1. Technical Field
The present invention is directed generally toward sewing and embroidery. In particular, the present invention relates to an improved method and system for positioning and holding items for embroidery.
2. Description of Related Art
An item to be embroidered, such as a shirt, cap, or belt, is known as an embroiderable. The embroiderable must be correctly positioned and held in place in an embroidery machine so that a design may be embroidered in the desired position on the material of the embroiderable. Currently, the embroiderable is held in place by using one of an embroidery hoop, a frame and adhesive, a clamping device, or a metal plate inside an embroidery hoop with a window and magnets. Each of these means for holding and positioning the embroiderable has disadvantages.
To use a frame and adhesive, an embroidery machine operator attaches a frame to the embroidery machine, applies adhesive to backing material, attaches the embroiderable to the backing material, and then places the backing material with the attached embroiderable in the frame. The frame and adhesive are typically used for small items, such as patches, which do not fit into a frame. One disadvantage of using the frame and adhesive is that the adhesive is messy and can gum up the embroidery machine, or the embroiderable.
To use an embroidery hoop, an embroidery machine operator snaps a top hoop and a bottom hoop together with the embroiderable and backing in between the two hoops. Snapping together and pulling apart the two hoops may be difficult for the operator, especially if the embroiderable is made from a thick material, and if the operator has less than average strength. In addition, some embroiderables, such as belts, check book covers, doilies, and collars, may be difficult to position properly using an embroidery hoop. Also, snapping together the hoops may leave burn marks on delicate fabrics, such as silk or velvet.
A clamping device uses two plates to clamp the embroiderable in place. A disadvantage of the clamping device is that many delicate materials, such as velvet and silk, get burn marks or fabric degradation when the clamping device is used. Another disadvantage of the clamping device is that one side of the clamping device is closed, so that certain types of items cannot be embroidered using the clamping device. For example, a long item, such as a laundry bag or pant leg, cannot be embroidered using the clamping device because the closed side of the clamping device prevents the operator from pushing the embroiderable far enough through the clamping device.
Another approach to holding an embroiderable in an embroidery machine is to use a metal plate inside a conventional embroidery hoop and magnets to hold the embroiderable in place, as described in U.S. Published Patent Application No. 2006/0272565, entitled “Embroidery Patch Placement Holder”. However, using the metal plate with a conventional embroidery hoop still requires the operator to snap together and pull apart the two hoops, which may be physically challenging for operators with less than average strength, such as the disabled or elderly. Moreover, the operator faces increased complexity because the metal plate and magnets are used in addition to the conventional two hoops, adding more steps to the embroidery process.
Thus, each of the current means for holding and positioning an embroiderable for embroidery has disadvantages. Therefore, it would be advantageous to have an improved method and system for positioning and holding items for embroidery.
The illustrative embodiments described herein provide a placement holder for an embroiderable. The placement holder comprises a magnetic hoop assembly for use in an embroidery machine. The magnetic hoop assembly includes a first hoop comprising a magnetic material and a second hoop comprising a quantity of metal sufficient for the first hoop to be attracted to the second hoop. The magnetic attraction between the first hoop and the second hoop enables the embroiderable to be held in place between the first hoop and the second hoop for embroidery. An adapter is attached to either the first hoop or second hoop. One end of the adapter is attached to the first hoop or second hoop, and the other end of the adapter attaches to an attachment mechanism on a pantograph on the embroidery machine.
The novel features believed characteristic of the invention are set forth in the appended claims. The invention itself, however, as well as a preferred mode of use, further objectives and advantages thereof, will best be understood by reference to the following detailed description of an illustrative embodiment when read in conjunction with the accompanying drawings, wherein:
The description of the preferred embodiment of the present invention has been presented for purposes of illustration and description, but is not intended to be exhaustive or limited to the invention in the form disclosed. Many modifications and variations will be apparent to those of ordinary skill in the art. The embodiment was chosen and described in order to best explain the principles of the invention the practical application to enable others of ordinary skill in the art to understand the invention for various embodiments with various modifications as are suited to the particular use contemplated.
