The field of the invention generally relates to medical devices for treating disorders of the skeletal system.
Scoliosis is a general term for the sideways (lateral) curving of the spine, usually in the thoracic or thoracolumbar region. Often, there is also a rotation of the spine as well as curvature. Scoliosis is commonly broken up into different treatment groups, Adolescent Idiopathic Scoliosis, Early Onset Scoliosis and Adult Scoliosis.
Adolescent Idiopathic Scoliosis (AIS) typically affects children between ages 10 and 16, and becomes most severe during growth spurts that occur as the body is developing. One to two percent of children between ages 10 and 16 have some amount of scoliosis. Of every 1000 children, two to five develop curves that are serious enough to require treatment. The degree of scoliosis is typically described by the Cobb angle, which is determined, usually from x-ray images, by taking the most tilted vertebrae above and below the apex of the curved portion and measuring the angle between intersecting lines drawn perpendicular to the top of the top vertebrae and the bottom of the bottom. The term idiopathic refers to the fact that the exact cause of this curvature is unknown. Some have speculated that scoliosis occurs when, during rapid growth phases, the ligamentum flavum of the spine is too tight and hinders symmetric growth of the spine. For example, as the anterior portion of the spine elongates faster than the posterior portion, the thoracic spine begins to straighten, until it curves laterally, often with an accompanying rotation. In more severe cases, this rotation actually creates a noticeable deformity, wherein one shoulder is lower than the other. Currently, many school districts perform external visual assessment of spines, for example in all fifth grade students. For those students in whom an “S” shape or “C” shape is identified, instead of an “I” shape, a recommendation is given to have the spine examined by a physician, and commonly followed-up with periodic spinal x-rays.
Typically, patients with a Cobb angle of 20° or less are not treated, but are continually followed up, often with subsequent x-rays. Patients with a Cobb angle of 40° or greater are usually recommended for fusion surgery. It should be noted that many patients do not receive this spinal assessment, for numerous reasons. Many school districts do not perform this assessment, and many children do not regularly visit a physician, so often, the curve progresses rapidly and severely. In AIS, the ratio of females to males for curves under 10° is about one to one, however, at angles above 30°, females outnumber males by as much as eight to one. Fusion surgery can be performed on the AIS patients or on adult scoliosis patients. In a typical posterior fusion surgery, an incision is made down the length of the back and Titanium or stainless steel straightening rods are placed along the curved portion. These rods are typically secured to the vertebral bodies, for example with bone screws, or more specifically pedicle screws, in a manner that allows the spine to be straightened. Usually, at the section desired for fusion, the intervertebral disks are removed and bone graft material is placed to create the fusion. If this is autologous material, the bone is harvested from a hip via a separate incision.
Alternatively, the fusion surgery may be performed anteriorly. A lateral and anterior incision is made for access. Usually, one of the lungs is deflated in order to allow access to the spine from this anterior approach. In a less-invasive version of the anterior procedure, instead of the single long incision, approximately five incisions, each about three to four cm long are made in several of the intercostal spaces (between the ribs) on one side of the patient. In one version of this minimally invasive surgery, tethers and bone screws are placed and are secured to the vertebra on the anterior convex portion of the curve. Currently, clinical trials are being performed which use staples in place of the tether/screw combination. One advantage of this surgery in comparison with the posterior approach is that the scars from the incisions are not as dramatic, though they are still located in a visible area, when a bathing suit, for example, is worn. The staples have had some difficulty in the clinical trials. The staples tend to pull out of the bone when a critical stress level is reached.
Commonly, after surgery, the patient will wear a brace for a few months as the fusing process occurs. Once the patient reaches spinal maturity, it is difficult to remove the rods and associated hardware in a subsequent surgery, because the fusion of the vertebra usually incorporates the rods themselves. Standard practice is to leave this implant in for life. With either of these two surgical methods, after fusion, the patient's spine is now straight, but depending on how many vertebra were fused, there are often limitations in the degree of flexibility, both in bending and twisting. As these fused patients mature, the fused section can impart large stresses on the adjacent non-fused vertebra, and often, other problems including pain can occur in these areas, sometimes necessitating further surgery. Many physicians are now interested in fusionless surgery for scoliosis, which may be able to eliminate some of the drawbacks of fusion.
One group of patients in which the spine is especially dynamic is the subset known as Early Onset Scoliosis (EOS), which typically occurs in children before the age of five. This is a more rare condition, occurring in only about one or two out of 10,000 children, but can be severe, sometimes affecting the normal development of organs. Because of the fact that the spines of these children will still grow a large amount after treatment, non-fusion distraction devices known as growing rods and a device known as the VEPTR—Vertical Expandable Prosthetic Titanium Rib (“Titanium Rib”) have been developed. These devices are typically adjusted approximately every six months, to match the child's growth, until the child is at least eight years old, sometimes until they are 15 years old. Each adjustment requires a surgical incision to access the adjustable portion of the device. Because the patients may receive the device at an age as early as six months old, this treatment requires a large number of surgeries. Because of the multiple surgeries, these patients have a rather high preponderance of infection and other complications. A new magnetically controlled growing rod is now being used which allows adjustments to be done non-invasively, as reported in the article “Magnetically controlled growing rods for severe spinal curvature in young children: a prospective case series”, Cheung et. al., Lancet, 2012.
Returning to the AIS patients, the treatment methodology for those with a Cobb angle between 20° and 40° is quite controversial. Many physicians prescribe a brace (for example, the Boston Brace), that the patient must wear on their body and under their clothes 18 to 23 hours a day until they become skeletally mature, for example to age 16. Because these patients are all passing through their socially demanding adolescent years, it is quite a serious prospect to be forced with the choice of either wearing a somewhat bulky brace that covers most of the upper body, having fusion surgery that may leave large scars and also limit motion, or doing nothing and running the risk of becoming disfigured and possibly disabled. It is commonly known that many patients have at times hidden their braces, for example, in a bush outside of school, in order to escape any related embarrassment. The patient compliance with brace wearing has been so problematic, that there have been special braces constructed which sense the body of the patient, and keep track of the amount of time per day that the brace is worn. Patients have even been known to place objects into unworn braces of this type in order to fool the sensor. Coupled with the inconsistent patient compliance with brace usage, is a feeling by many physicians that braces, even if used properly, are not at all effective at curing scoliosis. These physicians may agree that bracing can possibly slow down or even temporarily stop curve (Cobb angle) progression, but they have noted that as soon as the treatment period ends and the brace is no longer worn, often the scoliosis rapidly progresses, to a Cobb angle even more severe than it was at the beginning of treatment. Some say the reason for the supposed ineffectiveness of the brace is that it works only on a portion of the torso, and not on the entire spine. Currently a 500 patient clinical trial known as BrAIST (Bracing in Adolescent Idiopathic Scoliosis Trial) is enrolling patients, 50% of whom will be treated with the brace and 50% of who will simply be watched. The Cobb angle data will be measured continually up until skeletal maturity, or until a Cobb angle of 50° is reached, at which time the patient will likely undergo surgery.
Though this trial began as a randomized trial, it has since been changed to a “preference” trial, wherein the patients choose which treatment arm they will be in. This is partially because so many patients were rejecting the brace. Many physicians feel that the BrAIST trial will show that braces are completely ineffective. If this is the case, the quandary about what to do with AIS patients who have a Cobb angle of between 20° and 40° will only become more pronounced. It should be noted that the “20°. to 40° ” patient population is as much as ten times larger than the “40° and greater” patient population. Currently, genetic scientists have found and continue to find multiple genes that may predispose scoliosis. Though gene tests have been developed, including a scoliosis score for risk of curve progression, some are still skeptical as to whether gene therapy would be possible to prevent scoliosis. However, the existence of a scoliosis gene would no doubt allow for easier and earlier identification of probable surgical patients.
Scoliosis is also present in patients with mature spines. One type of malady in mature patients is known as adult idiopathic scoliosis. It should be noted for reference purposes that the spine is actually mature in girls as young as fifteen or sixteen years old. In boys the maturity often occurs at a slightly older age of about eighteen years. Adult idiopathic scoliosis should be differentiated from what is known as de novo scoliosis or degenerative scoliosis, and which is predominantly caused by degeneration of the disc and facets with age, often combined with poor bone quality from osteopenia and osteoporosis. Oftentimes, fusion surgery in patients having mature spines with deformities requires significantly invasive measures to straighten the spine. This includes performing osteotomies (cutting out sections of the vertebrae) performed either from a posterior access or from an anterior access to the spine. Some types of osteotomies include Smith-Peterson osteotomy (SPO), pedicle subtraction osteotomy (PSO), and vertebral column resection (VCR). Because these osteotomies require more time and more invasive surgical techniques, their use adds significant cost and complications to fusion surgery.
There is a large population of mature spine patients with untreated scoliosis, in extreme cases with a Cobb angle as high as or greater than 60°, or even higher than 90°. In some cases, straightening this spine during a single fusion surgery could be problematic, even causing severe neurological problems. Many of these adults, though, do not have pain associated with this deformity while untreated, and live relatively normal lives, though oftentimes with restricted mobility and motion. It is contemplated that the devices and methods described herein also have application in the treatment of adult scoliosis. Adult scoliosis can continue to worsen with time. Though the adult is skeletally mature, the Cobb angle may still continue to increase with time. The relaxation or slight reduction in height that occurs in adults may have some relation with this increase in Cobb angle. Curves above 100° are rare, but they can be life-threatening if the spine twists the body to the point where pressure is put on the heart and lungs. The magnetically controlled growing rod has been described before as a treatment method of adult scoliosis, e.g., allowing adult scoliosis to be treated with a minimally invasive and/or fusionless approach. In addition, gradual adjustment of the spine may be desired, especially in the cases of very high Cobb angles. For example, it may be desired to limit the amount of stresses on the bones or on the implant materials, by first adjusting an adult scoliosis patient so that their Cobb angle is reduced 50% or less, then 15% or less each few months, until the spine is straight. As one example, the initial surgical implantation may reduce the Cobb angle by 50% or more by the physician performing manual distraction on the spine. Post-implantation, the Cobb angle can be reduced in a non-invasive manner by application of a constant or periodically changing distraction force. A first non-invasive adjustment may result in a Cobb angle reduction of less than 50%. Additional non-invasive adjustments may be performed which result in even smaller Cobb angle reductions (e.g., less than 15% from original Cobb angle).
