1. Field of the Invention
The present invention relates to a magnetic head having a spin torque oscillator, and a magnetic recording device.
2. Related Art
In the 1990's, the recording density and capacity of HDDs (Hard Disk Drives) dramatically increased, with MR (Magneto-Resistive effect) heads and GMR (Giant Magneto-Resistive effect) heads being put into practical use. However, the problems of heat fluctuations of magnetic recording media became apparent in the early 2000's, and the increase of the recording density temporarily slowed down. In 2005, perpendicular magnetic recording, which is more suitable for high-density recording than in-plane magnetic recording in principle, was put into practical use. Since then, the recording density of HDDs has been increasing at an annual rate of approximately 40%.
The latest examinations on recording density show that the recording density of 400 Gbits/inch2 has been reached. If the growth continues at this rate, the recording density of 1 Tbits/inch2 will be achieved around the year 2012. However, achieving such a high recording density is not easy by the perpendicular magnetic recording method by itself, as the problem of heat fluctuations has resurfaced.
To counter this problem, a “high-frequency assisted magnetic recording method” has been suggested. By the high-frequency assisted magnetic recording method, a high-frequency magnetic field at a frequency in the neighborhood of the resonant frequency of a magnetic recording medium, which is much higher than the recording signal frequency, is locally applied to the magnetic recording medium. As a result, the magnetic recording medium where the high-frequency magnetic field applied resonates, and its coercivity (Hc) decreases to half the original value. Having a high-frequency magnetic field been overlapped with the recording magnetic field, magnetic recording on a magnetic recording medium having higher coercivity (Hc) and greater magnetic anisotropic energy (Ku) can be feasible (see U.S. Pat. No. 6,011,664, for example). However, according to U.S. Pat. No. 6,011,664, a high-frequency magnetic field is generated with a coil. By this method, the intensity of the high-frequency magnetic field that can be applied to the recording area rapidly decreases, as the recording area on the magnetic recording medium is made smaller so as to increase the recording density. Therefore, it is difficult to reduce the coercivity of the recording area.
To counter this problem, a method of utilizing spin torque oscillators has been suggested (see United States Patent Application Publication Nos. 2005/0023938 and 2005/0219771, for example). According to United States Patent Application Publication Nos. 2005/0023938 and 2005/0219771, spin torque oscillators are formed with a stacked film consisting of a spin polarization layer, a nonmagnetic layer provided on the spin polarization layer, and a spin oscillation layer provided on the nonmagnetic layer. When a direct current is applied to the spin torque oscillators, the electron spins passing through the spin polarization layer are polarized. The polarized spin current applies a spin torque to the spin oscillation layer, so that the magnetization of the spin oscillation layer has ferromagnetic resonance. As a result, a high-frequency magnetic field is generated from the spin oscillation layer.
This phenomenon can be often observed if the device size is several tens of nanometers or less. Therefore, the region where the high-frequency magnetic field generated from the spin torque oscillators is applied is limited to a very small area at a distance of several tens of nanometers from the spin torque oscillators. A magnetic recording head with the spin torque oscillators, whose oscillation frequency is set at a value equal to or in the neighborhood of the ferromagnetic resonant frequency of the recording layer of the magnetic recording medium, should be provided near the recording magnetic pole and the magnetic recording medium. With this arrangement, the high-frequency magnetic field generated from the spin torque oscillators can be applied only to the very small recording area on the recording layer of the magnetic recording medium. As a result, only the coercivity of the very small recording area can be reduced.
When the coercivity is reduced, the magnetization of the recording area can be reversed or information writing can be performed by applying a recording magnetic field to the recording area with the use of the recording magnetic pole.
Meanwhile, there is a method of performing recording on a magnetic recording medium having high coercivity (Hc) with the use of a diagonal recording magnetic field. According to the Stoner-Wohlfarth model, in a case of a magnetic field in a 45-degree direction, magnetic reversal of a magnetic recording medium having high coercivity (Hc) can be achieved with a small recording magnetic field. By the perpendicular magnetic recording method, it is possible to generate a diagonal recording magnetic field from a plane perpendicular to the plane of the recording magnetic pole facing the recording medium. To generate a diagonal magnetic field having a rapid field intensity change, an auxiliary magnetic pole can be effectively provided near the recording magnetic pole. The gap distance between the plane perpendicular to the plane of the recording magnetic pole facing the recording medium and the plane perpendicular to the plane of the auxiliary magnetic pole facing the recording medium is adjusted so that a magnetic field is diagonally generated in the recording medium and a rapid intensity change can be achieved. Accordingly, a high-density recording can be performed with a magnetic recording head having a recording magnetic pole and an auxiliary magnetic pole. In this manner, a magnetic recording medium having higher coercivity (Hc) and greater magnetic anisotropic energy (Ku) can be used.
To effectively reduce the coercivity of the recording area by applying a high-frequency magnetic field generated from the spin torque oscillators, the oscillation frequency of the spin torque oscillators needs to be substantially equal to the ferromagnetic resonant frequency of the magnetic recording medium. The oscillation frequency of the spin torque oscillators increases in proportion to the effective magnetic field Heff applied to the spin oscillation layer. This effective magnetic field Heff is determined by an internal magnetic field (such as the magnetic anisotropy) of the spin oscillation layer and an external magnetic field (such as a recording magnetic field). In a case where the spin torque oscillators are placed near the recording magnetic pole, the magnetic field applied from the recording magnetic pole to the spin torque oscillator has a value as large as several kOe. As a result, the recording magnetic field applied to the spin torque oscillators becomes much greater than the internal magnetic field, and the oscillation frequency of the spin torque oscillators varies with the direction of the write magnetic field.
The present invention has been made in view of these circumstances, and an object thereof is to provide a magnetic head that can restrict the variation of the oscillation frequency of a spin torque oscillator placed in the vicinity of the recording magnetic pole, and a magnetic recording device that has the magnetic head.