An item to be embroidered, such as a shirt, cap, or belt, is known as an embroiderable. An embroiderable may be made from a variety of materials, such as plastic, cotton, silk, velvet, polyester, and linen, among others. The embroiderable must be correctly positioned and held in place in an embroidery machine so that the design may be embroidered in the desired position on the material of the embroiderable. Currently, the embroiderable is held in place by using one of a frame and adhesive, a clamping device, an embroidery hoop, or a metal plate with the embroidery hoop. Each of these means for holding and positioning the embroiderable has disadvantages.
However, using an adhesive to hold and position the embroiderable is messy because the adhesive may gum up the embroidery machine or the embroiderable. In addition, some adhesives are sprayed on, subjecting the operator to breathing in the fumes of the spray adhesive and any solvent used to clean up the overspray from the adhesive. Once backing 116 and embroiderable 118 are placed in frame 112, head 104 performs embroidery on embroiderable 118.
After the embroidery machine operator lays backing 306, embroiderable 308 and hoop top 304 on top of bottom hoop 302, the embroidery machine operator snaps hoops 302 and 304 together to create a hoop assembly. The hoop assembly, comprising hoops 302 and 304, embroiderable 308, and backing 306, is then attached to the embroidery machine so that embroiderable 308 may be embroidered. The hoop assembly may be attached to the embroidery machine in a variety of ways. For example, the hoop assembly may be attached to the embroidery machine by sliding hoops 302 and 304 into two arms connected to the embroidery machine, such as arms 108 and 110 in
One disadvantage of the embroidery hoop is that correctly positioning embroiderable 308 within the hoop is difficult, and typically involves trial and error. If embroiderable 308 is not properly positioned, the operator must pull apart hoops 302 and 304, reposition embroiderable 308, and snap hoops 302 and 304 back together. Depending on the thickness of the material of embroiderable 308, snapping together and pulling apart hoops 302 and 304 may be difficult for the operator. If the material of the embroiderable is very thick, a considerable amount of pressure must be exerted to snap hoops 302 and 304 together. Exerting sufficient pressure to snap hoops 302 and 304 together may be difficult for an operator with less than average strength, such as, for example, an older person, someone with a disability, or a child. In addition, some embroiderables are thick enough to prevent an operator from snapping the two hoops together, and therefore the two hoops may not be used for such embroiderables.
Top hoop 402 is a top hoop, such as top hoop 304 in
After creating the hoop assembly, the embroidery machine operator places metal plate 408 inside top hoop 402, places embroiderable 410 on top of metal plate 408, places positioning device 412 on top of embroiderable 410, and places magnets 414 on top of positioning device 412. Positioning device 412 contains a window so that embroiderable 410 may be accurately positioned on the hoop assembly. Magnets 414 may include two or more magnets. When using a rectangular metal plate, such as metal plate 408, four magnets are typically used, with one magnet on each corner of positioning device 412. The natural attraction of magnets 414 to metal plate 408 is used to keep embroiderable 410 and positioning device 412 in place on the hoop assembly. The window on positioning device 412 allows embroiderable 410 to be quickly positioned without adhesive or clamping. The hoop assembly, along with embroiderable 410, positioning device 412, and magnets 414 are attached to the embroidery machine by attaching bottom hoop 406 and top hoop 402 to the two arms of the embroidery machine, such as arms 108 and 110 in
However, there are several disadvantages to using the metal plate and magnets. The two hoops must still be snapped together with the backing between them because a conventional hoop is still being used. Depending on the thickness of the backing, an embroidery machine operator may find snapping the two hoops together to be physically challenging. Also, changing the embroiderable still requires the step of snapping and pulling apart the two hoops. In addition, backing is wasted because the backing must be larger than the size of the two hoops. Moreover, the operator faces increased complexity when embroidering because the metal plate and magnets are used in addition to the conventional two hoops, adding more components and steps to the embroidery process.
The illustrative embodiments recognize that each one of the conventional means for positioning and holding an embroiderable in an embroidery machine have disadvantages. The illustrative embodiments recognize that the two hoops may be difficult to snap together for some embroiderables, and cannot be used for very thick embroiderables. The illustrative embodiments recognize that the frame and adhesive are messy to use, and the adhesive may gum up the embroidery machine. The illustrative embodiments recognize that the clamping device may leave burn marks on delicate fabrics, and that the clamping device cannot be used for very long items because one side of the clamping device is closed. The illustrative embodiments also recognize that a metal plate inside an embroidery hoop with a window and magnets still requires the operator to snap the two hoops together, and recognize that the metal plate, window, and magnets create additional complexity for the operator.