In this regard, the Cobb angle may be reduced by a smaller amount over the next few months (e.g., less than around 15% each month post-operation). The non-invasive adjustment of a fusionless implant made possible by the invention allows for a gradual adjustment scheme of this nature. Moreover, the distraction forces used over this period of time are generally low (e.g., distraction force less than 45 pounds) which means, among other things, less patient discomfort, and less chance of failure within the adjustable rods. Non-invasive adjustments may be periodically performed when the patient visits his or her physician. This may occur over a span of more than one week (e.g., a several week process). Of course, the number and periodicity of the adjustments is a function of, among other things, the Cobb angle of the patient.
Oftentimes, the adult spine has less dense or even osteoporotic bone, so it may be desirable to combine the sort of gradual adjustment described here with additional methods to strengthen the bone, for example the bone of the vertebral bodies. One method is to strengthen the vertebral body by performing prophylactic vertebroplasty or kyphoplasty, wherein the internal area of the vertebral body is strengthened, for example by injection of bone cement or Polymethyl Methacrylate (PMMA). Additionally, if pedicle screws are used for fixation, the surface of the screws may be treated with a biologic material that promotes bone growth, or a surface characteristic that improves bone adhesion. Any of these methods would further improve the possibilities that the distraction forces would not cause fracture or other damage to the vertebrae of the patient.
In use, magnetically controlled growing rods are often cut and bent in the desired curves prior to implantation in the patient. It is common practice then to test the magnetically controlled growing rod immediately prior to placing in the patient (for example after cutting and bending) to confirm that it is completely operational. This often involves placing a sterile cover over the external adjustment device that is used to lengthen the magnetically controlled growing rod. This additional operation is not ideal because of the extra effort to bring the external adjustment device into the operating room, the extra effort to maintain sterility, and the fact that the external adjustment device contains powerful magnets, which can attract structures of the surgical table as well as surgical instruments.
In one embodiment, a distraction system includes a first distraction device having a first adjustable portion and a first distraction rod configured to telescope within the first adjustable portion, the first adjustable portion having contained therein a first rotatable magnetic assembly mechanically coupled to a first screw configured to axially telescope the first distraction rod. The system includes a second distraction device having a second adjustable portion and a second distraction rod configured to telescope within the second adjustable portion, the second adjustable portion having contained therein a second rotatable magnetic assembly mechanically coupled to a second screw configured to axially telescope the second distraction rod. The distraction system includes an adjustable joint connecting one end of the first adjustable portion to one end of the second adjustable portion.
In another embodiment, a distraction system includes a first distraction device with a first adjustable portion having contained therein a first rotatable magnetic assembly. The system includes a second distraction device with a second adjustable portion having contained therein a second rotatable magnetic assembly; and a common distraction rod having first and second opposing ends, wherein a first end of the common distraction rod is mechanically coupled to the first rotatable magnetic assembly and wherein a second end of the common distraction rod is mechanically coupled to the second rotatable magnetic assembly.
In yet another embodiment, a distraction system includes an adjustable portion having contained therein a rotatable magnetic assembly, the adjustable portion being at least one of curved or angled; and a distraction rod mechanically coupled to the rotatable magnetic assembly via a screw and configured for telescopic movement relative to the adjustable portion.
In still another embodiment, a distraction system includes an adjustable portion having contained therein a rotatable magnetic assembly; a screw operatively coupled to the rotatable magnetic assembly; and a distraction rod having a recess formed therein, the recess containing a nut having internal threads, the nut having first and second collared ends disposed on either side of the internal threads, wherein the screw interfaces with the internal threads of the nut and wherein rotation of the rotatable magnetic assembly effectuates telescopic movement of the distraction rod relative to the adjustable portion.
In another embodiment, a distraction system includes an adjustable portion having contained therein a rotatable magnetic assembly; a distraction rod mechanically coupled to the rotatable magnetic assembly via a screw and configured for telescopic movement relative to the adjustable portion; and a distraction tester including a body having a cylindrical cavity passing through the body, wherein the distraction tester has a first circumferential portion of the body that has a higher mass of magnetically permeable material than a second circumferential portion, spaced apart from the first circumferential portion.
In many Adolescent Idiopathic Scoliosis (AIS) patients with a Cobb angle of 40° or greater, spinal fusion surgery is typically the first option. Alternatively, non-fusion surgery may be performed, for example with the distraction device 200 of
Each vertebra is different from the other vertebra by its size and shape, with the upper vertebra generally being smaller than the lower vertebra. However, generally, the vertebrae have a similar structure and include a vertebral body 516, a spinous process 518, 520, laminae 526, transverse processes 521, 522 and pedicles 524. In this embodiment, the distraction device 200 includes a distraction rod 206 which is adjustable (lengthwise) via a coupled adjustable portion 208. The distraction device 200 also includes a lower extension 209 which may be a short rod segment. The distraction device 200 is fixated to the spine 500 via hooks 600, 601 at the upper end 202 of the distraction rod 206. Alternatively, a clamp may be secured around an adjacent rib (not shown) or rib facet. In still another alternative, a pedicle screw system may be used.
Referring back to
Because a scoliotic spine is also rotated (usually the center section is rotated to the right in AIS patients), the non-fusion embodiment presented here allows de-rotation of the spine 500 to happen naturally, because there is no fixation at the middle portion of the distraction device 200.
In order to further facilitate this de-rotation, the distraction device 200 may allow for free rotation at its ends. For example, the adjustable portion 208 may be coupled to the spine via an articulating joint. U.S. Patent Application Publication Nos. 2009-0112207 and 2010-0094302, both of which are incorporated by reference, describe various articulating interfaces and joints that may be utilized to couple the adjustable portion 208 to the connecting rods or the like. These Published Applications further describe various distraction rod embodiments and methods of use that may be used with inventions described herein.
As noted, the distraction rod 206 and the lower extension 209 may be bent by the user (or supplied pre-curved) with the typical shape of a normal saggital spine, but it should also be noted that the curve may be slightly different than standard scoliosis fusion instrumentation, because in the non-fusion embodiment described herein, the distraction device 200 is not usually flush with the spine but rather is placed either subcutaneous or sub-fascial, and thus is not completely below the back muscles. In these less invasive methods, the only portions of the distraction device 200 that are designed to be placed below the muscles are the hooks 600, 601 and the portion of the distraction rod 206 immediately adjacent the hooks 600, 601, the pedicle screw system 531 and the lower extension 209. Thus,
By design, the distraction rod 206 is configured to be distracted from the adjustable portion, increasing the total device length via magnetic adjustment. The preferred design for a distraction device 200, does not allow significant circumferential motion between the distraction rod 206 and the adjustable portion 208.
Annularly contained between the magnetic assembly 336 and the expanded portion 305 of the tubular housing 326 is a cylindrical maintenance member 303 made from a magnetically permeable material, such as 400 series stainless steel. The cylindrical maintenance member 303 can be seen in isolation in
The distraction device 700 of
Turning now to
Distraction device 900 in
While
As illustrated, the entire body of the manual distraction tester 1100 is monolithic and configured from a single material, for example 420 stainless steel, although other materials having magnetic permeability may be used. Thought the minimally magnetic circumferential portion 1059 has some attraction to magnet poles, the significantly larger mass of the maximally magnetic circumferential portion 1061 dominates. One way to achieve the difference in magnetic attraction between the two circumferential portions, if the manual distraction tester 1100 is made entirely from 420 stainless steel, is to make, for example the axial thickness of the minimally magnetic circumferential portion 1059 small (for example 2.5 mm) and the axial thickness of the maximally magnetic circumferential portion comparatively large (for example 19 mm). The manual distraction tester 1100 is axially slid onto the distraction device 1000 in the direction of the arrow 1065 in
The manual distraction tester 1100 is turned in a first direction 1069, magnetically causing the radially-poled cylindrical magnet to turn and in turn to cause lengthening of the distraction device 1000. A mark 1071 on the distraction rod 1006 can easily be seen moving in relation to an end 1073 of the adjustable portion 1008 of the distraction device 1000.
A distraction rod 1206 is shown in
When adjusting the length of the distraction device, the lead screw 360 turns within nut 1214 because protrusions 1222a of distraction rod 1206 and protrusions 1222b of nut 1214 are held within longitudinal grooves 224, 324 of the housing and so they remain rotationally static with respect to adjustable portion 308, while allowing distraction rod 1206 to axially adjust in relation to adjustable portion 308. This collared nut 1214 allows a stability of the distraction length of the distraction device that precludes the need for the cylindrical maintenance member 303 of
While embodiments have been shown and described, various modifications may be made without departing from the scope of the inventive concepts disclosed herein. The embodiments have application in many other medical conditions, including lengthening of bones by intramedullary placed distraction devices or by distracting plates placed on the exterior of bones. The invention(s), therefore, should not be limited, except to the following claims, and their equivalents.
