeting, sequestering and retrieval of magnetic or magnetizable therapeutic formulations and magnetically assisted or induced therapeutic systems manufactured therefrom. This is achieved using peripheral intravenous administration of a magnetic or magnetizable therapeutic formulation without requiring localized invasive delivery at the site of the implantable device. The therapeutic formulation comprises particles of a biocompatible magnetic or magnetizable material that carry a therapeutic agent.
Referring to
Particles that are not sequestered in proximity to the implanted device 104 are removed from circulation by a retrieval system 108 so that they do not accumulate in the reticulo-endothelial system, where they might have undesirable side effects. In addition, wide biodistribution of the magnetic or magnetizable carriers included as a part of the therapeutic formulation is also minimized. The retrieval system 108 makes use of apheresis principles but provides a magnetic mesh filter 110 placed in the circulation circuit.
The implantable device 104 comprises a biocompatible magnetic or magnetizable material. The device is typically implanted in the vascular system of a mammalian subject. The device must be biocompatible and must comprise a material that is either magnetic, or magnetizable (i.e., capable of being magnetized). Stainless steel, for example, Grade 304 Stainless Steel, a widely used stainless steel, can be used in the implantable device 104.
Provided they comprise a material that is biocompatible and is either magnetic, or magnetizable, implantable devices appropriate for the delivery system include, but are not limited to, stents, heart valves, wire sutures, temporary joint replacements and urinary dilators. Other suitable medical devices for this invention include orthopedic implants such as joint prostheses, screws, nails, nuts, bolts, plates, rods, pins, wires, inserters, osteoports, halo systems and other orthopedic devices used for stabilization or fixation of spinal and long bone fractures or disarticulations. Other devices may include non-orthopedic devices, temporary placements and permanent implants, such as traceostomy devices, jejunostomy and gastrostomy tubes, intraurethral and other genitourinary implants, stylets, dilators, stents, vascular clips and filters, pacemakers, wire guides and access ports of subcutaneously implanted vascular catheters. A preferred implantable device is a stent. Surface modification of metal supports to improve biocompatibility is disclosed in Levy, U.S. Patent Publication 2003/0044408, the disclosure of which is incorporated herein by reference.
The therapeutic formulation 102 comprises particles of a biocompatible magnetic or magnetizable material that carry a therapeutic agent or comprise magnetically-responsive cells. Magnetic nanoparticles include particles that are permanently magnetic and those that are magnetizable upon exposure to an external magnetic field but lose their magnetization when the field is removed (superparamagnetic). Superparamagnetic particles are preferred to prevent irreversible aggregation of the particles. A therapeutic agent includes any material that is desired to be administered to a mammalian subject using the system and method of the invention.
Suitable therapeutic agents include, for example, pharmaceuticals, nucleic acids, such as transposons, signaling proteins that facilitate wound healing, such as TGF-β, FGF, PDGF, IGF and Gh proteins that regulate cell survival and apoptosis, such as Bcl-1 family members and caspases; tumor suppressor proteins, such as the retinoblastoma, p53, PAC, DCC.Nfl, NF2, RET, VHL and WT-1 gene products; viral vector systems; extracellular matrix proteins, such as laminins, fibronectins and integrins; cell adhesion molecules such as cadherins, N-CAMS, selectins and immunoglobulins; anti-inflammatory proteins such as Thymosin beta-4, IL-10 and IL-12. Examples of viral vector systems include adenovirus, retrovirus, adeno-associated virus and herpes simplex virus. Suitable therapeutic agents within these classes and other suitable therapeutic agents that can be used in the practice of the invention will be apparent to those skilled in the art. Typically, the therapeutic agent selected will be administered to a mammalian subject, such as human, in need of the treatment provided by the therapeutic agent.