A magnetic head according to a first aspect of the present invention includes: a recording magnetic pole to generate a recording magnetic field; a spin torque oscillator formed in the vicinity of the recording magnetic pole; and a magnetic field applying unit configured to apply a magnetic field to the spin torque oscillator, the magnetic field applied to the spin torque oscillator by the magnetic field applying unit being perpendicular to a recording magnetic field generated from the recording magnetic pole.
A magnetic head according to a second aspect of the present invention includes: a recording magnetic pole to generate a recording magnetic field; a spin torque oscillator formed in the vicinity of the recording magnetic pole; and a magnetic field applying unit provided at either end portion of the spin torque oscillator in a direction perpendicular to a direction parallel to a line connecting the recording magnetic pole and the spin torque oscillator in a plane parallel to an air bearing surface, the magnetic field applying unit configured to apply a magnetic field to the spin torque oscillator, the spin torque oscillator including: a first magnetic layer comprising at least one layer of magnetic film; a second magnetic layer comprising at least one layer of magnetic film; an intermediate layer provided between the first magnetic layer and the second magnetic layer; and an electrode comprising a first electrode layer placed on a face of the first magnetic layer on the opposite side from the intermediate layer, and a second electrode layer placed on a face of the second magnetic layer on the opposite side from the intermediate layer, the electrode being capable of applying a current flowing in a direction perpendicular to film planes of the first magnetic layer, the intermediate layer, and the second magnetic layer, the first electrode layer, the first magnetic layer, the intermediate layer, the second magnetic layer, and the second electrode layer being stacked in a direction parallel to a direction connecting the two end portions of the spin torque oscillator.
A magnetic head according to a third aspect of the present invention includes: a recording magnetic pole to generate a recording magnetic field; a spin torque oscillator formed in the vicinity of the recording magnetic pole; and a magnetic field applying unit provided at either end portion of the spin torque oscillator in a direction perpendicular to a direction parallel to a line connecting the recording magnetic pole and the spin torque oscillator in a plane parallel to an air bearing surface, the magnetic field applying unit configured to apply a magnetic field to the spin torque oscillator, the spin torque oscillator including: a first magnetic layer comprising at least one layer of magnetic film; a second magnetic layer comprising at least one layer of magnetic film; an intermediate layer provided between the first magnetic layer and the second magnetic layer; and an electrode comprising a first electrode layer placed on a face of the first magnetic layer on the opposite side from the intermediate layer, and a second electrode layer placed on a face of the second magnetic layer on the opposite side from the intermediate layer, the electrode being capable of applying a current flowing in a direction perpendicular to film planes of the first magnetic layer, the intermediate layer, and the second magnetic layer, the first electrode layer, the first magnetic layer, the intermediate layer, the second magnetic layer, and the second electrode layer being stacked in a direction perpendicular to a direction connecting the two end portions of the spin torque oscillator.
A magnetic recording device according to a fourth aspect of the present invention includes: a magnetic recording medium; and the magnetic head according to any one of first to third aspects, wherein writing on the magnetic recording medium is performed with the use of the magnetic recording head.
a) and 23(b) illustrate a discrete-track magnetic recording medium that can be used in each of the embodiments; and
a) and 24(b) illustrate a discrete-bit magnetic recording medium that can be used in each of the embodiments.
The following is a description of embodiments of the present invention, with reference to the accompanying drawings.
Referring to
As shown in
The magnetic reproducing element 16 may be a GMR (Giant Magneto-Resistive effect) element or a TMR (Tunneling Magneto-Resistive effect) element. The magnetic reproducing element 16 is interposed between the end portions of the magnetic shields 12 and 14 on the side of a magnetic recording medium 100.
The magnetic recording medium 100 includes a magnetic recording medium substrate 102, a soft magnetic layer 103 placed on the magnetic recording medium substrate 102, and a magnetic recording layer 104 placed on the soft magnetic layer 103. The magnetic reproducing element 16 is placed in the vicinity of the magnetic recording layer 104 of the magnetic recording medium 100. The magnetic reproducing element 16 and the area of the magnetic recording layer 104 located immediately below the magnetic reproducing element 16 (the read area) form a magnetic circuit. The magnetic resistance of this magnetic circuit varies with the magnetization direction recorded in the read area of the magnetic recording layer 104. The magnetic reproducing element 16 detects the varying magnetic resistance, so as to read (reproduce) the magnetization direction recorded on the magnetic recording layer 104 (recorded information). In
The writing head unit 20 includes a magnetic core 21 formed with a main magnetic pole (recording magnetic pole) 22 and a return yoke (a magnetic shield) 24, an electromagnetic coil 27 for exciting the magnetic core 21, a spin torque oscillator 26, and an electromagnet 28 for applying a magnetic field to the spin torque oscillator 26. The return yoke 24 includes a main portion 24a, a front portion 24b connected to the end portion of the main portion 24a on the side of the magnetic recording medium 100, and a rear portion 24c connected to the end portion of the main portion 24a on the opposite side from the magnetic recording medium 100. The front portion 24b extends in a direction parallel to an air bearing surface 22a of the recording magnetic pole. The rear portion 24c is also connected to the end portion of the main magnetic pole 22 on the opposite side from the magnetic recording medium 100. The spin torque oscillator 26 is interposed between the end portion of the main magnetic pole 22 on the side of the magnetic recording medium 100 and the front portion 24b of the return yoke 24. The electromagnetic coil 27 is designed to surround or wind around the rear portion 24c of the return yoke 24, so as to excite the magnetic core 21. In this embodiment, the spin torque oscillator 26 is provided on the trailing side of the main magnetic pole 22.
