The present disclosure generally relates to magnetic latching actuator for use within an electricity meter. More specifically, the present disclosure relates to electrical contactors that are utilized within a domestic electricity meter to selectively connect or disconnect the electricity mains to a home or business serviced through the electricity meter.
Domestic homes and small businesses receive electricity from a main through an electricity meter that includes circuitry for measuring the amount of electricity consumed by the home. Typically, the electricity meter includes two bus bars each having an infeed blade connected to the electricity mains and an outfeed blade connected to the wiring of the home. In electronic electricity meters, circuitry within the electricity meter measures the amount of electricity consumed, typically across two phases. In North America, for example, the two bus bars in an electricity meter provides phase voltages at approximately 115 volts to neutral for low power distributed sockets or 230 volts across both phases for high power appliances such as washing machines, dryers and air conditioners, representing load currents up to 200 amps.
In many currently available electronic electricity meters, such as the IconĀ® meter available from Sensus Metering Systems, the electricity meter includes a radio that can receive and transmit signals to and from locations remote to the meter. The ability of the electronic electricity meter to receive information from locations/devices remote to the meter allows the electronic electricity meter to perform a variety of functions, such as reporting electricity consumption and selectively disconnecting the home from the electrical mains. As an example, utility providers may require some homes to pre-pay for electricity. When the prepayment amount has been consumed, the utility may desire to disconnect the electricity mains from the consumer's home to prevent further electricity consumption. Alternatively, the utility may wish to disconnect the electrical mains to a home for any number of other reasons.
Many metering specifications demand that any component included within the meter that is subjected to excess overload current conditions, including power disconnect contactors, must be capable of surviving demanding overload criteria, especially when subjected to a range of potentially damaging short-circuit fault conditions. As an example, commonly utilized testing standards require the contactors within the meter to survive an overload condition thirty times the nominal current rating.
Contactors for domestic supply applications typically may have nominal current capacities of 200 amps. Under testing conditions, these contactors are expected to survive thirty times these nominal current values for six full supply cycles. This represents overload levels of 7,000 amps RMS or peak AC values of almost 12,000 amps.
Domestic metering power disconnect contactors have to survive this arduous overload current condition as described above. One of the issues created during the overload condition is the magnetic force created by the extremely high current values passing through the fixed feed blade and a moving contact blade during the excessive overload situation. If the contacts are arranged such that the direct current flow through the fixed and movable contacts is opposite each other, the magnetic forces may urge the contacts to separate. As an example, under standard load conditions, the magnetic force attempting to separate the contacts may be approximately 1 Newton. During overload test conditions, as many as several hundred Newtons may be acting to separate the contacts.
In such meter designs, the fixed and movable contacts are held in the closed position and moved from the closed to an open position by some type of actuator assembly. Such actuators must also be able to survive the arduous overload current conditions described during testing conditions and must hold the contact in the closed position during such testing conditions.
Another problem that exists in conventional remote disconnect switches within electricity meters is that the electrical contacts within the meter wear over the lifetime of the switch. In a 200 amp remote disconnect, where a typical contact opening distance is on the order of 2 millimeters, the wear over the lifetime of the contact components in the direction of closure can be on the order of 0.5 millimeters. This amount of wear represents a significant percentage of the overall movement of the contact.
In order to overcome this wear issue, many remote disconnect switches utilize a compliant member between the actuator and the moving contacts. This compliant member is frequently the bus bar to which the moving side of the contact pair is attached. This method of indirect application of force to the contact to achieve closure leaves the contact vulnerable to bounce, inconsistent closure force or flexing of the bus bar under high current, all of which cause increased wear and higher resistance or higher likelihood of failure.