The therapeutic formulation comprises nanoparticles with a permanently magnetic or a magnetizable (superparamagnetic) material in their composition. Mixed iron oxide (magnetite), as well as substituted magnetites that include additional elements (e.g. zinc), in the form of small sized nanocrystals retaining no magnetization upon magnetic field removal are an example of superparamagnetic materials useful for biomedical applications. The magnetic responsiveness of individual superparamagnetic nanocrystals typically sized below 20 nm is, however, too small to allow for efficient control of their biodistribution using magnetic forces.
One approach to overcome this limitation, while retaining superparamagnetism essential for the safe use of the nanoparticles, is to incorporate a large number of individual magnetite nanocrystals in a larger sized composite made of a water-insoluble biocompatible material, usually a polymer, which may be either biodegradable or non-biodegradable. Examples of such polymeric materials are poly(urethane), poly(ester), poly(lactic acid), poly(glycolic acid), poly(lactide-co-glycolide), poly(ε-caprolactone), poly(ethyleneimine), poly(styrene), poly(amide), rubber, silicone rubber, poly(acrylonitrile), poly(acrylate), poly(metacrylate), poly(α-hydroxy acid), poly(dioxanone), poly(orthoester), poly(ether-ester), poly(lactone), mixtures thereof and copolymers of corresponding monomers.
Such polymeric nanoparticles with incorporated superparamagnetic nanocrystals may be prepared, for example, by dispersing the superparamagnetic nanocrystals in an organic solvent, in which the polymer and/or the therapeutic agent is dissolved, emulsifying the organic phase in water in the presence of a suitable stabilizer, and finally eliminating the solvent to obtain solidified nanoparticles. Conditions of nanoparticle preparation should not be damaging for the therapeutic agent to be attached. For example the temperature is typically about 25° C. to about 37° C. Alternatively, or additionally, the therapeutic agent may be attached, or “tethered”, to the surface of pre-formed nanoparticles either by adsorption, charge complexation, or covalent binding. The magnetic nanoparticles that carry the therapeutic agent typically have an average diameter of about 50 nm to about 500 nm, for example about 200 nm to about 400 nm.
Preparation of Supermagnetic Nanoparticles for Biological Applications is Described in, for example, Cui, U.S. Pat. No. 7,175,912, the disclosure of which is incorporated herein by reference; Hu, U.S. Pat. No. 7,175,909, the disclosure of which is incorporated herein by reference; and Gruettner, U.S. Patent Publication 2005/0271745, the disclosure of which is incorporated herein by reference. Magnetic nanoparticles, information for the development of magnetic nano-particles, and regents for the preparation of magnetic nanoparticles (MNP) are available from Ferrotec Corporation, Bedford, N.H., USA.
Various procedures for associating therapeutic agents with magnetic nanoparticles so that the therapeutic agent is carried by the nanoparticle have been described in, for example, Chen, U.S. Pat. No. 7,081,489, the disclosure of which is incorporated herein by reference; Kresse, U.S. Pat. Nos. 6,048,515, and 6,576,221, the disclosures of which are incorporated herein by reference; and Bahr, U.S. Pat. No. 6,767,635, the disclosure of which is incorporated herein by reference.
The surface of the particle may be modified to allow for its chemical derivatization with a biomaterial. In one procedure, the particles can be coated with a thiol-reactive and photoactivatable polymer. Irradiation results in covalent binding of the polymer to the surface, and its thiol-reactive groups can subsequently be used to attach agents providing stealth properties in the blood circulation (see below), and/or specific binding to a target tissue. Photochemical activation of surfaces for attaching biomaterial is disclosed in Alferiev, U.S. Patent Publication 2006/0147413, the disclosure of which is incorporated herein by reference.
Extended circulation time of the magnetic nanoparticles that carry the therapeutic agent (i.e., “modified magnetic nanoparticles”) can be achieved by preventing their rapid opsonization and subsequent clearance by reticulo-endothelial system by doing one of the following: they can be coated with a biocompatible hydrophilic polymer (e.g., polyethyleneglycol, dextran), or, alternatively, surface modified with serum albumin that prevents or delays binding of opsonins to their surface. Procedures for preparing these polymers are given in the Examples. As described in the Examples, magnetic nanoparticles that carry D1, IgG and adenovirus have been prepared. Adenovirus is a promising gene vector for therapeutic applications. It should be understood that these embodiments are non-limiting examples.