The electromagnet 28 includes a C-shaped magnetic core 28a and electromagnetic coils 28b for exciting the magnetic core 28a (see
The components of the reproducing head unit are insulated from the components of the writing head unit by an insulator (not shown) such as alumina. In
The magnetization of the magnetic recording layer 104 is controlled in a predetermined direction by the magnetic field applied by the writing head unit 20, and writing is performed. The reproducing head unit 10 reads the magnetization direction of the magnetic recording layer 104.
With the use of a constant current source 70 that is suitably placed inside or outside the magnetic head, a predetermined direct current can be applied to the spin torque oscillator 26 via the electrode layer 261 and the electrode layer 265, as shown in
As in a second specific example shown in
As can be seen from
Next, the principles of the ferromagnetic resonance of the magnetization of the oscillation layer 264 are described. When a current is applied to the electrode layer 265, the oscillation layer 264, the intermediate layer 263, the spin injection layer 262, and the electrode layer 261 in this order, electrons flow in the opposite direction from the current flowing direction. In this case, the electron spins flowing from the electrode layer 261 into the spin injection layer 262 and passing through the spin injection layer 262 are polarized in a direction parallel to the magnetization direction of the spin injection layer 262. The polarized electrons then flow into the oscillation layer 264 via the intermediate layer 263 having a high spin transmission rate, and cause a spin torque in the magnetization of the oscillation layer 264.
In a case where the current is applied in the opposite direction from the above, electrons having spins in the opposite direction from the magnetization direction of the spin injection layer 262 are reflected by the interface between the intermediate layer 263 and the spin injection layer 262. The reflected electrons are injected into the oscillation layer 264 through the intermediate layer 263, and cause a spin torque in the magnetization of the oscillation layer 264. As a result, the magnetization of the oscillation layer 264 exhibits ferromagnetic resonance (magnetization precession), and a high-frequency magnetic field is generated in accordance with the magnetic characteristics of the oscillation layer 264 and the intensity of the magnetic field applied by the electromagnet 28.
As shown in
The electrode layer 261 and the electrode layer 265 of the spin torque oscillator 26 are preferably made of a material such as Ti or Cu, which has a low electric resistance and is not easily oxidized. The intermediate layer 263 is made of a material having a high spin transmission rate, such as Cu, Ag, or Au. Examples of the materials for the spin injection layer 262 and the oscillation layer 264 include:
Alternatively, to adjust the saturation flux density and the anisotropic magnetic field, the above materials may be stacked to form the spin injection layer and the oscillation layer. Also, to increase the oscillation frequency of the oscillation layer, or to effectively secure the magnetization of the spin injection layer, the above materials may be stacked, with a nonmagnetic layer being interposed in between, so as to form the spin injection layer 262 or the oscillation layer 264. The resultant stacked structure may be a stacked ferri-structure in which the magnetization directions of the above materials are antiparallel to one another, or a stacked structure in which the magnetization directions of the above materials are parallel to one another. In such a case, it is preferable that a noble metal such as Cu, Pt, Au, Ag, Pd, or Ru is used for the nonmagnetic layer, and it is possible to use a nonmagnetic transition metal such as Cr, Rh, Mo, or W.
Further, a stacked structure of a ferromagnetic layer and an antiferromagnetic layer that takes advantage of exchange coupling may be used for the spin injection layer 262 or the oscillation layer 264. This is because the magnetization of the spin injection layer can be effectively secured as the oscillation frequency of the oscillation layer is increased. Here, examples of the material for the antiferromagnetic layer include FeMn, NiMn, FeNiMn, FeMnRh, RhMn, CoMn, CrMn, CrMnPt, CrMnRh, CrMnCu, CrMnPd, CrMnIr, CrMnNi, CrMnCo, CrMnTi, PtMn, PdMn, PdPtMn, and IrMn.
The thickness of the oscillation layer 264 is preferably 5 nm or greater so as to apply a sufficient high-frequency magnetic field to the magnetic recording medium 100, and is preferably 20 nm or smaller so as to achieve a uniform oscillation mode. The thickness of the spin injection layer 262 is preferably 2 nm or greater, so as to restrict the oscillation at the spin injection layer 262.
The effects of this embodiment are now described.
In this embodiment, on the other hand, the direction of the bias magnetic field Hbias is substantially perpendicular to the direction of the write magnetic field Hwrite, as shown in
Next, modifications of the magnetic head of this embodiment are described.
Like the first embodiment, this modification can restrict the variation of the spin torque oscillator frequency due to a recording magnetic field.
In this modification, as the spin torque oscillator 26, it is possible to employ a spin torque oscillator having the electrode layer 265, the oscillator layer 264, the intermediate layer 263, the spin injection layer 262, and the electrode layer 261 stacked in a direction substantially parallel to the direction of the magnetic field applied to the spin torque oscillator 26 by the electromagnet 28, as shown in
The first through fourth portions are designed to surround the main magnetic pole 22. Accordingly, the fourth portions 28a4 are interposed between the main magnetic pole 22 and the reproducing head unit (not shown). Also, a pair of electromagnetic coils 28b are provided to surround the respective third portions 28a3.
Like the first embodiment, this modification can restrict the variation of the spin torque oscillator frequency due to a recording magnetic field.
In this modification, as the spin torque oscillator 26, it is possible to employ a spin torque oscillator having the electrode layer 265, the oscillator layer 264, the intermediate layer 263, the spin injection layer 262, and the electrode layer 261 stacked in a direction substantially parallel to the direction of the magnetic field applied to the spin torque oscillator 26 by the electromagnet 28, as shown in
Like the first embodiment, this modification can also restrict the variation of the spin torque oscillator frequency due to a recording magnetic field.