The illustrative embodiments described herein provide an improved placement holder for an embroiderable. The placement holder comprises a metallic hoop for use in an embroidery machine. The metallic hoop comprises a quantity of metal sufficient for a magnet to be attracted to the metallic hoop. A backing and the embroiderable are placed on top of the metallic hoop for embroidery. An adapter is attached to the metallic hoop. One end of the adapter is attached to the metallic hoop, and the other end of the adapter attaches to an attachment mechanism on a pantograph on the embroidery machine.
Because of the wide variety of embroiderables, specialized accessories are often attached to an embroidery machine in order to position and hold the embroiderable in place. For example, to embroider a cap, a cap frame driver accessory is usually attached to an embroidery machine. Therefore, a typical embroidery machine provides an attachment mechanism, such as attachment mechanism 504 for attaching accessories. Attachment mechanism 504 is part of backrail 506. Backrail 506 is part of pantograph 508. Pantograph 508 is a pantograph in an embroidery machine, such as pantograph 106 in
Attachment mechanism 504 may vary from one embroidery machine to another, because of a variety of factors, including the manufacturer of the embroidery machine or the size of the embroidery machine. Adapter 510 is used to adapt hoop 502 for use with different attachment mechanisms, such as attachment mechanism 504. Those versed in the art will appreciate that adapter 510 is designed to accommodate one or more of the various attachment mechanisms available so that hoop 502 may be used with any type or size of embroidery machine. Adapter 510 varies depending on the type of attachment mechanism 504 on backrail 506 of the embroidery machine. For example, if attachment mechanism 504 is a “T” shaped slot in backrail 506, adapter 510 may contain a “T” shape which slides into the slot in backrail 506. Alternately, adapter 510 may have two flanges, such as flanges 208 and 210 in
Those versed in the art will appreciate that magnets 612 may be combined with positioning device 610. For example, positioning device may be manufactured in such a way that a portion of positioning device 610, such as, for example, each corner of positioning device 610, contains a magnet. Alternately, positioning device 610 may be made from a magnetic material.
As previously mentioned, adapter 510 in
The operator attaches hoop 710 to backrail 702 by sliding one protrusion into a first indentation, and then sliding the other protrusion into the second indentation. For example, the operator may slide protrusion 714 into indentation 706, and then slide protrusion 716 into indentation 704. Alternately, the operator may slide protrusion 716 into indentation 704, and then slide protrusion 712 into indentation 706. Indentations 704 and 706 may be a hollow tube, such as tube 718, containing a plate, such as plate 720, and a spring, such as spring 722. Spring 722 exerts pressure on plate 720 in tube 718 to keep hoop 710 in place horizontally. Lip 708 is used to position hoop 710 vertically. Of course, those versed in the art will appreciate that in one embodiment, indentations 704 and 706 may be hollow tubes, and protrusions 714 and 716 may contain springs, so that protrusions 714 and 716 may be compressed, placed into indentations 704 and 706, and then released to hold hoop 710 in place. In this example, indentations 704 and 706, and protrusions 712 and 714 are shown as being rectangular. Those versed in the art will appreciate that indentations 704 and 706, and protrusions 712 and 714 may also have different geometric shapes other than a rectangle, such as a circle, hexagon, and octagon. In one embodiment, one or both of indentation 704 and 706, and protrusions 714 and 716 may contain magnets.
Hoop 902 is attached to a pantograph, such as pantograph 106 in
When embroidering a long embroiderable, such as a pant leg, using a hoop which is long in form, extension 910 is attached to sewing arm 908 to support hoop 902. Extension 910 provides support for the portion of hoop 902 farthest from adapter 906, and support for embroiderable 904. Thus, extension 910 is an optional attachment to the sewing arm of an embroidery machine. Extension 910 is typically used when a hoop, such as hoop 902, which is long in form, is used with a long embroiderable, such as a pant leg of embroiderable 904. Extension 910 may be attached to sewing 908 using a variety of means, such as, for example, mechanical and magnetic means for attaching.