Referring now to
In step 204, the therapeutic formulation is peripherally intravenously injected. For example, the therapeutic formulation may be injected in an arm vein where the therapeutic formulation is formed of a suspension of magnetic nanoparticles containing the therapeutic agent of interest. As another example, the injection may also consist of stem cells loaded with magnetic nanoparticles. Although the injection is described as being peripherally intravenously injected, it is contemplated that the injection may be performed at the site of the implanted device. The amount of the therapeutic formulation injected vary depending on the purpose of delivery, e.g., prophylactic, diagnostic, therapeutic, etc. and on the nature of the therapeutic agent involved. This amount can be determined by those skilled in the art.
In step 206, following the injection, capture of the therapeutic formulation by the implanted device is provided for a period of time. Although in an exemplary embodiment this duration may be in the range of about 15-30 minutes, it is understood that any suitable duration for capture of therapeutic formulation by the implanted device may be used. As described herein, the nanoparticle surface may be chemically modified to avoid rapid clearance by the reticulo-endothelial system.
In step 208, following the intravenous injection and magnetic localization, the patient undergoes a second intravenous catheter placement for apheresis, for example, by the retrieval system 108 (
Sequester refers to a magnetically induced sequestering of the particles of the therapeutic formulation as a result of a magnetic field gradient generated externally on an implanted intravascular device in a mammalian subject. Sequestering is also referred to as magnetically assisted “trapping” or “filtering.” The terms “retrieve” or “retrieval” refer to a magnetically induced and directed movement or sequestering of the particles of the therapeutic formulation as a result of applying a magnetic field gradient generated externally on the mammalian subject.
According to an exemplary embodiment, the invention provides peripheral intravenous magnetic nanoparticle administering with localization in an arterial stent in a mammalian subject (e.g. rat as the mammalian subject model).
Magnetic separation using a peripheral mesh operably connected to the mammalian subject is used in the filtering system as part of the therapeutic system that is inserted into an apheresis apparatus. Magnetic separation removes the particles that have not been sequestered (i.e., localized on the implanted device) to prevent them from accumulating in a reticulo-endothelial system of the mammalian subject. As shown in
The invention provides therapeutic formulations and systems that deliver-therapeutic agents to a specific site of treatment and removes therapeutic agents not delivered to the site of treatment. The therapeutic formulation and system are used in combination with surface modification of inert surfaces useful for implantation, which permits attachment of molecular therapeutics such as proteins, genes, vectors, or cells and avoid using organic solvents that can potentially damage both the surface and molecular therapeutics.
Use of peripheral intravenous administration of magnetic nanoparticles, followed by magnetic targeting to stents and/or other implantable devices, followed by retrieval of un-sequestered particles, can be used to treat virtually any disorder that can be accessed through vascular means, or any disorder for which intravascular therapy is optimal compared to gastrointestinal administration. It more effectively treats arterial disease (with additional courses of various therapies) in a patient that has already been subjected to metallic stent angioplasty. For example, pulmonary hypertension is now treated with peripheral intravenous administration of vasodilators, often using drug pumps. This approach is minimally effective and has serious side effects. In patients with pulmonary hypertension, it is contemplated that stents are deployed in the main or branch pulmonary arteries, and magnetic nanoparticles containing potent pulmonary vasodilator agents are then be injected and localized on to these stent structures thus providing local delivery to the pulmonary vasculature and optimizing the therapy for this difficult disorder. In addition, virtually any intravascular metallic implant (e.g., nonvascular, such as a bronchial stent) could also be adapted to take advantage of this approach.