In this modification, as the spin torque oscillator 26, it is possible to employ a spin torque oscillator having the electrode layer 265, the oscillator layer 264, the intermediate layer 263, the spin injection layer 262, and the electrode layer 261 stacked in a direction substantially parallel to the direction of the magnetic field applied to the spin torque oscillator 26 by the electromagnet 28, as shown in
In a magnetic recording head having a conventional single-pole structure, a perpendicular recording magnetic field is generated immediately below the main magnetic pole, but an insufficient diagonal recording magnetic field is generated in the magnetic recording medium. Therefore, it is preferable that a return yoke (a shield) is placed in the vicinity of the main magnetic pole. In a case where the electromagnet 28 is placed in the vicinity of the main magnetic pole 22 as in this modification (see
Like the first embodiment, this modification can also restrict the variation of the spin torque oscillator frequency due to a recording magnetic field.
In a magnetic recording operation utilizing a high-frequency assisted magnetic field, writing is performed at the portion at which the in-plane high-frequency magnetic field generated from the spin torque oscillator 26 is combined with the recording magnetic field generated from the main magnetic pole 22. Accordingly, in a magnetic recording operation utilizing a high-frequency assisted magnetic field, the magnetization information in the recording area with respect to the recording magnetic field generated from the main magnetic pole 22 is more stable than in a conventional magnetic recording operation. Thus, the spin torque oscillator 26 can be placed on the leading side of the main magnetic pole 22 as in this modification.
In this modification, the electromagnetic coils 28b of the electromagnet 28 may be designed to surround the two portions of the magnetic core 28a perpendicular to the air bearing surface of the spin torque oscillator, as shown in
Like the first embodiment, this modification can also restrict the variation of the spin torque oscillator frequency due to a recording magnetic field.
Referring now to
In a magnetic head of the first embodiment, a bias magnetic field is applied to the spin torque oscillator 26 by the electromagnet 28. In the magnetic head of this embodiment, however, a bias magnetic field is applied by hard bias film, instead of the electromagnet 28. More specifically, as shown in
The method of applying a bias magnetic field to the spin torque oscillator 26 by virtue of the hard bias film 30 as in this embodiment has the advantage that the resultant structure is simple and is easier to produce than a structure with an electromagnet. The bias layer 266 of the spin torque oscillator 26 reinforces the magnetic field of the hard bias film 30, and is used to increase the magnetization of the oscillation layer 264 and the spin injection layer 262, and to increase the effective magnetic field in the track width direction by virtue of strong exchange coupling. Accordingly, if the bias magnetic field generated by the hard bias film 30 is sufficient, the bias layer 266 is not necessary.
As shown in
As shown in
As described above, the magnetic field applied to each of the first and second specific examples of the spin torque oscillator 26 by the hard bias film 30 is a magnetic field in a direction that is perpendicular to the magnetic field generated between the main magnetic pole 22 and the shield 24b in the track longitudinal direction (or is parallel to the track width). With this arrangement, the oscillation frequency can be stabilized, regardless of the direction of the writing magnetic field, as described above.
As in the first embodiment of the present invention, the spin injection layer 262 and the bias layer 266 may be formed with materials having excellent vertical orientation, including CoCr magnetic layers such as a CoCrPt layer, a CoCrTa layer, a CoCrTaPt layer, and a CoCrTaNb layer, CoPt or FePt alloy magnetic layers, and SmCo alloy magnetic layers. In this case, a base layer may be employed so as to control the magnetization direction of the magnetic layer to be perpendicular or parallel to the film plane. For example, to make the magnetization direction parallel to the film plane, it is possible to employ a nonmagnetic transition metal such as Cr, Ta, Ti, or W, or an alloy of those metals, or a stack film of those metals. Also, the spin injection layer 262 and the bias layer 266 may be formed with stacked structures including a ferromagnetic layer and an antiferromagnetic layer utilizing exchange coupling. In such a case, the ferromagnetic layer may be one of the above CoCr alloy layers, CoPt alloy layers, FePt alloy layers, and SmCo alloy layers, or a soft magnetic layer made of CoFe, CoNiFe, NiFe, CoZrNb, FeN, FeSi, or FeAlSi, or an alloy layer formed by adding Al, Si, Ge, Mn, or Cr to CoFe. The antiferromagnetic layer may be made of a material such as FeMn, NiMn, FeNiMn, FeMnRh, RhMn, CoMn, CrMn, CrMnPt, CrMnRh, CrMnCu, CrMnPd, CrMnIr, CrMnNi, CrMnCo, CrMnTi, PtMn, PdMn, PdPtMn, or IrMn. It is also possible to employ a stacked ferri-structure in which a ferromagnetic film, a nonmagnetic film, and a ferromagnetic film are stacked, or a stacked structure in which a stacked ferri-structure and an antiferromagnetic film are stacked. In such a case, the above described ferromagnetic layer can be used as the ferromagnetic films. It is preferable that a noble metal such as Cu, Pt, Au, Ag, Pd, or Ru is used for the nonmagnetic film. Also, a nonmagnetic transition metal such as Cr, Rh, Mo, or W can be used for the nonmagnetic film. The above described antiferromagnetic layer may be used for the antiferromagnetic film.
Next, modifications of this embodiment are described.
In a magnetic recording head having a conventional single-pole structure, a perpendicular recording magnetic field is generated immediately below the main magnetic pole, but an insufficient diagonal recording magnetic field is generated in the magnetic recording medium. Therefore, it is preferable that a return yoke (a shield) is placed in the vicinity of the main magnetic pole. In a case where the electromagnet 28 is placed in the vicinity of the main magnetic pole 22 as in this modification, however, the in-plane magnetic field generated from the two magnetic poles of the electromagnet 28 is combined with the perpendicular recording magnetic field generated from the main magnetic pole 22, and a diagonal recording magnetic pole is generated within the magnetic recording medium 100 accordingly. With this arrangement, the in-plane high-frequency magnetic field and the diagonal recording magnetic field can be combined with each other within the medium, without the return path (the shield) 24b. In a magnetic recording operation utilizing such a diagonal recording magnetic field, recording can be performed with a smaller magnetic field than the normal coercivity of the magnetic recording medium 100.