This application is a continuation of U.S. application Ser. No. 13/525,058, filed on Jun. 15, 2012, now abandoned, the content of which is hereby incorporated by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
2702031 | Wenger | Feb 1955 | A |
3111945 | Von Solbrig | Nov 1963 | A |
3372476 | Peiffer | Mar 1968 | A |
3377576 | Langberg | Apr 1968 | A |
3512901 | Law | May 1970 | A |
3597781 | Eibes | Aug 1971 | A |
3810259 | Summers | May 1974 | A |
3900025 | Barnes, Jr. | Aug 1975 | A |
3915151 | Kraus | Oct 1975 | A |
RE28907 | Eibes et al. | Jul 1976 | E |
3976060 | Hildebrandt et al. | Aug 1976 | A |
4010758 | Rockland et al. | Mar 1977 | A |
4056743 | Clifford et al. | Nov 1977 | A |
4068821 | Morrison | Jan 1978 | A |
4078559 | Nissinen | Mar 1978 | A |
4204541 | Kapitanov | May 1980 | A |
4357946 | Dutcher et al. | Nov 1982 | A |
4386603 | Mayfield | Jun 1983 | A |
4448191 | Rodnyansky et al. | May 1984 | A |
4486176 | Tardieu et al. | Dec 1984 | A |
4501266 | McDaniel | Feb 1985 | A |
4522501 | Shannon | Jun 1985 | A |
4537520 | Ochiai et al. | Aug 1985 | A |
4550279 | Klein | Oct 1985 | A |
4561798 | Elcrin et al. | Dec 1985 | A |
4573454 | Hoffman | Mar 1986 | A |
4592355 | Antebi | Jun 1986 | A |
4595007 | Mericle | Jun 1986 | A |
4642257 | Chase | Feb 1987 | A |
4658809 | Ulrich et al. | Apr 1987 | A |
4700091 | Wuthrich | Oct 1987 | A |
4747832 | Buffet | May 1988 | A |
4854304 | Zielke | Aug 1989 | A |
4895141 | Koeneman | Jan 1990 | A |
4904861 | Epstein et al. | Feb 1990 | A |
4931055 | Bumpus et al. | Jun 1990 | A |
4940467 | Tronzo | Jul 1990 | A |
4957495 | Kluger | Sep 1990 | A |
4973331 | Pursley et al. | Nov 1990 | A |
5010879 | Moriya et al. | Apr 1991 | A |
5030235 | Campbell, Jr. | Jul 1991 | A |
5041112 | Mingozzi et al. | Aug 1991 | A |
5064004 | Lundell | Nov 1991 | A |
5074882 | Grammont et al. | Dec 1991 | A |
5092889 | Campbell, Jr. | Mar 1992 | A |
5094247 | Hernandez | Mar 1992 | A |
5133716 | Plaza | Jul 1992 | A |
5142407 | Varaprasad et al. | Aug 1992 | A |
5156605 | Pursley et al. | Oct 1992 | A |
5261908 | Campbell, Jr. | Nov 1993 | A |
5263955 | Baumgart et al. | Nov 1993 | A |
5290289 | Sanders et al. | Mar 1994 | A |
5306275 | Bryan | Apr 1994 | A |
5330503 | Yoon | Jul 1994 | A |
5334202 | Carter | Aug 1994 | A |
5336223 | Rogers | Aug 1994 | A |
5356411 | Spievack | Oct 1994 | A |
5356424 | Buzerak et al. | Oct 1994 | A |
5364396 | Robinson et al. | Nov 1994 | A |
5403322 | Herzenberg et al. | Apr 1995 | A |
5429638 | Muschler et al. | Jul 1995 | A |
5437266 | McPherson et al. | Aug 1995 | A |
5466261 | Richelsoph | Nov 1995 | A |
5468030 | Walling | Nov 1995 | A |
5480437 | Draenert | Jan 1996 | A |
5487743 | Laurain | Jan 1996 | A |
5509888 | Miller | Apr 1996 | A |
5516335 | Kummer et al. | May 1996 | A |
5527309 | Shelton | Jun 1996 | A |
5536269 | Spievack | Jul 1996 | A |
5549610 | Russell et al. | Aug 1996 | A |
5573012 | McEwan | Nov 1996 | A |
5575790 | Chen et al. | Nov 1996 | A |
5582616 | Bolduc et al. | Dec 1996 | A |
5620445 | Brosnahan et al. | Apr 1997 | A |
5620449 | Faccioli et al. | Apr 1997 | A |
5626579 | Muschler et al. | May 1997 | A |
5626613 | Schmieding | May 1997 | A |
5632744 | Campbell, Jr. | May 1997 | A |
5659217 | Petersen | Aug 1997 | A |
5662650 | Bailey | Sep 1997 | A |
5662683 | Kay | Sep 1997 | A |
5667507 | Corin | Sep 1997 | A |
5672175 | Martin | Sep 1997 | A |
5672177 | Seldin | Sep 1997 | A |
5700263 | Schendel | Dec 1997 | A |
5704938 | Staehlin et al. | Jan 1998 | A |
5704939 | Justin | Jan 1998 | A |
5720746 | Soubeiran | Feb 1998 | A |
5743910 | Bays et al. | Apr 1998 | A |
5752955 | Errico | May 1998 | A |
5762599 | Sohn | Jun 1998 | A |
5771903 | Jakobsson | Jun 1998 | A |
5800434 | Campbell, Jr. | Sep 1998 | A |
5810815 | Morales | Sep 1998 | A |
5827286 | Incavo et al. | Oct 1998 | A |
5830221 | Stein et al. | Nov 1998 | A |
5879375 | Larson, Jr. et al. | Mar 1999 | A |
5902304 | Walker et al. | May 1999 | A |
5935127 | Border | Aug 1999 | A |
5945762 | Chen et al. | Aug 1999 | A |
5961553 | Coty et al. | Oct 1999 | A |
5976138 | Baumgart et al. | Nov 1999 | A |
5979456 | Magovern | Nov 1999 | A |
6022349 | McLeod et al. | Feb 2000 | A |
6033412 | Losken et al. | Mar 2000 | A |
6034296 | Elvin et al. | Mar 2000 | A |
6074882 | Eckardt | Jun 2000 | A |
6102922 | Jakobsson et al. | Aug 2000 | A |
6106525 | Sachse | Aug 2000 | A |
6126660 | Dietz | Oct 2000 | A |
6126661 | Faccioli et al. | Oct 2000 | A |
6138681 | Chen et al. | Oct 2000 | A |
6139316 | Sachdeva et al. | Oct 2000 | A |
6162223 | Orsak et al. | Dec 2000 | A |
6183476 | Gerhardt et al. | Feb 2001 | B1 |
6200317 | Aalsma et al. | Mar 2001 | B1 |
6234956 | He et al. | May 2001 | B1 |
6238396 | Lombardo | May 2001 | B1 |
6241730 | Alby | Jun 2001 | B1 |
6245075 | Betz et al. | Jun 2001 | B1 |
6315784 | Djurovic | Nov 2001 | B1 |
6319255 | Grundei et al. | Nov 2001 | B1 |
6331744 | Chen et al. | Dec 2001 | B1 |
6336929 | Justin | Jan 2002 | B1 |
6343568 | McClasky | Feb 2002 | B1 |
6358283 | Hogfors et al. | Mar 2002 | B1 |
6375682 | Fleischmann et al. | Apr 2002 | B1 |
6389187 | Greenaway et al. | May 2002 | B1 |
6400980 | Lemelson | Jun 2002 | B1 |
6402753 | Cole et al. | Jun 2002 | B1 |
6409175 | Evans et al. | Jun 2002 | B1 |
460184 | Schendel et al. | Jul 2002 | A1 |
6416516 | Stauch et al. | Jul 2002 | B1 |
6417750 | Sohn | Jul 2002 | B1 |
6499907 | Baur | Dec 2002 | B1 |
6500110 | Davey et al. | Dec 2002 | B1 |
6508820 | Bales | Jan 2003 | B2 |
6510345 | Van Bentem | Jan 2003 | B1 |
6537196 | Creighton, IV et al. | Mar 2003 | B1 |
6554831 | Rivard et al. | Apr 2003 | B1 |
6565573 | Ferrante et al. | May 2003 | B1 |
6565576 | Stauch et al. | May 2003 | B1 |
6582313 | Perrow | Jun 2003 | B2 |
6583630 | Mendes et al. | Jun 2003 | B2 |
6616669 | Ogilvie et al. | Sep 2003 | B2 |
6626917 | Craig | Sep 2003 | B1 |
6656135 | Zogbi et al. | Dec 2003 | B2 |
6656194 | Gannoe et al. | Dec 2003 | B1 |
6667725 | Simons et al. | Dec 2003 | B1 |
6673079 | Kane | Jan 2004 | B1 |
6702816 | Buhler | Mar 2004 | B2 |
6706042 | Taylor | Mar 2004 | B2 |
6709293 | Mori et al. | Mar 2004 | B2 |
6730087 | Butsch | May 2004 | B1 |
6761503 | Breese | Jul 2004 | B2 |
6765330 | Baur | Jul 2004 | B2 |
6769499 | Cargill et al. | Aug 2004 | B2 |
6789442 | Forch | Sep 2004 | B2 |
6796984 | Soubeiran | Sep 2004 | B2 |
6802844 | Ferree | Oct 2004 | B2 |
6809434 | Duncan et al. | Oct 2004 | B1 |
6835207 | Zacouto et al. | Dec 2004 | B2 |
6849076 | Blunn | Feb 2005 | B2 |
6852113 | Nathanson et al. | Feb 2005 | B2 |
6918838 | Schwarzler et al. | Jul 2005 | B2 |
6918910 | Smith et al. | Jul 2005 | B2 |
6921400 | Sohngen | Jul 2005 | B2 |
6923951 | Contag et al. | Aug 2005 | B2 |
6971143 | Domroese | Dec 2005 | B2 |
7001346 | White | Feb 2006 | B2 |
7008425 | Phillips | Mar 2006 | B2 |
7011658 | Young | Mar 2006 | B2 |
7029472 | Fortin | Apr 2006 | B1 |
7029475 | Panjabi | Apr 2006 | B2 |
7041105 | Michelson | May 2006 | B2 |
7060080 | Bachmann | Jun 2006 | B2 |
7063706 | Wittenstein | Jun 2006 | B2 |
7105029 | Doubler et al. | Sep 2006 | B2 |
7105968 | Nissen | Sep 2006 | B2 |