A common actuator used for opening and closing contact pairs in commercially available remote disconnects is an electromagnetic solenoid. Electromagnetic solenoids are particularly suitable since they typically operate sufficiently quickly (within one line cycle) such that any arc struck between the contacts will extinguish at the next zero point crossing, rather than being maintained over a relatively long period. Electromagnetic solenoids used are usually bi-stable solenoids that latch at the end points of their travel by employing either mechanical or magnetic latching functions to hold the contactor state. The latching force is typically a steep function of position as the ends of the actuator travel are approached, as the reluctance drops rapidly as the moving iron parts close on the stationary iron parts, resulting in an increasing flux in the gap. The steep force curve results in the use of a compliant member described above positioned between the actuator and the moving contacts. Most compliant members have a resultant force that varies as the displacement varies. Some of these issues can be overcome by employing a constant force spring structure; however, these spring structures can be complex and have issues with dynamic response.
As described above, it is desirable to provide a combined actuator arrangement and electrical contactors within an electricity meter that allow the electricity meter to operate satisfactorily through testing conditions while also being able to separate the contacts within the electricity meter over an extended period of use.
The present disclosure generally relates to an electrical contactor. More specifically, the present disclosure relates to an electrical contactor that is utilized within an electricity meter to selectively interrupt the flow of current through the electricity meter.
The electrical contactor includes a fixed contact and a movable contact that form part of one of the bus bars within the electricity meter. The fixed and movable contacts are selectively movable between a closed condition to allow the flow of current through the bus bar and an open condition to interrupt the flow of current through the bus bar. An actuating arrangement can be utilized to control the movement of the fixed and movable contacts between the open and closed conditions.
The fixed contact includes a center leg that extends along a longitudinal axis from a first end to a second end. Each fixed contact includes a first arm and a second arm that extend in opposite directions from the center leg.
The movable contact of the electrical contactor includes a first blade and a second blade positioned generally parallel to each other. The first and second blades are both parallel to each other and generally parallel to the longitudinal axis of the center leg of the fixed contact. The first and second blades are positioned on opposite sides of the center leg of the fixed contact such that the first blade is located between the first arm of the fixed contact and the center leg of the fixed contact, while the second blade is located between the second arm of the fixed contact and the center leg of the fixed contact.
When the electrical contactor is in the closed condition, the first blade of the movable contact is in physical contact with the first arm of the fixed contact. Likewise, the second blade of the movable contact is in physical contact with the second arm of the fixed contact in the closed condition.
When the movable and fixed contacts are in the closed condition, current flows through the first and second blades of the movable contact and into the first and second arms of the fixed contact. The first and second arms of the fixed contact direct the current flow through the center leg of the fixed contact. Since the center leg of the fixed contact is generally parallel to the first and second blades of the movable contact, the current flow through the first and second blades creates a magnetic field that opposes a magnetic field created by the current flow through the center leg. The opposing magnetic fields force the first and second blades outward away from the center leg. The outward movement of the first and second blades reinforces the physical contact between the first and second blades and the first and second arms of the fixed contact. The opposing magnetic fields help to prevent separation of the first and second blades from the first and second arms of the fixed contact during a short circuit condition or during high current testing.
The actuating arrangement engages the first and second blades of the movable contact to move the blades away from the fixed contact when it is desired to interrupt the current flow through the electricity meter. In one embodiment, the actuating arrangement includes a pair of cam channels that receive pegs formed on the first and second blades of the movable contact. The cam channels are arranged to move the first and second blades away from the fixed contact when separation and current interruption is desired.
In one embodiment of the disclosure, the actuating arrangement includes a magnetic latching actuator that operates to move the fixed and movable contacts between open and closed positions. The magnetic latching actuator includes a first stationary magnet positioned to create a first magnetic field having a first polarity. A second permanent magnet is positioned relative to the first permanent magnet to create a second magnetic field that has a second polarity opposite the first polarity. An actuation coil surrounds both the first and second permanent magnets and is connected to a current source. When current is applied to the actuation coil in a first direction, the actuation coil creates a magnetic field that enhances the first magnetic field while effectively cancelling the second magnetic field. When current is applied to the actuation coil in a second, opposite direction, the actuation coil creates a magnetic field that enhances the second magnetic field while at the same time effectively cancelling the first magnetic field. In this manner, the direction of current flow through the actuation coil controls the relative strengths of the two magnets in the magnetic latching actuator.