Extender 1009 is used to provide support for a long embroiderable, such as a pant leg, which uses a hoop with a long form, such as hoop 1002. Trough 1010 of extender 1009 is slipped under sewing arm 1008, so that sewing arm 1008 is encompassed below, and on two sides by trough 1010. Extension 1012 is attached to trough 1010 using swing arm 1013. Swing arm 1013 is attached to trough 1010 using a hinge mechanism, allowing extension 1012 to be swung up and down. Extender 1009 allows an embroidery machine operator to embroider embroiderables with a short form with extension 1012. When the embroidery machine operator embroiders an embroiderable with a long form, the embroidery machine operator uses swing arm 1013 to swing extension 1012 in place to support hoop 1002. Swing arm 1013 may contain a magnet which is attracted to a metal plate on trough 1010, holding extension 1012 in place. Thus, an embroidery machine operator can swing extension 1012 up and down using swing arm 1013, allowing the embroidery machine operator to quickly change from embroidering a long embroiderable to a shorter embroiderable. Trough 1010 may be attached to sewing arm 1008 using bolts 1014 and 1016. Screws 1018 and 1020 may be used to adjust the height of extender 1009.
Magnetic hoop 1104 is a hoop structure comprising magnetic material embedded within the structure. In one embodiment, magnetic hoop 1104 is composed of the magnetic material combined with any of a variety of secondary non-magnetic materials, such as plastic, wood, or any combination thereof. The magnetic material embedded within magnetic hoop 1104 in this embodiment may be evenly distributed throughout the secondary material in magnetic hoop 1104. An example of a magnetic material evenly distributed throughout the secondary material in magnetic hoop 1104 is shown in
Metallic hoop 1106 is a hoop structure comprising a metal body. The metal body of metallic hoop 1106 contains a quantity of metal sufficient for the magnetic material embodied within magnetic hoop 1104 to be attracted to the metal in metallic hoop 1106. Those versed in the art will appreciate that metallic hoop 1106 may be created in a number of different ways. For example, in one embodiment, metallic hoop 1106 may be made entirely from metal. Alternately, in another embodiment, metallic hoop 1106 may be created using both metallic and non-metallic substances.
In a preferred embodiment, metallic hoop 1106 is constructed having the same shape and size of magnetic hoop 1104. However, metallic hoop 1106 may comprise any other shape and size as long as the magnetic attraction between metallic hoop 1106 and magnetic hoop 1104 is adequate enough to adequately hold and secure an embroiderable. Metallic hoop 1106 may also be hingedly coupled to magnetic hoop 1104. This coupling enables the separate hoop components to be maintained as a unit while still allowing the hoop components to still be separated for insertion of an embroiderable between the components and quickly joined again in a proper positioning of the hoop components in relation to one another.
Adapter 1108 adapts magnetic hoop assembly 1102 for use with a specific embroidery machine by allowing adapter 1108 to attach to the backrail of a pantograph using attachment mechanism 1110. Adapter 1108 may be attached to magnetic hoop 1104 or metallic hoop 1106. In this illustrative example, adapter 1108 is attached to metallic hoop 1106. Adapter 1108 may be contiguous with the structure of either magnetic hoop 1104 or metallic hoop 1106, or adapter 1108 may be a separate structure that is coupled to magnetic hoop 1104 or metallic hoop 1106. If adapter 1108 is a separate structure, adapter 1108 may be bolted, screwed, welded, glued, or hinged to magnetic hoop 1104 or metallic hoop 1106. Adapter 1108 and magnetic hoop 1104 or metallic hoop 1106 may have complementary interlocking structures such that adapter 1108 may be snapped onto magnetic hoop 1104 or metallic hoop 1106. In one embodiment, adapter 1108 may be coupled to magnetic hoop 1104 or metallic hoop 1106 using magnetic coupling mechanisms as described in U.S. patent application Ser. No. 11/851,926, titled “Apparatus And Method For Coupling An Embroidery Accessory To An Embroidery Machine.”