7114501 | Johnson et al. | Oct 2006 | B2 |
7115129 | Heggeness | Oct 2006 | B2 |
7135022 | Kosashvili et al. | Nov 2006 | B2 |
7160312 | Saadat | Jan 2007 | B2 |
7163538 | Altarac et al. | Jan 2007 | B2 |
7189005 | Ward | Mar 2007 | B2 |
7191007 | Desai et al. | Mar 2007 | B2 |
7218232 | DiSilvestro et al. | May 2007 | B2 |
7238191 | Bachmann | Jul 2007 | B2 |
7241300 | Sharkawy et al. | Jul 2007 | B2 |
7243719 | Baron et al. | Jul 2007 | B2 |
7255682 | Bartol, Jr. et al. | Aug 2007 | B1 |
7282023 | Frering | Oct 2007 | B2 |
7285087 | Moaddeb et al. | Oct 2007 | B2 |
7302015 | Kim et al. | Nov 2007 | B2 |
7302858 | Walsh et al. | Dec 2007 | B2 |
7314443 | Jordan et al. | Jan 2008 | B2 |
7333013 | Berger | Feb 2008 | B2 |
7357037 | Hnat et al. | Apr 2008 | B2 |
7357635 | Belfor et al. | Apr 2008 | B2 |
7360542 | Nelson et al. | Apr 2008 | B2 |
7390007 | Helms et al. | Jun 2008 | B2 |
7390294 | Hassler, Jr. | Jun 2008 | B2 |
7402134 | Moaddeb et al. | Jul 2008 | B2 |
7402176 | Malek | Jul 2008 | B2 |
7429259 | Cadeddu et al. | Sep 2008 | B2 |
7445010 | Kugler et al. | Nov 2008 | B2 |
7458981 | Fielding et al. | Dec 2008 | B2 |
7485149 | White | Feb 2009 | B1 |
7489495 | Stevenson | Feb 2009 | B2 |
7530981 | Kutsenko | May 2009 | B2 |
7531002 | Sutton et al. | May 2009 | B2 |
7553298 | Hunt et al. | Jun 2009 | B2 |
7561916 | Hunt et al. | Jul 2009 | B2 |
7601156 | Robinson | Oct 2009 | B2 |
7611526 | Carl et al. | Nov 2009 | B2 |
7618435 | Opolski | Nov 2009 | B2 |
7658754 | Zhang et al. | Feb 2010 | B2 |
7666184 | Stauch | Feb 2010 | B2 |
7666210 | Franck et al. | Feb 2010 | B2 |
7678136 | Doubler et al. | Mar 2010 | B2 |
7678139 | Garamszegi et al. | Mar 2010 | B2 |
7708737 | Kraft et al. | May 2010 | B2 |
7708762 | McCarthy et al. | May 2010 | B2 |
7727143 | Birk et al. | Jun 2010 | B2 |
7753913 | Szakelyhidi, Jr. et al. | Jul 2010 | B2 |
7753915 | Eksler et al. | Jul 2010 | B1 |
7762998 | Birk et al. | Jul 2010 | B2 |
7763080 | Southworth | Jul 2010 | B2 |
7766855 | Miethke | Aug 2010 | B2 |
7775215 | Hassler, Jr. et al. | Aug 2010 | B2 |
7776068 | Ainsworth et al. | Aug 2010 | B2 |
7776075 | Bruneau et al. | Aug 2010 | B2 |
7776091 | Mastrorio | Aug 2010 | B2 |
7787958 | Stevenson | Aug 2010 | B2 |
7794476 | Wisnewski | Sep 2010 | B2 |
7811328 | Molz, IV et al. | Oct 2010 | B2 |
7835779 | Anderson et al. | Nov 2010 | B2 |
7837691 | Cordes et al. | Nov 2010 | B2 |
7862502 | Pool et al. | Jan 2011 | B2 |
7862586 | Malek | Jan 2011 | B2 |
7867235 | Fell et al. | Jan 2011 | B2 |
7875033 | Richter et al. | Jan 2011 | B2 |
7887566 | Hynes | Feb 2011 | B2 |
7901381 | Birk et al. | Mar 2011 | B2 |
7909852 | Boomer et al. | Mar 2011 | B2 |
7918844 | Byrum et al. | Apr 2011 | B2 |
7938841 | Sharkawy et al. | May 2011 | B2 |
7955357 | Kiester | Jun 2011 | B2 |
7981025 | Pool et al. | Jul 2011 | B2 |
7985256 | Grotz et al. | Jul 2011 | B2 |
7988709 | Clark et al. | Aug 2011 | B2 |
8002809 | Baynham | Aug 2011 | B2 |
8011308 | Picchio | Sep 2011 | B2 |
8034080 | Malandain et al. | Oct 2011 | B2 |
8043299 | Conway | Oct 2011 | B2 |
8043338 | Dant | Oct 2011 | B2 |
8057472 | Walker et al. | Nov 2011 | B2 |
8057473 | Orsak et al. | Nov 2011 | B2 |
8057513 | Kohm et al. | Nov 2011 | B2 |
8083741 | Morgan et al. | Dec 2011 | B2 |
8092499 | Roth | Jan 2012 | B1 |
8095317 | Ekseth et al. | Jan 2012 | B2 |
8105360 | Connor | Jan 2012 | B1 |
8105363 | Fielding | Jan 2012 | B2 |
8114158 | Carl et al. | Feb 2012 | B2 |
8123805 | Makower et al. | Feb 2012 | B2 |
8133280 | Voellmicke et al. | Mar 2012 | B2 |
8147517 | Trieu | Apr 2012 | B2 |
8147549 | Metcalf, Jr. et al. | Apr 2012 | B2 |
8162897 | Byrum | Apr 2012 | B2 |
8162979 | Sachs et al. | Apr 2012 | B2 |
8177789 | Magill et al. | May 2012 | B2 |
8197490 | Pool et al. | Jun 2012 | B2 |
8211149 | Justis | Jul 2012 | B2 |
8211151 | Schwab et al. | Jul 2012 | B2 |
8211179 | Molz, IV | Jul 2012 | B2 |
8216275 | Fielding | Jul 2012 | B2 |
8221420 | Keller | Jul 2012 | B2 |
8226690 | Altarac et al. | Jul 2012 | B2 |
8236002 | Fortin et al. | Aug 2012 | B2 |
8241331 | Arnin | Aug 2012 | B2 |
8246533 | Chang et al. | Aug 2012 | B2 |
8246630 | Manzi et al. | Aug 2012 | B2 |
8252063 | Stauch | Aug 2012 | B2 |
8267969 | Altarac et al. | Sep 2012 | B2 |
8278941 | Kroh et al. | Oct 2012 | B2 |
8282671 | Connor | Oct 2012 | B2 |
8298240 | Giger | Oct 2012 | B2 |
8323290 | Metzger et al. | Dec 2012 | B2 |
8357182 | Seme | Jan 2013 | B2 |
8366628 | Denker et al. | Feb 2013 | B2 |
8372078 | Collazo | Feb 2013 | B2 |
8386018 | Stauch et al. | Feb 2013 | B2 |
8394124 | Biyani | Mar 2013 | B2 |
8403958 | Schwab | Mar 2013 | B2 |
8414584 | Brigido | Apr 2013 | B2 |
8419801 | Disilvestro | Apr 2013 | B2 |
8425608 | Dewey et al. | Apr 2013 | B2 |
8435268 | Thompson et al. | May 2013 | B2 |
8439915 | Harrison | May 2013 | B2 |
8439926 | Bojarski et al. | May 2013 | B2 |
8444693 | Reiley | May 2013 | B2 |
8469908 | Asfora | Jun 2013 | B2 |
8470004 | Reiley | Jun 2013 | B2 |
8480712 | Samuel | Jul 2013 | B1 |
8486070 | Morgan et al. | Jul 2013 | B2 |
8486076 | Chavarria et al. | Jul 2013 | B2 |
8486110 | Fielding | Jul 2013 | B2 |
8486147 | De Villiers et al. | Jul 2013 | B2 |
8494805 | Roche et al. | Jul 2013 | B2 |
8496662 | Novak et al. | Jul 2013 | B2 |
8518062 | Cole et al. | Aug 2013 | B2 |
8523866 | Sidebotham et al. | Sep 2013 | B2 |
8529474 | Gupta et al. | Sep 2013 | B2 |
8529606 | Alamin et al. | Sep 2013 | B2 |
8529607 | Alamin et al. | Sep 2013 | B2 |
8556901 | Anthony et al. | Oct 2013 | B2 |
8556911 | Mehta et al. | Oct 2013 | B2 |
8556975 | Ciupik et al. | Oct 2013 | B2 |
8562653 | Alamin et al. | Oct 2013 | B2 |
8568457 | Hunziker | Oct 2013 | B2 |
8617220 | Skaggs | Oct 2013 | B2 |
8579979 | Edie et al. | Nov 2013 | B2 |
8585595 | Heilman | Nov 2013 | B2 |
8585740 | Ross et al. | Nov 2013 | B1 |
8591549 | Lange | Nov 2013 | B2 |
8591553 | Eisermann et al. | Nov 2013 | B2 |
8613758 | Linares | Dec 2013 | B2 |
8623036 | Harrison et al. | Jan 2014 | B2 |
8632544 | Haaja et al. | Jan 2014 | B2 |
8632548 | Soubeiran | Jan 2014 | B2 |
8632563 | Nagase et al. | Jan 2014 | B2 |
8636771 | Butler et al. | Jan 2014 | B2 |
8636802 | Serhan et al. | Jan 2014 | B2 |
8641719 | Gephart et al. | Feb 2014 | B2 |
8641723 | Connor | Feb 2014 | B2 |
8657856 | Gephart et al. | Feb 2014 | B2 |
8663285 | Dall et al. | Mar 2014 | B2 |
8663287 | Butler et al. | Mar 2014 | B2 |
8668719 | Alamin et al. | Mar 2014 | B2 |
8709090 | Makower et al. | Apr 2014 | B2 |
8758347 | Weiner et al. | Jun 2014 | B2 |
8758355 | Fisher et al. | Jun 2014 | B2 |
8771272 | LeCronier et al. | Jul 2014 | B2 |
8777947 | Zahrly et al. | Jul 2014 | B2 |
8777995 | McClintock et al. | Jul 2014 | B2 |
8790343 | McClellan et al. | Jul 2014 | B2 |
8790409 | Van den Heuvel et al. | Jul 2014 | B2 |
8828058 | Elsebaie et al. | Sep 2014 | B2 |
8828087 | Stone et al. | Sep 2014 | B2 |
8840651 | Reiley | Sep 2014 | B2 |
8870881 | Rezach et al. | Oct 2014 | B2 |
8870959 | Arnin | Oct 2014 | B2 |
8894663 | Giger | Nov 2014 | B2 |
8915915 | Harrison et al. | Dec 2014 | B2 |
8915917 | Doherty et al. | Dec 2014 | B2 |
8920422 | Homeier et al. | Dec 2014 | B2 |