The invention can be used in cell delivery experiments, in view of magnetic-stent mesh targeting results shown, to address two cell delivery major issues. First, the results demonstrate that cells can be targeted to a stent by a magnetic field gradient generated on the stent by a uniform magnetic field, and thus, this approach will likely be comparably successful in-vivo. Secondly, these data also demonstrate that the same magnetic trapping principles used to remove excess non-targeted particles can also be used to retrieve and remove cells that are not localized to a desired site.
Cell therapy at this time is just beginning early stages of clinical investigations, with mixed to poor results. One of the great problems with all of the cell therapy strategies is use thus far for either heart failure, tissue engineering, cell seeding of implants etc., is a failure to properly target and retain cells at the desired site. This has been most apparent in the cell therapy studies for heart failure thus far, where more than 95% of cells injected directly into the myocardium are lost due to circulatory clearance. The magnetic gradient targeting of cells loaded with magnetic nanoparticles offers one potential solution to the problem.
The advantageous properties of this invention can be observed by reference to the following examples, which illustrate but do not limit the invention.
Extended circulation time of the magnetic nanoparticles that carry the therapeutic agent (“modified magnetic nanoparticles”) can be achieved by coating with a biocompatible hydrophilic polymer or, alternatively, surface modification with serum albumin. Preparation of either type of modified particles includes a common step of producing a magnetically responsive agent, iron oxide. Fine dispersion of iron oxide in a suitable organic solvent is typically obtained as follows: an aqueous solution containing ferric and ferrous chlorides is mixed with an aqueous solution of sodium hydroxide. The precipitate is coated with oleic acid by short incubation at 90° C. in ethanol. The precipitate is washed once with ethanol to remove free acid and dispersed in chloroform.
The resulting organic dispersion of iron oxide in chloroform is used to dissolve a biodegradable polymer, polylactic acid (PLA) or its polyethyleneglycol conjugate (PLA-PEG), thus forming an organic phase. The organic phase is emulsified in an aqueous albumin solution (1%) by sonication on an ice bath followed by evaporation of the organic solvent. The particles are separated from the unbound albumin by repeated magnetic sedimentation/resuspension cycles.
Alternatively, a post-formation surface modification can be used. In this case, particles are formed as described above using a photoreactive polymer (a PBPC/PBMC (polyallylamine-benzophenone-pyridyldithio/maleimido-carboxylate polymer) as a stabilizer in the aqueous phase. Subsequent brief ultraviolet irradiation achieves covalent binding of the polymer to the magnetic nanoparticle. The resulting particles are reacted in suspension with a thiolated polyethyleneglycol, which allows better control over the particle size and the extent of surface modification. However, this procedure may not be suitable for use with photochemically labile therapeutic agents.
Albumin-coated and PLA-PEG magnetic particles typically have an average size of 200-260 nm. Particles surface-modified with polyethyleneglycol post-formation are typically 300-380 nm. All these particles exhibit superparamagnetic properties (i.e. have no magnetic remnants, which is critical in order to prevent potentially hazardous irreversible aggregation triggered by magnetic field exposure) and strong magnetic responsiveness as compared to commercially available magnetic particles that comprise non-biodegradable polymers.
Referring now to
The 304 stent in these rat studies was investigated both with and without a magnetic field across the stent. In addition, magnetic nanoparticles without a stent were also injected into animals, with investigations to see if there was any localization that took place without stent deployment.
Methods: Paclitaxel was dispersed within the polylactic acid (PLA) matrix of magnetite-loaded nanoparticles (MNP). Adenovector-tethered MNP were prepared using photochemical surface activation with the subsequent attachment of a recombinant adenovirus binding protein, D1, and then end formation of nanoparticle-adenovirus complexes. Plasmid vectors were charge-associated with PEI-functionalized MNP. Magnetic trapping of MNP on the steel meshes and stents under different field strength and flow conditions was studied in a closed circuit flow system. Transfection/transduction using gene vectors associated with magnetic nanoparticles was studied in smooth muscle (SMC) and endothelial cells. Magnetic force-driven localization of reporter gene-associated MNP and MNP-loaded cells on pre-deployed stents and resulting transgene expression were studied a rat carotid stent model.