Attachment mechanism 1110 is part of backrail 1112. Backrail 1112 is part of pantograph 1114. Pantograph 1114 is a pantograph in an embroidery machine, such as pantograph 106 in
The illustrative embodiments described herein provide a placement holder for an embroiderable. In one embodiment, the placement holder for an embroiderable comprises a magnetic hoop assembly for use in an embroidery machine. The magnetic hoop assembly comprises two hoop components—a first hoop comprising magnetic material throughout the hoop, and a second hoop with a quantity of metal sufficient for the magnetic material in the first hoop to be attracted to the metal in the second hoop. An embroiderable may be placed directly between the first and second hoops for embroidery. An adapter is attached to the one of the hoops in the magnetic hoop assembly. One end of the adapter is attached to at least a portion of the magnetic hoop assembly, and the other end of the adapter attaches to an attachment mechanism on a pantograph on the embroidery machine. In another embodiment, the placement holder comprises a single metallic hoop system for use in an embroidery machine. The metallic hoop contains a quantity of metal sufficient for a magnet to be attracted to the metallic hoop. A backing and the embroiderable are placed on top of the metallic hoop for embroidery. An adapter is attached to the metallic hoop. One end of the adapter is attached to the metallic hoop, and the other end of the adapter attaches to an attachment mechanism on a pantograph on the embroidery machine.
There are several advantages to using the magnetic hoop assembly or the single metallic hoop system over conventional systems such as a frame and adhesive, a clamping device, an embroidery hoop, or a metal plate inside an embroidery hoop with a window and magnets. Unlike the frame and adhesive shown in
The magnetic hoop assembly and the single metallic hoop system are superior to the traditional two-piece hoop for several reasons. A traditional two-piece hoop, such as the one depicted in
The magnetic hoop assembly and the single metallic hoop system also have advantages over the metal plate and embroidery hoop system depicted in
The frame and hoop are attached to an embroidery machine using the two arms on the embroidery machine. Therefore, all the conventional methods of positioning and holding the embroiderable require that the embroidery machine have arms attached. However, the illustrative embodiments do not specifically require that the embroidery machine have arms. If the embroidery machine has arms, the magnetic hoop assembly or the single metallic hoop structure may be mounted using an appropriate adapter. If the embroidery machine does not have arms, the magnetic hoop assembly or the single metallic hoop structure may be attached to the embroidery machine using an adapter appropriate for the attachment mechanism on the embroidery machine.
This application is a continuation-in-part of application Ser. No. 11/753,469, filed May 24, 2007, status pending.
Number | Name | Date | Kind |
---|---|---|---|
4236331 | Mattson | Dec 1980 | A |
4639964 | Binder | Feb 1987 | A |
4644639 | Atteberry et al. | Feb 1987 | A |
4763586 | Takenoya et al. | Aug 1988 | A |
4834006 | Goto | May 1989 | A |
5101746 | Frye | Apr 1992 | A |
5138960 | Inteso | Aug 1992 | A |
5144899 | Allen | Sep 1992 | A |
5353725 | Sakakibara | Oct 1994 | A |
5546877 | Moore | Aug 1996 | A |
5666895 | Gehres et al. | Sep 1997 | A |
5842430 | Mack | Dec 1998 | A |
5915315 | Bentz | Jun 1999 | A |
5970895 | Mack | Oct 1999 | A |
6112682 | Van Bruggen et al. | Sep 2000 | A |
6240863 | Vickroy et al. | Jun 2001 | B1 |
6708632 | Shibata | Mar 2004 | B2 |
6957614 | Buck | Oct 2005 | B1 |
7194967 | Bowlus | Mar 2007 | B2 |
7258071 | Shoji | Aug 2007 | B2 |
7357088 | Bowlus | Apr 2008 | B1 |
7607399 | Mack et al. | Oct 2009 | B2 |
7610868 | Gardner | Nov 2009 | B2 |
20040163295 | Fontana et al. | Aug 2004 | A1 |
20080276849 | Mack et al. | Nov 2008 | A1 |
Number | Date | Country |
---|---|---|
0466269 | Aug 1991 | EP |
03130456 | Jun 1991 | JP |
09031825 | Feb 1997 | JP |
11181666 | Jul 1999 | JP |
2002078996 | Mar 2002 | JP |
2005146460 | Jun 2005 | JP |
6328230 | Aug 2008 | JP |
Number | Date | Country | |
---|---|---|---|
20080295752 A1 | Dec 2008 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11753469 | May 2007 | US |
Child | 12192772 | US |