8945188 | Rezach et al. | Feb 2015 | B2 |
8961521 | Keefer et al. | Feb 2015 | B2 |
8961567 | Hunziker | Feb 2015 | B2 |
8968402 | Myers et al. | Mar 2015 | B2 |
8968406 | Arnin | Mar 2015 | B2 |
8992527 | Guichet | Mar 2015 | B2 |
9022917 | Kasic et al. | May 2015 | B2 |
9044218 | Young | Jun 2015 | B2 |
9060810 | Kercher et al. | Jun 2015 | B2 |
9078703 | Arnin | Jul 2015 | B2 |
9198696 | Bannigan | Dec 2015 | B1 |
20020050112 | Koch et al. | May 2002 | A1 |
20020072758 | Reo et al. | Jun 2002 | A1 |
20020164905 | Bryant | Nov 2002 | A1 |
20030040671 | Somogyi et al. | Feb 2003 | A1 |
20030144669 | Robinson | Jul 2003 | A1 |
20030187432 | Johnson | Oct 2003 | A1 |
20030220643 | Ferree | Nov 2003 | A1 |
20030220644 | Thelen et al. | Nov 2003 | A1 |
20040011137 | Hnat et al. | Jan 2004 | A1 |
20040011365 | Govari et al. | Jan 2004 | A1 |
20040019353 | Freid et al. | Jan 2004 | A1 |
20040023623 | Stauch et al. | Feb 2004 | A1 |
20040030395 | Blunn | Feb 2004 | A1 |
20040055610 | Forsell | Mar 2004 | A1 |
20040133219 | Forsell | Jul 2004 | A1 |
20040138725 | Forsell | Jul 2004 | A1 |
20040193266 | Meyer | Sep 2004 | A1 |
20040225323 | Nagase | Nov 2004 | A1 |
20050034705 | McClendon | Feb 2005 | A1 |
20050049617 | Chatlynne et al. | Mar 2005 | A1 |
20050055025 | Zacouto | Mar 2005 | A1 |
20050065529 | Liu et al. | Mar 2005 | A1 |
20050090823 | Bartimus | Apr 2005 | A1 |
20050159754 | Odrich | Jul 2005 | A1 |
20050228376 | Boomer | Oct 2005 | A1 |
20050234448 | McCarthy | Oct 2005 | A1 |
20050234462 | Hershberger | Oct 2005 | A1 |
20050246034 | Soubeiran | Nov 2005 | A1 |
20050251109 | Soubeiran | Nov 2005 | A1 |
20050261779 | Meyer | Nov 2005 | A1 |
20050272976 | Tanaka et al. | Dec 2005 | A1 |
20060004459 | Hazebrouck et al. | Jan 2006 | A1 |
20060009767 | Kiester | Jan 2006 | A1 |
20060036259 | Carl et al. | Feb 2006 | A1 |
20060036323 | Carl et al. | Feb 2006 | A1 |
20060036324 | Sachs et al. | Feb 2006 | A1 |
20060047282 | Gordon | Mar 2006 | A1 |
20060052782 | Morgan | Mar 2006 | A1 |
20060058792 | Hynes | Mar 2006 | A1 |
20060069447 | DiSilvestro et al. | Mar 2006 | A1 |
20060074448 | Harrison et al. | Apr 2006 | A1 |
20060079897 | Harrison et al. | Apr 2006 | A1 |
20060136062 | DiNello et al. | Jun 2006 | A1 |
20060142767 | Green et al. | Jun 2006 | A1 |
20060155279 | Ogilvie | Jul 2006 | A1 |
20060195087 | Sacher et al. | Aug 2006 | A1 |
20060195088 | Sacher et al. | Aug 2006 | A1 |
20060200134 | Freid et al. | Sep 2006 | A1 |
20060204156 | Takehara et al. | Sep 2006 | A1 |
20060235299 | Martinelli | Oct 2006 | A1 |
20060235424 | Vitale et al. | Oct 2006 | A1 |
20060241746 | Shaoulian et al. | Oct 2006 | A1 |
20060241767 | Doty | Oct 2006 | A1 |
20060249914 | Dulin | Nov 2006 | A1 |
20060271107 | Harrison et al. | Nov 2006 | A1 |
20060282073 | Simanovsky | Dec 2006 | A1 |
20060293683 | Stauch | Dec 2006 | A1 |
20070010814 | Stauch | Jan 2007 | A1 |
20070010887 | Williams et al. | Jan 2007 | A1 |
20070021644 | Woolson et al. | Jan 2007 | A1 |
20070031131 | Griffitts | Feb 2007 | A1 |
20070043376 | Leatherbury et al. | Feb 2007 | A1 |
20070050030 | Kim | Mar 2007 | A1 |
20070093844 | Dye | Apr 2007 | A1 |
20070118215 | Moaddeb | May 2007 | A1 |
20070149909 | Fortin | Jun 2007 | A1 |
20070161984 | Cresina et al. | Jul 2007 | A1 |
20070173833 | Butler | Jul 2007 | A1 |
20070173837 | Chan et al. | Jul 2007 | A1 |
20070179493 | Kim | Aug 2007 | A1 |
20070185374 | Kick et al. | Aug 2007 | A1 |
20070213751 | Scirica | Sep 2007 | A1 |
20070233090 | Naifeh | Oct 2007 | A1 |
20070233098 | Mastrorio et al. | Oct 2007 | A1 |
20070239159 | Altarac et al. | Oct 2007 | A1 |
20070239161 | Giger et al. | Oct 2007 | A1 |
20070255088 | Jacobson et al. | Nov 2007 | A1 |
20070264605 | Belfor | Nov 2007 | A1 |
20070265646 | McCoy | Nov 2007 | A1 |
20070270803 | Giger et al. | Nov 2007 | A1 |
20070276368 | Trieu et al. | Nov 2007 | A1 |
20070276369 | Allard et al. | Nov 2007 | A1 |
20070276373 | Malandain | Nov 2007 | A1 |
20070276378 | Harrison et al. | Nov 2007 | A1 |
20070276493 | Malandain et al. | Nov 2007 | A1 |
20070288024 | Gollogly | Dec 2007 | A1 |
20070288183 | Bulkes et al. | Dec 2007 | A1 |
20080009792 | Henniges et al. | Jan 2008 | A1 |
20080015577 | Loeb | Jan 2008 | A1 |
20080021454 | Chao et al. | Jan 2008 | A1 |
20080021455 | Chao et al. | Jan 2008 | A1 |
20080021456 | Gupta et al. | Jan 2008 | A1 |
20080027436 | Cournoyer | Jan 2008 | A1 |
20080033431 | Jung et al. | Feb 2008 | A1 |
20080033434 | Boomer | Feb 2008 | A1 |
20080033436 | Gordon | Feb 2008 | A1 |
20080048855 | Berger | Feb 2008 | A1 |
20080051784 | Gollogly | Feb 2008 | A1 |
20080082118 | Edidin et al. | Apr 2008 | A1 |
20080086128 | Lewis | Apr 2008 | A1 |
20080097188 | Pool et al. | Apr 2008 | A1 |
20080097249 | Pool et al. | Apr 2008 | A1 |
20080097487 | Pool et al. | Apr 2008 | A1 |
20080097496 | Chang et al. | Apr 2008 | A1 |
20080108995 | Conway et al. | May 2008 | A1 |
20080161933 | Grotz et al. | Jul 2008 | A1 |
20080167685 | Allard et al. | Jul 2008 | A1 |
20080172063 | Taylor | Jul 2008 | A1 |
20080172072 | Pool et al. | Jul 2008 | A1 |
20080177319 | Schwab | Jul 2008 | A1 |
20080177326 | Thompson | Jul 2008 | A1 |
20080190237 | Radinger et al. | Aug 2008 | A1 |
20080228186 | Gall et al. | Sep 2008 | A1 |
20080255615 | Vittur et al. | Oct 2008 | A1 |
20080272928 | Shuster | Nov 2008 | A1 |
20080275557 | Makower et al. | Nov 2008 | A1 |
20080306538 | Moore | Dec 2008 | A1 |
20090030462 | Buttermann | Jan 2009 | A1 |
20090076597 | Dahlgren et al. | Mar 2009 | A1 |
20090082815 | Zylber et al. | Mar 2009 | A1 |
20090088766 | Magill | Apr 2009 | A1 |
20090088803 | Justis et al. | Apr 2009 | A1 |
20090093820 | Trieu et al. | Apr 2009 | A1 |
20090093890 | Gelbart | Apr 2009 | A1 |
20090112263 | Pool et al. | Apr 2009 | A1 |
20090118733 | Orsak | May 2009 | A1 |
20090163780 | Tieu | Jun 2009 | A1 |
20090171356 | Klett | Jul 2009 | A1 |
20090192514 | Feinberg et al. | Jul 2009 | A1 |
20090198144 | Phillips et al. | Aug 2009 | A1 |
20090204154 | Kiester | Aug 2009 | A1 |
20090204156 | McClintock | Aug 2009 | A1 |
20090216113 | Meier et al. | Aug 2009 | A1 |
20090275984 | Kim et al. | Nov 2009 | A1 |
20100004654 | Schmitz et al. | Jan 2010 | A1 |
20100009430 | Wan et al. | Jan 2010 | A1 |
20100057127 | McGuire et al. | Mar 2010 | A1 |
20100094302 | Pool | Apr 2010 | A1 |
20100094303 | Chang | Apr 2010 | A1 |
20100094304 | Pool | Apr 2010 | A1 |
20100094306 | Chang et al. | Apr 2010 | A1 |
20100100185 | Trieu et al. | Apr 2010 | A1 |
20100106192 | Barry | Apr 2010 | A1 |
20100114322 | Clifford et al. | May 2010 | A1 |
20100121323 | Pool et al. | May 2010 | A1 |
20100130941 | Conlon et al. | May 2010 | A1 |
20100137872 | Kam et al. | Jun 2010 | A1 |
20100145449 | Makower et al. | Jun 2010 | A1 |
20100145462 | Ainsworth et al. | Jun 2010 | A1 |
20100168751 | Anderson et al. | Jul 2010 | A1 |
20100217271 | Pool | Aug 2010 | A1 |
20100249782 | Durham | Sep 2010 | A1 |
20100249847 | Jung | Sep 2010 | A1 |
20100256626 | Muller et al. | Oct 2010 | A1 |
20100262239 | Boyden et al. | Oct 2010 | A1 |
20100280551 | Pool | Nov 2010 | A1 |