Like the second embodiment, this modification can also restrict the variation of the spin torque oscillator frequency due to a recording magnetic field.
In a magnetic recording operation utilizing a high-frequency assisted magnetic field, writing is performed at the portion at which the in-plane high-frequency magnetic field generated from the spin torque oscillator 26 is combined with the recording magnetic field generated from the main magnetic pole 22. Accordingly, in a magnetic recording operation utilizing a high-frequency assisted magnetic field, the magnetization information in the recording area with respect to the recording magnetic field generated from the main magnetic pole 22 is more stable than in a conventional magnetic recording operation. Thus, the spin torque oscillator 26 can be placed on the leading side of the main magnetic pole 22 as in this modification.
Like the second embodiment, this modification can also restrict the variation of the spin torque oscillator frequency due to a recording magnetic field.
As described above, each magnetic head of the first and second embodiments and their modifications includes a main magnetic pole (the recording magnetic pole), a spin torque oscillator formed in the vicinity of the main magnetic pole, and an electromagnet or a hard bias film for applying a magnetic field to the spin torque oscillator. The bias magnetic field generated from the electromagnet or the hard bias film is substantially perpendicular to the direction of the magnetic field generated from the main magnetic pole. More specifically, the magnetic poles of the electromagnet or the hard bias film is placed along the end portions in the track width direction, so that the bias magnetic field generated from the magnetic poles of the electromagnet or the hard bias film is applied in the track width direction. The electromagnet has a structure formed by winding a coil around a magnetic member having a closed magnetic path and a void therein. A large magnetic field is generated in the void in a direction perpendicular to the pole facing plane. In a case where the hard bias film is used, it is preferable that a pair of hard bias films are placed at the ends of the track width direction, so as to increase the uniformity and intensity of the bias magnetic field.
The spin torque oscillator has a stacked structure formed with an oscillator layer, an intermediate layer, and a spin injection layer. The spin torque oscillator also has electrodes and a direct current source for generating a driving current required for oscillations. In a case where the film planes of the respective layers are parallel to the moving direction of the magnetic recording medium, a spin injection layer having magnetization oriented in a direction perpendicular to the film planes is used, and a bias magnetic field is applied in the track width direction, so as to effectively cause oscillations in the magnetization of the oscillation layer. In a case where the film planes of the respective layers are parallel to the track width direction, a spin injection layer having magnetization oriented in the in-plane direction is used, and a bias magnetic field is applied in the track width direction, so that the magnetization of the oscillation layer oscillate effectively.
Here, to reduce the adverse influence of the magnetic body of the electromagnet or the magnetic field of the hard bias film on the magnetic recording medium located immediately below the electromagnet or the hard bias film, it is preferable that the magnetic body of the electromagnet or the hard bias film is placed further behind the air bearing surface, compared with the spin torque oscillator and the recording magnetic pole.
Next, a magnetic recording and reproducing device in accordance with the present invention is described. The magnetic head of each of the embodiments of the present invention and their modifications described with reference to
When the magnetic disk 200 is rotated, the air bearing surface (ABS) of the head slider 153 is maintained at a predetermined floating distance from the surface of the magnetic disk 200.
The suspension 154 is connected to one end of an actuator arm 155 that has a bobbin portion for holding a driving coil (not shown). A voice coil motor 156 that is a kind of a linear motor is attached to the other end of the actuator arm 155. The voice coil motor 156 is formed with the driving coil (not shown) wound around the bobbin portion of the actuator arm 155, and a magnetic circuit that includes a permanent magnet and a facing yoke that face each other and sandwich the driving coil.
The actuator arm 155 is held by ball bearings (not shown) provided at an upper portion and a lower portion of a fixed axis 157, and can freely rotate and slide by virtue of the voice coil motor 156.
The head slider 153 having one of the reproducing magnetic head described with reference to
Here, the predetermined floating distance is maintained between the air bearing surface (ABS) of the head slider 153 and the surface of the magnetic disk 200.
The embodiments of the present invention have been described so far by way of specific examples. However, the present invention is not limited to those specific examples. For example, magnetic recording media that can be used in the present invention are not limited to the magnetic recording medium 100 shown in
Also, the materials and shapes of the components of magnetic heads are not limited to those described as the specific examples, and any materials and shapes that can be selected by those skilled in the art can be used to achieve the same effects as above.
Also, magnetic recording media that can be used in magnetic recording and reproducing devices are not limited to hard disks, but any other magnetic recording media such as flexible disks and magnetic cards can be used. Further, it is possible to employ a so-called “removable”-type device from which a magnetic recording medium can be detached.
The width (TS) of the spin oscillator in the recording track width direction is made equal to or greater than the width (TW) of each of the recording tracks 286 and equal to or smaller than the recording track pitch (TP), so that a decrease in the coercivity of the adjacent recording tracks due to the leakage high-frequency magnetic field generated from the spin oscillator can be effectively restricted. Accordingly, in the magnetic recording medium in this specific example, high-frequency assisted magnetic recording can be performed effectively only on desired recording tracks 286.
In this specific example, a high-frequency assisted recording device having narrow tracks and a high track density is more readily realized than in a case where a multiparticle vertical medium of a so-called “no-gap film type” is used. Also, in a conventional magnetic recording head, an unwritable medium magnetic material with high magnetic anisotropic energy (Ku), such as FePt or SmCo, is used according to the high-frequency assisted magnetic recording method, so as to further reduce the nanometer size of the medium magnetic particles. In this manner, a magnetic recording medium having a much higher line recording density in the recording track direction (the bit direction) than a conventional magnetic recording medium can be obtained.