Protocol (
Within 30 minutes of the first injection, a 304 steel stent was deployed in the left common carotid artery. Immediately after that, another 400 μl dose of the nanoparticles was injected intravenously, either with or without 300 G magnetic field created by 2 electromagnets placed adjacent to the neck of the animal. The field was maintained for 5 min after injection, after which the arteries were harvested. The stents were removed and nanoparticles deposition on stents and luminal aspects of arteries was examined by fluorescence microscopy. After acquisition of respective images BODIPY-labeled (red fluorescent) PLA was extracted in acetonitrile and its concentration was determined fluorimetrically against a calibration curve. For fluorescence control/background purposes in one additional rat no nanoparticles were injected and the stented arteries were removed and similarly processed to obtain background fluorescence values.
Results: In a closed circuit flow system MNP and cells loaded with MNP were trapped on magnetic meshes with exponential kinetics. Rat aortic SMC (A10) cultured on 316L stainless steel grids showed 100-fold increased gene transduction when exposed to the MNP-AdGFP compared to controls. Paclitaxel MNP demonstrated inhibition of A10 cells growth in culture. Systemic intravenous injection in rats of MNP resulted in 7-fold higher localization of MNP on intra-arterial stents compared to controls when carried out in the presence of external magnetic field (300-G).
The results of these studies are shown in
Conclusion: Magnetically targeted drug/gene delivery using high field gradients to stented arteries offers great promise because of the potential for not only initial dosing, but repeated administration utilizing magnetic field-mediated localization of vectors to the stented arterial wall. These results clearly demonstrate a significantly higher nanoparticles deposition on stents and adjacent arterial tissue in the group where systemic intravenous delivery was carried out in conjunction with an electromagnetic field compared to “no field” controls. Non-stented arteries demonstrated no nanoparticle localization with or without a magnetic field.
This Example illustrates removal of residual nanoparticles and cells with an external magnetically responsive steel filter (“magnetic trap”).
The following experimental protocol was used to determine the kinetics of magnetic nanoparticles and cell capture, respectively, using the “Magnetic Trap” apparatus.
PLA-PEG based magnetic nanoparticles were diluted in 50 ml of 5% glucose solution and filtered (5 μm cut-off) to ensure uniform particle size. Alternatively, bovine aortic endothelial cells (BAECs) were grown to confluence and incubated with fluorescently labeled magnetic nanoparticles on a cell culture magnet (Dexter Magnet Technologies, Elk Grove Village, Ill.) producing a strong magnetic field (500 Gauss) for 24 hours, followed by cell washing and resuspension in fresh cell culture medium. Untreated cells were used as a control.
The flow system 400 was purged with 5% glucose or cell culture medium, respectively, (washing step) followed by one cycle of nanoparticle/cell suspension in the loop A to equilibrate the system (priming step). Next, nanoparticle/cell suspension was redirected to the loop B including the trapping device 402 equipped with one or three 430 stainless steel mesh pieces (total weight of 0.30±0.01 and 0.83±0.05 g, respectively) and an external magnetic field of 800 Gauss generated by two solenoid electromagnets 404. A to sample was withdrawn and further used as a reference (100% of NP/cells). Additional samples were collected at predetermined time points during 2.5 hours and 35 min in the nanoparticles and cell retrieval experiments, respectively. The effect of the magnetic field exposure was Investigated In comparison to “no field” conditions employed during the first 25 and at 3 minutes into the experiment for the nanoparticles and cells, respectively, after which the field was applied. A NP/cell fraction remaining in the circulation at a given time point was determined fluorimetrically (λex=540 nm, λem=575 nm) in relation to the reference sample. The mesh samples were visualized under the fluorescent microscope using red fluorescence filter set (540/575 nm) immediately and 24 hours after completing the experiment. Collected cells were incubated overnight at 37 C and their morphology was examined microscopically.