The magnetic latching actuator further includes a yoke that surrounds the actuation coil and is movable relative to the first and second permanent magnets. In one embodiment, the yoke is formed from two separate yoke sections each formed from a permeable material. The yoke sections are separated by a pair of guide slots that each receive one of a pair of guide ribs formed as part of the actuating arrangement. Interaction between the guide slots and the guide ribs directs movement of the yoke relative to the first and second permanent magnets. In the absence of actuation current, the yoke is attracted toward whichever magnet it is closest to. The state of the actuator is changed by using the actuation current to reinforce the field of the further magnet and reduce the field of the closer magnet until the yoke is pulled toward the further magnet, which then becomes the closer magnet, thereby enabling the actuator to latch in this new position when the actuation current is removed.
The yoke formed as part of the magnetic latching actuator is received within an actuation arrangement that engages the pair of movable contacts and the pair of fixed contacts. Cam channels formed as part of the actuating arrangement engage pegs formed on the movable contacts such that movement of the yoke between the first and second positions causes the actuating arrangement to open and close the movable and fixed contacts.
The first and second permanent magnets and the yoke of the magnetic latching actuator creates an actuator that latches without end stops such that the actuator can be directly connected with low or zero compliance to the contacts being actuated. The end positions of the actuator are determined by the physical contacts being actuated such that the actuator automatically compensates for wear to the contacts. The magnetic latching actuator has an essentially constant latching force with position and the direction of latching force flips over in a small zone around the center of travel of the yoke.
The drawings illustrate the best mode presently contemplated of carrying out the invention. In the drawings:
Referring now to
The base of the electricity meter 10 further includes a pair of blades 28a, 28b that are connected to the electricity mains. Each of the first blades 28a, 28b forms part of a bus bar with a second set of blades 30a, 30b. When the electricity meter 10 is installed within a meter socket, current flows from the electricity mains through each of the blades 28a, 28b and out to the home through the blades 30a, 30b. The blades 30a, 30b thus supply current to the home or business being supplied electricity through the electronic electricity meter 10. In an electricity meter without any type of disconnect circuitry, the first bus bar between blades 28a and 30a represents a first phase while the current flow through the second bus bar between the blade 28b and the blade 30b represents a second phase. As can be understood in
Referring now to
The fixed contacts 32 and 34 each include a center leg 36 that extends along a longitudinal axis from a first end 38 to a second end 40. As illustrated in
The second fixed contact 34 also includes a center leg 36 that extends from the first end 38 to the second end 40. The first and second fixed contacts 32, 34 are generally identical and mirror images of each other.
Each of the first and second fixed contacts 32, 34 includes a first arm 42 and a second arm 44. Both the first and second arms 42, 44 include a spacer section 46 and a pad support portion 48. The spacer section 46 is generally perpendicular to the longitudinal axis of the center leg 36 while the pad support portion 48 is generally parallel to the longitudinal axis of the center leg 36. As can be understood in
The first arm 42 of each of the first and second fixed contacts 32, 34 includes a contact pad 54. Likewise, the second arm 44 formed as part of the first and second fixed contacts 32, 34 includes a contact pad 56. The contact pads 54, 56 are conventional items and provide a point of electrical connection to the respective first and second arms 42, 44, as will be discussed in detail below.
The electrical contactor arrangement for the electricity meter further includes a first movable contact 58 and a second movable contact 60. As illustrated, the first movable contact 58 is electrically connected to the blade 28b while the second movable contact 60 is connected to the blade 28a (not shown).
As illustrated in
Referring back to
As illustrated in
Referring now to
The current flows from the first and second blades 62, 64 and into the respective first and second arms 42, 44 through the respective contact pads. The current then enters the center leg 36 and flows in the direction shown by arrow 74. As illustrated in
In addition to encouraging contact between the fixed and movable contacts during normal operating conditions, the repelling magnetic fields created by the current flow in opposite directions through the first and second blades 62, 64 and the center leg 36 further ensures constant contact during overload and short circuit conditions. During short circuit and testing conditions, the current flowing through the first and second blades 62, 64 and the center leg 36 may be 12,000 Amps peak, which can create repelling magnetic forces of 500 Newtons. Thus, the orientation of the first and second blades 62, 64 and the center leg 36 act to prevent separation of the contacts during the short circuit and testing conditions.