As shown in
In this specific example, the width (TS) of the spin oscillator in the recording track width direction is made equal to or greater than the width (TW) of each of the recording tracks 286 and equal to or smaller than the recording track pitch (TP), so that a decrease in the coercivity of the adjacent recording tracks due to the leakage high-frequency magnetic field generated from the spin oscillator can be effectively restricted. Accordingly, high-frequency assisted magnetic recording can be performed effectively only on desired recording tracks 286. With this embodiment, there is a possibility that a high-frequency assisted magnetic recording medium with a recording density of 10 Tbits/inch2 or higher can be realized by giving high magnetic anisotropic energy (Ku) to the magnetic dots 288 and reducing the size of the magnetic dots 288, as long as the resistance to heat fluctuations is maintained in the usage environment.
Additional advantages and modifications will readily occur to those skilled in the art. Therefore, the invention in its broader aspects is not limited to the specific details and representative embodiments shown and described herein. Accordingly, various modifications may be made without departing from the spirit or scope of the general inventive concepts as defined by the appended claims and their equivalents.
Number | Date | Country | Kind |
---|---|---|---|
2007-247966 | Sep 2007 | JP | national |
This application is a divisional of application Ser. No. 12/232,469, filed Sep. 17, 2008, which is based upon and claims the benefit of priority from prior Japanese Patent Application No. 2007-247966 filed on Sep. 25, 2007 in Japan. The entire contents of each of these applications are incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
3899834 | Harrison, Jr. | Aug 1975 | A |
4103315 | Hempstead et al. | Jul 1978 | A |
4782415 | Vinal | Nov 1988 | A |
4945528 | Crasemann | Jul 1990 | A |
5499150 | Kawana et al. | Mar 1996 | A |
5695864 | Slonczewski | Dec 1997 | A |
5748399 | Gill | May 1998 | A |
5768066 | Akiyama et al. | Jun 1998 | A |
5898546 | Kanai et al. | Apr 1999 | A |
5920447 | Sakata et al. | Jul 1999 | A |
6011664 | Kryder et al. | Jan 2000 | A |
6094328 | Saito | Jul 2000 | A |
6153062 | Saito | Nov 2000 | A |
6278576 | Ogata et al. | Aug 2001 | B1 |
6282069 | Nakazawa et al. | Aug 2001 | B1 |
6519119 | van der Heijden et al. | Feb 2003 | B1 |
6580589 | Gill | Jun 2003 | B1 |
6583969 | Pinarbasi | Jun 2003 | B1 |
6591479 | Nakazawa et al. | Jul 2003 | B2 |
6608739 | Tanaka et al. | Aug 2003 | B1 |
6621664 | Trindade et al. | Sep 2003 | B1 |
6697231 | Kikuiri | Feb 2004 | B1 |
6785092 | Covington et al. | Aug 2004 | B2 |
6809900 | Covington | Oct 2004 | B2 |
6836971 | Wan | Jan 2005 | B1 |
6927952 | Shimizu et al. | Aug 2005 | B2 |
6937446 | Kamiguchi et al. | Aug 2005 | B2 |
6977108 | Hieda et al. | Dec 2005 | B2 |
6980469 | Kent et al. | Dec 2005 | B2 |
6982845 | Kai et al. | Jan 2006 | B2 |
7106555 | Kikuiri et al. | Sep 2006 | B2 |
7119990 | Bajorek et al. | Oct 2006 | B2 |
7120988 | Le et al. | Oct 2006 | B2 |
7145752 | Ueda et al. | Dec 2006 | B2 |
7154707 | Watabe et al. | Dec 2006 | B2 |
7256955 | Pokhil et al. | Aug 2007 | B2 |
7397633 | Xue et al. | Jul 2008 | B2 |
7461933 | Deily et al. | Dec 2008 | B2 |
7466525 | Hasegawa et al. | Dec 2008 | B2 |
7471491 | Sato et al. | Dec 2008 | B2 |
7473478 | Sbiaa et al. | Jan 2009 | B2 |
7486475 | Biskeborn | Feb 2009 | B2 |
7504898 | Fukuzawa et al. | Mar 2009 | B2 |
7532433 | Kawato et al. | May 2009 | B2 |
7532434 | Schrek et al. | May 2009 | B1 |
7593185 | Yazawa | Sep 2009 | B2 |
7616412 | Zhu et al. | Nov 2009 | B2 |
7675129 | Inomata et al. | Mar 2010 | B2 |
7724469 | Gao et al. | May 2010 | B2 |
7732881 | Wang | Jun 2010 | B2 |
7764136 | Suzuki | Jul 2010 | B2 |
7791829 | Takeo et al. | Sep 2010 | B2 |
7808330 | Fukuzawa et al. | Oct 2010 | B2 |
7818890 | Duric et al. | Oct 2010 | B2 |
7876531 | Bozeman et al. | Jan 2011 | B2 |
7911882 | Shimazawa et al. | Mar 2011 | B2 |
7957098 | Yamada et al. | Jun 2011 | B2 |
8081397 | Funayama et al. | Dec 2011 | B2 |
8139322 | Yamada et al. | Mar 2012 | B2 |
8154825 | Takashita et al. | Apr 2012 | B2 |
8164854 | Takagishi et al. | Apr 2012 | B2 |
8238058 | Shimizu et al. | Aug 2012 | B2 |