20100318129 | Seme et al. | Dec 2010 | A1 |
20100331883 | Schmitz et al. | Dec 2010 | A1 |
20110004076 | Janna et al. | Jan 2011 | A1 |
20110057756 | Marinescu et al. | Mar 2011 | A1 |
20110060336 | Pool | Mar 2011 | A1 |
20110066188 | Seme et al. | Mar 2011 | A1 |
20110098748 | Jangra | Apr 2011 | A1 |
20110152725 | Demir et al. | Jun 2011 | A1 |
20110196435 | Forsell | Aug 2011 | A1 |
20110202138 | Shenoy et al. | Aug 2011 | A1 |
20110218534 | Prandi | Sep 2011 | A1 |
20110237861 | Pool | Sep 2011 | A1 |
20110238126 | Soubeiran | Sep 2011 | A1 |
20110245878 | Franks | Oct 2011 | A1 |
20110257655 | Copf, Jr. | Oct 2011 | A1 |
20110284014 | Cadeddu et al. | Nov 2011 | A1 |
20120004494 | Payne | Jan 2012 | A1 |
20120019341 | Gabay et al. | Jan 2012 | A1 |
20120019342 | Gabay et al. | Jan 2012 | A1 |
20120035656 | Pool | Feb 2012 | A1 |
20120035661 | Pool | Feb 2012 | A1 |
20120053633 | Stauch | Mar 2012 | A1 |
20120088953 | King | Apr 2012 | A1 |
20120109207 | Trieu | May 2012 | A1 |
20120116535 | Ratron et al. | May 2012 | A1 |
20120130428 | Hunziker | May 2012 | A1 |
20120150230 | Felix | Jun 2012 | A1 |
20120157996 | Walker | Jun 2012 | A1 |
20120158061 | Koch et al. | Jun 2012 | A1 |
20120172883 | Sayago | Jul 2012 | A1 |
20120179215 | Soubeiran | Jul 2012 | A1 |
20120203282 | Sachs | Aug 2012 | A1 |
20120209265 | Pool | Aug 2012 | A1 |
20120209269 | Pool | Aug 2012 | A1 |
20120221106 | Makower et al. | Aug 2012 | A1 |
20120271353 | Barry | Oct 2012 | A1 |
20120283781 | Arnin | Nov 2012 | A1 |
20120296234 | Wilhelm et al. | Nov 2012 | A1 |
20120329882 | Messersmith et al. | Dec 2012 | A1 |
20130013066 | Landry et al. | Jan 2013 | A1 |
20130072932 | Stauch | Mar 2013 | A1 |
20130123847 | Anderson et al. | May 2013 | A1 |
20130138017 | Jundt et al. | May 2013 | A1 |
20130138154 | Reiley | May 2013 | A1 |
20130150863 | Baumgartner | Jun 2013 | A1 |
20130150889 | Fening et al. | Jun 2013 | A1 |
20130165976 | Gunn | Jun 2013 | A1 |
20130178903 | Abdou | Jul 2013 | A1 |
20130211521 | Shenoy et al. | Aug 2013 | A1 |
20130245692 | Hayes et al. | Sep 2013 | A1 |
20130253344 | Griswold et al. | Sep 2013 | A1 |
20130253587 | Carls et al. | Sep 2013 | A1 |
20130261672 | Horvath | Oct 2013 | A1 |
20130296863 | Globerman et al. | Nov 2013 | A1 |
20130296864 | Burley et al. | Nov 2013 | A1 |
20130296940 | Northcutt et al. | Nov 2013 | A1 |
20130325006 | Michelinie et al. | Dec 2013 | A1 |
20130325071 | Niemiec et al. | Dec 2013 | A1 |
20140005788 | Haaja | Jan 2014 | A1 |
20140025172 | Lucas et al. | Jan 2014 | A1 |
20140052134 | Orisek | Feb 2014 | A1 |
20140058392 | Mueckter et al. | Feb 2014 | A1 |
20140058450 | Arlet | Feb 2014 | A1 |
20140066987 | Hestad et al. | Mar 2014 | A1 |
20140088715 | Ciupik | Mar 2014 | A1 |
20140128920 | Kantelhardt | May 2014 | A1 |
20140142631 | Hunziker | May 2014 | A1 |
20140163664 | Goldsmith | Jun 2014 | A1 |
20140236234 | Kroll et al. | Aug 2014 | A1 |
20140236311 | Vicatos et al. | Aug 2014 | A1 |
20140257412 | Patty et al. | Sep 2014 | A1 |
20140277446 | Clifford et al. | Sep 2014 | A1 |
20140296918 | Fening et al. | Oct 2014 | A1 |
20140303538 | Baym et al. | Oct 2014 | A1 |
20140303539 | Baym et al. | Oct 2014 | A1 |
20140324047 | Zahrly | Oct 2014 | A1 |
20140358150 | Kaufman et al. | Dec 2014 | A1 |
20150105782 | D'Lima et al. | Apr 2015 | A1 |
20150105824 | Moskowitz et al. | Apr 2015 | A1 |
Number | Date | Country |
---|---|---|
2655093 | Dec 2007 | CA |
1697630 | Nov 2005 | CN |
101040807 | Sep 2007 | CN |
1541262 | Jun 1969 | DE |
8515687 | Dec 1985 | DE |
19626230 | Jan 1998 | DE |
19745654 | Apr 1999 | DE |
102005045070 | Apr 2007 | DE |
0663184 | Jul 1995 | EP |
1905388 | Apr 2008 | EP |
2901991 | Dec 2007 | FR |
2900563 | Aug 2008 | FR |
2892617 | Sep 2008 | FR |
2916622 | Sep 2009 | FR |
2961386 | Jul 2012 | FR |
H0956736 | Mar 1997 | JP |
2002500063 | Jan 2002 | JP |
9844858 | Oct 1998 | WO |
0124697 | Apr 2001 | WO |
0145485 | Jun 2001 | WO |
0145487 | Jun 2001 | WO |
0167973 | Sep 2001 | WO |
0178614 | Oct 2001 | WO |
2006090380 | Aug 2006 | WO |
2007013059 | Feb 2007 | WO |
2007025191 | Mar 2007 | WO |
2007118179 | Oct 2007 | WO |
2007144489 | Dec 2007 | WO |
2008003952 | Jan 2008 | WO |
WO2007015239 | Jan 2008 | WO |
2008040880 | Apr 2008 | WO |
2011116158 | Sep 2011 | WO |
2013119528 | Aug 2013 | WO |
2014040013 | Mar 2014 | WO |
Entry |
---|
Abe et al., “Experimental external fixation combined with percutaneous discectomy in the management of scoliosis.”, SPINE, 1999, pp. 646-653, 24, No. 7. |
Ahlbom et al., “Guidelines for limiting exposure to time-varying electric, magnetic, and electromagnetic fields (up to 300 GHz). International Commission on Non-Ionizing Radiation Protection.”, Health Physics, 1998, pp. 494-522, 74, No. 4. |
Amer et al., “Evaluation of treatment of late-onset tibia vara using gradual angulation translation high tibial osteotomy”, ACTA Orthopaedica Belgica, 2010, pp. 360-366, 76, No. 3. |
Angrisani et al., “Lap-Band® Rapid Port™ System: Preliminary results in 21 patients”, Obesity Surgery, 2005, p. 936, 15, No. 7. |
Baumgart et al., “A fully implantable, programmable distraction nail (Fitbone)—new perspectives for corrective and reconstructive limb surgery.”, Practice of Intramedullary Locked Nails, 2006, pp. 189-198. |
Baumgart et al., “The bioexpandable prosthesis: A new perspective after resection of malignant bone tumors in children.”, J Pediatr Hematol Oncol, 2005, pp. 452-455, 27, No. 8. |
Bodó et al., “Development of a tension-adjustable implant for anterior cruciate ligament reconstruction.”, Eklem Hastaliklari ve Cerrahisi—Joint Diseases and Related Surgery, 2008, pp. 27-32, 19, No. 1. |
Boudjemline et al., “Off-label use of an adjustable gastric banding system for pulmonary artery banding.”, The Journal of Thoracic and Cardiovascular Surgery, 2006, pp. 1130-1135, 131, No. 5. |
Brown et al., “Single port surgery and the Dundee Endocone.”, SAGES Annual Scientific Sessions: Emerging Technology Poster Abstracts, 2007, ETP007, pp. 323-324. |
Buchowski et al., “Temporary internal distraction as an aid to correction of severe scoliosis”, J Bone Joint Surg Am, 2006, pp. 2035-2041, 88-A, No. 9. |
Burghardt et al., “Mechanical failure of the Intramedullary Skeletal Kinetic Distractor in limb lengthening.”, J Bone Joint Surg Br, 2011, pp. 639-643, 93-B, No. 5. |
Burke, “Design of a minimally invasive non fusion device for the surgical management of scoliosis in the skeletally immature”, Studies in Health Technology and Informatics, 2006, pp. 378-384, 123. |
Carter et al., “A cumulative damage model for bone fracture.”, Journal of Orthopaedic Research, 1985, pp. 84-90, 3, No. 1. |
Chapman et al., “Laparoscopic adjustable gastric banding in the treatment of obesity: A systematic literature review.”, Surgery, 2004, pp. 326-351, 135, No. 3. |
Cole et al., “Operative technique intramedullary skeletal kinetic distractor: Tibial surgical technique.”, Orthofix, 2005. |
Cole et al., “The intramedullary skeletal kinetic distractor (ISKD): first clinical results of a new intramedullary nail for lengthening of the femur and tibia.”, Injury, 2001, pp. S-D-129-S-D-139, 32. |