Referring to
Magnetically responsive cells captured at the end of the experiment and spreading of the cells 24 hours later were also demonstrated. Cells sampled from the circulation during the cell capture experiment demonstrate normal morphology characteristic of BAEC. The growth conditions are 10% FBS supplemented DMEM at 37° C. and 5% CO2. The meshes used in the magnetic trap in this experiment were visualized under the fluorescent microscope immediately and 24 hours post experiment in order to evaluate the morphology of the captured cells. A high number of cells are shown to be initially captured by the edges of the mesh, of which those located most adjacent to the mesh surface form a layer of uniformly spread cells after 24 hours over the expanse of the entire surface of the mesh framework thus showing the viability of the magnetically targeted cells. Capture of magnetic carrier nanoparticles at the end of experiment was demonstrated on the surface of the 430 stainless steel mesh under the field of 800 Gauss (“The Magnetic Trap”), as compared with a control mesh at the beginning of the experiment before application of magnetic field.
Referring now to
Referring now to
BAEC (bovine aortic endothelial cells) were incubated with various doses of MNPs on a magnet. As shown in
Referring now to
The behavior of magnetic cell capture on a 304 stainless steel stent in vitro was characterized using closed-loop flow system 400 (
A comparable result was observed in a proof-of-concept in vivo animal experiment, employing well characterized rat carotid stenting model. Stainless steel 304 stent was deployed in the rat carotid artery. BAEC cells preloaded with fluorescent MNP were transthoracically injected into the left ventricular cavity. Animals were exposed to a magnetic field during 5 min including the injection time. Control rats underwent an identical procedure, where no magnetic field was employed. The animals were sacrificed 5 min after delivery, and the explanted stents were examined by fluorescence microscopy. As shown in
Conclusion: Homogeneous magnetic field used in the described above rat model allowed generation of sufficient magnetic field gradients on 304 stent struts for successful capture of magnetically responsive cells from blood circulation.
Referring now to
Protocol: In order to attain greater insights regarding long term residence and functional competence of delivered cells a series of experiments were carried out using BAEC cells co-treated with MNPs and luciferase encoding adenovirus. BAEC cells were co-treated with MNP and luciferase adenovirus. Luciferase adenoviral transduction was used to determine cell localization to implanted stents in vivo by a bioluminescence technique. After adenovirus infection and preloading with MNPs the cells were locally delivered to an isolated stented segment of the rat carotid in the presence of a magnetic field (Mag+group).
Under interrupted flow (
Under uninterrupted flow (
Results: Two days after delivery the animals were imaged using a bioluminescence detection system with the injection of luciferin. The signal emitted from the stented arterial segment due to the luciferase transgene was an order of magnitude higher in the animals that received cells in the presence of a magnetic field (Mag+group). The Quantitative data shown in
Conclusion: The functionality of magnetically targeted cells to stent surfaces was demonstrated by a robust adenoviral-transgene expression 2 days post treatment. This demonstrates magnetic targeting of genetically modified cells as a therapeutic method for vascular applications of implantable devices.
Having described the invention, we now claim the following and their equivalents.
This application claims priority on U.S. Provisional Patent Application 60/794,191, “Magnetic Gradient Targeting and Sequestering of Therapeutic Formulations and Therapeutic Systems Thereof,” filed Apr. 21, 2006, the disclosure of which is incorporated herein by reference.
This Research was supported in part by U.S. Government funds (National Heart Lung and Blood Institute Grant No. HL72108 and NSF Grant No. 9984276), and the U.S. Government may therefore have certain rights in the invention.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/US07/09603 | 4/20/2007 | WO | 00 | 1/22/2009 |
Number | Date | Country | |
---|---|---|---|
60794191 | Apr 2006 | US |