8238060 | Yamada et al. | Aug 2012 | B2 |
8264799 | Akiyama et al. | Sep 2012 | B2 |
8270112 | Funayama et al. | Sep 2012 | B2 |
8295009 | Yamada et al. | Oct 2012 | B2 |
8320079 | Iwasaki et al. | Nov 2012 | B2 |
8325442 | Koui et al. | Dec 2012 | B2 |
8400734 | Yamada et al. | Mar 2013 | B2 |
20010017746 | Nishida et al. | Aug 2001 | A1 |
20010017752 | Hoshiya et al. | Aug 2001 | A1 |
20020006013 | Sato et al. | Jan 2002 | A1 |
20020014016 | Kato | Feb 2002 | A1 |
20020051330 | Heijden et al. | May 2002 | A1 |
20020075595 | Sato et al. | Jun 2002 | A1 |
20020097536 | Komuro et al. | Jul 2002 | A1 |
20020136927 | Hieda et al. | Sep 2002 | A1 |
20030026040 | Covington et al. | Feb 2003 | A1 |
20030090844 | Shimizu et al. | May 2003 | A1 |
20040070869 | Nishida et al. | Apr 2004 | A1 |
20040145828 | Im | Jul 2004 | A1 |
20040150912 | Kawato et al. | Aug 2004 | A1 |
20040190197 | Watabe et al. | Sep 2004 | A1 |
20040228045 | Hasegawa et al. | Nov 2004 | A1 |
20040252417 | Hasegawa et al. | Dec 2004 | A1 |
20050023938 | Sato et al. | Feb 2005 | A1 |
20050088789 | Hou et al. | Apr 2005 | A1 |
20050105213 | Takeo et al. | May 2005 | A1 |
20050110004 | Parkin et al. | May 2005 | A1 |
20050111137 | Ju et al. | May 2005 | A1 |
20050193578 | Toda | Sep 2005 | A1 |
20050207050 | Pokhil | Sep 2005 | A1 |
20050219771 | Sato et al. | Oct 2005 | A1 |
20060039089 | Sato | Feb 2006 | A1 |
20060171051 | Wachenschwanz et al. | Aug 2006 | A1 |
20060187580 | Samofalov et al. | Aug 2006 | A1 |
20060198047 | Xue et al. | Sep 2006 | A1 |
20060213070 | Goldsobel et al. | Sep 2006 | A1 |
20060221507 | Sato et al. | Oct 2006 | A1 |
20070063237 | Huai et al. | Mar 2007 | A1 |
20070089311 | Amundson et al. | Apr 2007 | A1 |
20070109147 | Fukuzawa et al. | May 2007 | A1 |
20070253122 | Fukuzawa et al. | Nov 2007 | A1 |
20080019040 | Zhu et al. | Jan 2008 | A1 |
20080112087 | Clinton et al. | May 2008 | A1 |
20080117545 | Batra et al. | May 2008 | A1 |
20080129401 | Fukuzawa et al. | Jun 2008 | A1 |
20080137224 | Gao et al. | Jun 2008 | A1 |
20080144232 | Kaka et al. | Jun 2008 | A1 |
20080150643 | Suzuki et al. | Jun 2008 | A1 |
20080165452 | Bozeman et al. | Jul 2008 | A1 |
20080180838 | Im et al. | Jul 2008 | A1 |
20080208733 | Robb et al. | Aug 2008 | A1 |
20080218891 | Gubbins et al. | Sep 2008 | A1 |
20080231998 | Yoshikawa et al. | Sep 2008 | A1 |
20080268291 | Akiyama et al. | Oct 2008 | A1 |
20080304176 | Takagishi et al. | Dec 2008 | A1 |
20090052095 | Yamada et al. | Feb 2009 | A1 |
20090059417 | Takeo et al. | Mar 2009 | A1 |
20090059418 | Takeo et al. | Mar 2009 | A1 |
20090059423 | Yamada et al. | Mar 2009 | A1 |
20090080105 | Takashita et al. | Mar 2009 | A1 |
20090080106 | Shimizu et al. | Mar 2009 | A1 |
20090080109 | Fukuzawa et al. | Mar 2009 | A1 |
20090080120 | Funayama et al. | Mar 2009 | A1 |
20090088095 | Kayano et al. | Apr 2009 | A1 |
20090097167 | Sato et al. | Apr 2009 | A1 |
20090097169 | Sato et al. | Apr 2009 | A1 |
20090115541 | Persson et al. | May 2009 | A1 |
20090225465 | Iwasaki et al. | Sep 2009 | A1 |
20090257151 | Zhang et al. | Oct 2009 | A1 |
20090262457 | Rivkin et al. | Oct 2009 | A1 |
20090316303 | Yamada et al. | Dec 2009 | A1 |
20090316304 | Funayama et al. | Dec 2009 | A1 |
20100007992 | Yamada et al. | Jan 2010 | A1 |
20100007996 | Iwasaki et al. | Jan 2010 | A1 |
20100027158 | Takagishi et al. | Feb 2010 | A1 |
20100110592 | Koui et al. | May 2010 | A1 |
20100134922 | Yamada et al. | Jun 2010 | A1 |
20100220415 | Yamada et al. | Sep 2010 | A1 |
20110038080 | Alex et al. | Feb 2011 | A1 |
20110205655 | Shimizu et al. | Aug 2011 | A1 |
20110299192 | Yamada et al. | Dec 2011 | A1 |
20110300409 | Yamada et al. | Dec 2011 | A1 |
20120268844 | Yamada et al. | Oct 2012 | A1 |
20120275060 | Shimizu et al. | Nov 2012 | A1 |
Number | Date | Country |
---|---|---|
64-070947 | Mar 1989 | JP |
05-20635 | Jan 1993 | JP |
07-244801 | Sep 1995 | JP |
2001-243602 | Sep 2001 | JP |
2002-100005 | Apr 2002 | JP |
2002-109712 | Apr 2002 | JP |
2002-208744 | Jul 2002 | JP |
2002-279616 | Sep 2002 | JP |
2003-317220 | Nov 2003 | JP |
2004-192744 | Jul 2004 | JP |
2004-207707 | Jul 2004 | JP |
2004-221298 | Aug 2004 | JP |
2004-234830 | Aug 2004 | JP |
2004-295987 | Oct 2004 | JP |
2005-108315 | Apr 2005 | JP |
2005-525663 | Aug 2005 | JP |
2005-285242 | Oct 2005 | JP |