Dailey et al., “A novel intramedullary nail for micromotion stimulation of tibial fractures.”, Clinical Biomechanics, 2012, pp. 182-188, 27, No. 2. |
Daniels et al., “A new method for continuous intraoperative measurement of Harrington rod loading patterns.”, Annals of Biomedical Engineering, 1984, pp. 233-246, 12, No. 3. |
De Giorgi et al., “Cotrel-Dubousset instrumentation for the treatment of severe scoliosis.”, European Spine Journal, 1999, pp. 8-15, No. 1. |
Dorsey et al., “The stability of three commercially available implants used in medial opening wedge high tibial osteotomy.”, Journal of Knee Surgery, 2006, pp. 95-98, 19, No. 2. |
Edeland et al., “Instrumentation for distraction by limited surgery in scoliosis treatment.”, Journal of Biomedical Engineering, 1981, pp. 143-146, 3, No. 2. |
Elsebaie, “Single growing rods (Review of 21 cases). Changing the foundations: Does it affect the results?”, Journal of Child Orthop, 2007, 1:258. |
Ember et al., “Distraction forces required during growth rod lengthening.”, J of Bone Joint Surg BR, 2006, p. 229, 88-B, No. Suppl. II. |
European Patent Office, “Observations by a third party under Article 115 EPC in EP08805612 by Soubeiran.”, 2010. |
Fabry et al., “A technique for prevention of port complications after laparoscopic adjustable silicone gastric banding.”, Obesity Surgery, 2002, pp. 285-288, 12, No. 2. |
Fried et al., “In vivo measurements of different gastric band pressures towards the gastric wall at the stoma region.”, Obesity Surgery, 2004, p. 914, 14, No. 7. |
Gao et al., CHD7 gene polymorphisms are associated with susceptibility to idiopathic scoliosis, American Journal of Human Genetics, 2007, pp. 957-965, 80. |
Gebhart et al., “Early clinical experience with a custom made growing endoprosthesis in children with malignant bone tumors of the lower extremity actioned by an external permanent magnet; The Phenix M. system”, International Society of Limb Salvage 14th International Symposium on Limb Salvage. Sep. 3, 2007, Hamburg, Germany. (2 pages). |
Gillespie et al. “Harrington instrumentation without fusion.”, J Bone Joint Surg Br, 1981, p. 461, 63-B, No. 3. |
Goodship et al., “Strain rate and timing of stimulation in mechanical modulation of fracture healing.”, Clinical Orthopaedics and Related Research, 1998, pp. S105-S115, No. 355S. |
Grass et al., “Intermittent distracting rod for correction of high neurologic risk congenital scoliosis.”, SPINE, 1997, pp. 1922-1927, 22, No. 16. |
Gray, “Gray's anatomy of the human body.”, http://education.yahoo.com/reference/gray/subjects/subject/128, published Jul. 1, 2007. |
Grimer et al. “Non-invasive extendable endoprostheses for children—Expensive but worth it!”, International Society of Limb Salvage 14th International Symposium on Limb Salvage, 2007. |
Grünert, “The development of a totally implantable electronic sphincter.” (translated from the German “Die Entwicklung eines total implantierbaren elektronischen Sphincters”), Langenbecks Archiv fur Chirurgie, 1969, pp. 1170-1174, 325. |
Guichet et al. “Gradual femoral lengthening with the Albizzia intramedullary nail”, J Bone Joint Surg Am, 2003, pp. 838-848, 85-A, No. 5. |
Gupta et al., “Non-invasive distal femoral expandable endoprosthesis for limb-salvage surgery in paediatric tumours.”, J Bone Joint Surg Br, 2006, pp. 649-654, 88-B, No. 5. |
Hankemeier et al., “Limb lengthening with the Intramedullary Skeletal Kinetic Distractor (ISKD).”, Oper Orthop Traumatol, 2005, pp. 79-101, 17, No. 1. |
Harrington, “Treatment of scoliosis. Correction and internal fixation by spine instrumentation.”, J Bone Joint Surg Am, 1962, pp. 591-610, 44-A, No. 4. |
Hennig et al., “The safety and efficacy of a new adjustable plate used for proximal tibial opening wedge osteotomy in the treatment of unicompartmental knee osteoarthrosis.”, Journal of Knee Surgery, 2007, pp. 6-14, 20, No. 1. |
Hofmeister et al., “Callus distraction with the Albizzia nail.”, Practice of Intramedullary Locked Nails, 2006, pp. 211-215. |
Horbach et al., “First experiences with the routine use of the Rapid Port™ system with the Lap-Band®.”, Obesity Surgery, 2006, p. 418, 16, No. 4. |
Hyodo et al., “Bone transport using intramedullary fixation and a single flexible traction cable.”, Clinical Orthopaedics and Related Research, 1996, pp. 256-268, 325. |
International Commission on Non-Ionizing Radiation Protection, “Guidelines on limits of exposure to static magnetic fields.” Health Physics, 2009, pp. 504-514, 96, No. 4. |
INVIS®/Lamello Catalog, 2006, Article No. 68906A001 GB. |
Kasliwal et al., “Management of high-grade spondylolisthesis.”, Neurosurgery Clinics of North America, 2013, pp. 275-291, 24, No. 2. |
Kenawey et al., “Leg lengthening using intramedullay skeletal kinetic distractor: Results of 57 consecutive applications.”, Injury, 2011, pp. 150-155, 42, No. 2. |
Kent et al., “Assessment and correction of femoral malrotation following intramedullary nailing of the femur.”, Acta Orthop Belg, 2010, pp. 580-584, 76, No. 5. |
Klemme et al., “Spinal instrumentation without fusion for progressive scoliosis in young children”, Journal of Pediatric Orthopaedics. 1997, pp. 734-742, 17, No. 6. |
Korenkov et al., “Port function after laparoscopic adjustable gastric banding for morbid obesity.”, Surgical Endoscopy, 2003, pp. 1068-1071, 17, No. 7. |
Krieg et al., “Leg lengthening with a motorized nail in adolescents.”, Clinical Orthopaedics and Related Research, 2008, pp. 189-197, 466, No. 1. |
Kucukkaya et al., “The new intramedullary cable bone transport technique.”, Journal of Orthopaedic Trauma, 2009, pp. 531-536, 23, No. 7. |
Lechner et al., “In vivo band manometry: A new method in band adjustment”, Obesity Surgery, 2005, p. 935, 15, No. 7. |
Lechner et al., “Intra-band manometry for band adjustments: The basics”, Obesity Surgery, 2006, pp. 417-418, 16, No. 4. |
Li et al., “Bone transport over an intramedullary nail: A case report with histologic examination of the regenerated segment.”, Injury, 1999, pp. 525-534, 30, No. 8. |
Lonner, “Emerging minimally invasive technologies for the management of scoliosis.”, Orthopedic Clinics of North America, 2007, pp. 431-440, 38, No. 3. |
Matthews et al., “Magnetically adjustable intraocular lens.”, Journal of Cataract and Refractive Surgery, 2003, pp. 2211-2216, 29, No. 11. |
MicroMotion, “Micro Drive Engineering. General catalogue.”, 2009, pp. 14-24. |
Mineiro et al., “Subcutaneous rodding for progressive spinal curvatures: Early results.”, Journal of Pediatric Orthopaedics, 2002, pp. 290-295, 22, No. 3. |
Moe et al., “Harrington instrumentation without fusion plus external orthotic support for the treatment of difficult curvature problems in young children.”, Clinical Orthopaedics and Related Research, 1984, pp. 35-45, 185. |
Montague et al., “Magnetic gear dynamics for servo control.”, Melecon 2010—2010 15th IEEE Mediterranean Electrotechnical Conference, Valletta, 2010, pp. 1192-1197. |
Montague et al., “Servo control of magnetic gears.”, IEEE/ASME Transactions on Mechatronics, 2012, pp. 269-278, 17, No. 2. |