2005-310363 | Nov 2005 | JP |
2006-080385 | Mar 2006 | JP |
2006-134540 | May 2006 | JP |
2006-147023 | Jun 2006 | JP |
2006-209960 | Aug 2006 | JP |
2006-209964 | Aug 2006 | JP |
2006-244693 | Sep 2006 | JP |
2006-286855 | Oct 2006 | JP |
3833512 | Oct 2006 | JP |
2007-012264 | Jan 2007 | JP |
2007-035251 | Feb 2007 | JP |
2007-116003 | May 2007 | JP |
2007-124340 | May 2007 | JP |
2007-184923 | Jul 2007 | JP |
2007-193906 | Aug 2007 | JP |
2007-299880 | Nov 2007 | JP |
2008-109118 | May 2008 | JP |
2008-123669 | May 2008 | JP |
2008-176908 | Jul 2008 | JP |
2009-070439 | Apr 2009 | JP |
1020030039289 | May 2003 | KR |
2006-101040 | Sep 2006 | WO |
Entry |
---|
X. Zhu and J.-G. Zhu, “Bias-Field-Free Microwave Oscillator Driven by Perpendicularly Polarized Spin Current,” IEEE Trans. Magn. vol. 42, p. 2670 (2006). |
Zhu et al., “Microwave Assisted Magnetic Recording (MAMR),” Digest of the 18th Magnetic Recording conference, pp. 34-35, 2007. |
Maat et al., “Magnetotransport properties and spin-torque effects in current perpendicular to the plane spin valves with Co—Fe—Al magnetic layers”, Journal of Applied Physics 101, 093905 (2007); May 9, 2007. |
Park et al., “Effect of Adjacent Layers on Crystallization and Magnetoresistance in CoFeB/MgO/CoFeB Magnetic Tunnel Junction”, IEEE Transactions of Magnetics, vol. 42, No. 10, Oct. 2006. |
Shen et al., “Effect of Film Roughness in MgO-based Magnetic Tunnel Junctions”, Applied Physics Letters 88, 182508 (2006). |
Tang et al., “Narrow Track Confinement by AC Field Generation Layer in Microwave Assisted Magnetic Recording”, IEEE Transactions of Magnetics, vol. 44, Issue 11, pp. 3376-3379 (Nov. 2008). |
Office Action dated Mar. 12, 2010 in Chinese Application No. 200810215755.8 and English-language translation. |
Office Action dated Nov. 27, 2009 in Korean Application No. 08-88222 and English-language translation. |
Akiyama et al., U.S. Appl. No. 12/109,760, filed Apr. 25, 2008. |
Yamada et al., U.S. Appl. No. 12/153,490, filed May 20, 2008. |
Yamada et al., U.S. Appl. No. 12/155,329, filed Jun. 2, 2008. |
Takagishi et al., U.S. Appl. No. 12/155,473, filed Jun. 4, 2008. |
Takeo et al., U.S. Appl. No. 12/196,628, filed Aug. 22, 2008. |
Takeo et al., U.S. Appl. No. 12/196,841, filed Aug. 22, 2008. |
Iwasaki et al., U.S. Appl. No. 12/232,014, filed Sep. 9, 2008. |
Takashita et al., U.S. Appl. No. 12/232,391, filed Sep. 16, 2008. |
Funayama et al., U.S. Appl. No. 12/232,392, filed Sep. 16, 2008. |
Shimizu et al., U.S. Appl. No. 12/232,469, filed Sep. 17, 2008. |
Yamada et al., U.S. Appl. No. 12/382,940, filed Mar. 26, 2009. |
Iwasaki et al., U.S. Appl. No. 12/457,657, filed Jun. 17, 2009. |
Takagishi et al., U.S. Appl. No. 12/461,027, filed Jul. 29, 2009. |
Koui et al., U.S. Appl. No. 12/591,055, filed Nov. 5, 2009. |
Shimizu et al., U.S. Appl. No. 12/737,691, filed Feb. 7, 2011. |
Yamada et al., U.S. Appl. No. 12/780,269, filed May 13, 2010. |
Yamada et al., U.S. Appl. No. 13/214,012, filed Aug. 19, 2011. |
Yamada et al., U.S. Appl. No. 13/214,033, filed Aug. 19, 2011. |
Yamada et al., U.S. Appl. No. 13/541,371, filed Jul. 3, 2012. |
Funayama et al., U.S. Appl. No. 12/457,674, filed Jun. 18, 2009. |
Takagishi et al., U.S. Appl. No. 13/071,681, filed Mar. 25, 2011. |
Office Action dated Dec. 21, 2012 in JP Application No. 2008-305693 and English-language translation thereof. |
Takeo et al., U.S. Appl. No. 12/196,841, filed Aug. 22, 2008—now abandoned. |
Iwasaki et al., U.S. Appl. No. 12/232,014, filed Sep. 9, 2008—now abandoned. |
Shimizu et al., U.S. Appl. No. 12/232,469, filed Sep. 17, 2008—now abandoned. |
Yamada et al., U.S. Appl. No. 12/382,940, filed Mar. 26, 2009—RCE filed May 7, 2012. |
Takagishi et al., U.S. Appl. No. 12/461,027, filed Jul. 29, 2009—final office action mailed Jun. 21, 2013. |
Yamada et al., U.S. Appl. No. 12/591,752, filed Nov. 30, 2009—RCE filed Aug. 6, 2013. |
Takagishi et al., U.S. Appl. No. 13/071,681, filed Mar. 25, 2011—now abandoned. |
Yamada et al., U.S. Appl. No. 13/541,371, filed Jul. 3, 2012—allowed. |
Shimizu et al., U.S. Appl. No. 13/545,601, Jul. 10, 2012—response to office action filed Aug. 2, 2013. |
Number | Date | Country | |
---|---|---|---|
20120275060 A1 | Nov 2012 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12232469 | Sep 2008 | US |
Child | 13545601 | US |