Nachemson et al., “Intravital wireless telemetry of axial forces in Harrington distraction rods in patients with idiopathic scoliosis.”, The Journal of Bone and Joint Surgery, 1971, pp. 445-465, 53, No. 3. |
Nachlas et al., “The cure of experimental scoliosis by directed growth control.”, The Journal of Bone and Joint Surgery, 1951, pp. 24-34, 33-A, No. 1. |
Newton et al., “Fusionless scoliosis correction by anterolateral tethering . . . can it work?. ”, 39th Annual Scoliosis Research Society Meeting, 2004. |
Oh et al., “Bone transport over an intramedullary nail for reconstruction of long bone defects in tibia.”, Archives of Orthopaedic and Trauma Surgery, 2008, pp. 801-808, 128, No. 8. |
Ozcivici et al., “Mechanical signals as anabolic agents in bone.”, Nature Reviews Rheumatology, 2010, pp. 50-59, 6, No. 1. |
Piorkowski et al., Preventing Port Site Inversion in Laparoscopic Adjustable Gastric Banding, Surgery for Obesity and Related Diseases, 2007, 3(2), pp. 159-162, Elsevier; New York, U.S.A. |
Prontes, “Longest bone in body.”, eHow.com, 2012. |
Rathjen et al., “Clinical and radiographic results after implant removal in idiopathic scoliosis.”, SPINE, 2007, pp. 2184-2188, 32, No. 20. |
Ren et al., “Laparoscopic adjustable gastric banding: Surgical technique”, Journal of Laparoendoscopic & Advanced Surgical Techniques, 2003, pp. 257-263, 13, No. 4. |
Reyes-Sanchez et al., “External fixation for dynamic correction of severe scoliosis”, The Spine Journal, 2005, pp. 418-426, 5, No. 4. |
Rinsky et al., “Segmental instrumentation without fusion in children with progressive scoliosis.”, Journal of Pediatric Orthopedics, 1985, pp. 687-690, 5, No. 6. |
Rode et al., “A simple way to adjust bands under radiologic control”, Obesity Surgery, 2006, p. 418, 16, No. 4. |
Schmerling et al., “Using the shape recovery of nitinol in the Harrington rod treatment of scoliosis.”, Journal of Biomedical Materials Research, 1976, pp. 879-892, 10, No. 6. |
Scott et al., “Transgastric, transcolonic and transvaginal cholecystectomy using magnetically anchored instruments.”, SAGES Annual Scientific Sessions, Poster Abstracts, Apr. 18-22, 2007, P511, p. 306. |
Sharke, “The machinery of life”, Mechanical Engineering Magazine, Feb. 2004, Printed from Internet site Oct. 24, 2007 http://www.memagazine.org/contents/current/features/moflife/moflife.html. |
Shiha et al., “Ilizarov gradual correction of genu varum deformity in adults.”, Acta Orthop Belg, 2009, pp. 784-791, 75, No. 6. |
Simpson et al., “Femoral lengthening with the intramedullary skeletal kinetic distractor.”, Journal of Bone and Joint Surgery, 2009, pp. 955-961, 91-B, No. 7. |
Smith, “The use of growth-sparing instrumentation in pediatric spinal deformity.”, Orthopedic Clinics of North America, 2007, pp. 547-552, 38, No. 4. |
Soubeiran et al. “The Phenix M System, a fully implanted non-invasive lengthening device externally controllable through the skin with a palm size permanent magnet. Applications in limb salvage.” International Society of Limb Salvage 14th International Symposium on Limb Salvage, Sep. 13, 2007, Hamburg, Germany. (2 pages). |
Soubeiran et al., “The Phenix M System. A fully implanted lengthening device externally controllable through the skin with a palm size permanent magnet; Applications to pediatric orthopaedics”, 6th European Research Conference in Pediatric Orthopaedics, Oct. 6, 2006, Toulouse, France (7 pages). |
Stokes et al., “Reducing radiation exposure in early-onset scoliosis surgery patients: Novel use of ultrasonography to measure lengthening in magnetically-controlled growing rods. Prospective validation study and assessment of clinical algorithm”, 20th International Meeting on Advanced Spine Techniques, Jul. 11, 2013. Vancouver, Canada. Scoliosis Research Society. |
Sun et al., “Masticatory mechanics of a mandibular distraction osteogenesis site: Interfragmentary micromovement.”, Bone, 2007, pp. 188-196, 41, No. 2. |
Synthes Spine, “VEPTR II. Vertical Expandable Prosthetic Titanium Rib II: Technique Guide.”, 2008, 40 pgs. |
Synthes Spine, “VEPTR Vertical Expandable Prosthetic Titanium Rib, Patient Guide.”, 2005, 26 pgs. |
Takaso et al., “New remote-controlled growing-rod spinal instrumentation possibly applicable for scoliosis in young children.”, Journal of Orthopaedic Science, 1998, pp. 336-340, 3, No. 6. |
Teli et al., “Measurement of forces generated during distraction of growing rods.”, Journal of Children's Orthopaedics, 2007, pp. 257-258, 1, No. 4. |
Tello, “Harrington instrumentation without arthrodesis and consecutive distraction program for young children with severe spinal deformities: Experience and technical details.”, The Orthopedic Clinics of North America, 1994, pp. 333-351, 25, No. 2. |
Thaller et al., “Limb lengthening with fully implantable magnetically actuated mechanical nails (PHENIX®)—Preliminary results.”, Injury, 2014 (E-published Oct. 28, 2013), pp. S60-S65, 45. |
Thompson et al., “Early onset scoliosis: Future directions”, 2007, J Bone Joint Surg Am, pp. 163-166, 89-A, Suppl 1. |
Thompson et al., “Growing rod techniques in early-onset scoliosis”, Journal of Pediatric Orthopedics, 2007, pp. 354-361, 27, No. 3. |
Thonse et al., “Limb lengthening with a fully implantable, telescopic, intramedullary nail.”, Operative Techniques in Orthopedics, 2005, pp. 355-362, 15, No. 4. |
Trias et al., “Dynamic loads experienced in correction of idiopathic scoliosis using two types of Harrington rods.”, SPINE, 1979, pp. 228-235, 4, No. 3. |
Verkerke et al., “An extendable modular endoprosthetic system for bone tumor management in the leg”, Journal of Biomedical Engineering, 1990, pp. 91-96, 12, No. 2. |
Verkerke et al., “Design of a lengthening element for a modular femur endoprosthetic system”, Proceedings of the Institution of Mechanical Engineers Part H: Journal of Engineering in Medicine, 1989, pp. 97-102, 203, No. 2. |
Verkerke et al., “Development and test of an extendable endoprosthesis for bone reconstruction in the leg.”, The International Journal of Artificial Organs, 1994, pp. 155-162, 17, No. 3. |
Weiner et al., “Initial clinical experience with telemetrically adjustable gastric banding”, Surgical Technology International, 2005, pp. 63-69, 15. |
Wenger, “Spine jack operation in the correction of scoliotic deformity: A direct intrathoracic attack to straighten the laterally bent spine: Preliminary report”, Arch Surg, 1961, pp. 123-132 (901-910), 83, No. 6. |
White, III et al., “The clinical biomechanics of scoliosis.”, Clinical Orthopaedics and Related Research, 1976, pp. 100-112, 118. |
Yonnet, “A new type of permanent magnet coupling.”, IEEE Transactions on Magnetics, 1981, pp. 2991-2993, 17, No. 6. |
Yonnet, “Passive magnetic bearings with permanent magnets.”, IEEE Transactions on Magnetics, 1978, pp. 803-805, 14, No. 5. |
Zheng et al., “Force and torque characteristics for magnetically driven blood pump.”, Journal of Magnetism and Magnetic Materials, 2002, pp. 292-302, 241, No. 2. |
Number | Date | Country | |
---|---|---|---|
20200155201 A1 | May 2020 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13525058 | Jun 2012 | US |
Child | 16748605 | US |