Referring back to
As illustrated in
Each of the first and second walls 92, 94 of the cam members 88, 90 includes a pair of cam channels 100, 102. The cam channels 100, 102 are formed along an inner wall of each of the first and second walls 92, 94 and are sized to receive the pegs 70 formed on the first and second blades 62, 64 of the movable contacts 58, 60. Further details of the engagement between the cam channels 100, 102 and the movable contacts 58, 60 will be described below.
The actuating arrangement 76 includes an actuator 104. The actuator 104 includes an actuation coil formed from a series of copper windings (not shown) wound around a center section 106. The actuator 104 includes a pair of guide ribs 108 that are received within the corresponding guide slots 89 formed in the yoke 86. The actuator 104 can be activated by the control circuit for the electronic electricity meter to cause movement of the yoke 86 along the guide ribs 108 in a manner to be described below.
Although a specific actuator 104 is shown in the preferred embodiment, it should be understood that various other types of actuators could be utilized while operating within the scope of the present disclosure. Specifically, any kind of electrically activated actuator that is capable of moving the armature 78 and yoke 86 between a first and a second position would be capable of being utilized with the present disclosure.
When the electronic electricity meter 10 of the present disclosure is installed within a meter socket at a customer premise, the electrical contactor arrangement is in the closed condition shown in
As illustrated in
If, for any reason, it is desired to interrupt the supply of electricity to the premise served by the electricity meter, the control circuit of the electricity meter activates the actuating arrangement 76 to move the actuating arrangement to the open position shown in
As the yoke 86 moves upward, the armature 78 and the attached cam members 88, 90 also move upward, as illustrated. As the cam members 88, 90 move upward, the pegs 70 contained on each of the first and second blades 62, 64 of the movable contacts 58, 60 contact the inner walls 114 of the cam channels 100, 102. As illustrated in
Thus, upon activation of the actuating arrangement 76, the movement of the armature 78 to the open position shown in
Referring now to
When the user/utility desires to again allow the supply of electricity to the premise, the solenoid actuator 104 of the actuating arrangement 76 is again actuated to cause the actuating arrangement 76 to move from the open position of
As described with reference to
During operation of the actuator 104, when electricity is supplied to the actuation coil 126 in a first direction, the magnetic field created by the actuation coil 126 enhances the magnetic field created by the first magnet 118 while at the same time effectively cancelling the magnetic field created by the second magnet 120. When the control circuit of the electricity meter reverses the direction of current applied to the actuation coil 126, the polarity of the magnetic field created by the actuation coil 126 reverses, thereby enhancing the magnetic field created by the second magnet 120 while effectively cancelling the magnetic field created by the first magnet 118. Thus, by controlling the direction of current flow through the actuation coil 126 of the actuator 104 through the leads 128, the control circuit of the electricity meter can control the direction of the magnetic field generated by the actuator 104.
Referring now to
In
When it is desired to move the yoke 86 from the lower position of
When the yoke 86 is in the upper position shown in
When it is desired to re-close the contacts by moving the yoke 86 from the upper position of
As can be understood by the top view of
As can be understood in
In the upper position of the yoke, as shown in
As can be understood in
Although the actuator 104 shown in
As can be understood in the foregoing description, the configuration of the fixed and movable contacts is such that a center leg of the fixed contact is positioned between the movable first and second blades of the movable contacts. The first and second blades are oriented parallel to the center leg such that during current flow through the meter, current flows in opposite directions within the center leg as compared to the first and second blades of the movable contacts. The opposite direction of current flow creates a magnetic force that forces both the first and second blades outward away from the center leg. Since the contact pads for the fixed contacts are positioned outward from the first and second blades, this repulsive force aids in holding the movable contacts in the closed condition.
Number | Name | Date | Kind |
---|---|---|---|
5227750 | Connell et al. | Jul 1993 | A |
5268662 | Uetsuhara et al. | Dec 1993 | A |
5575309 | Connell | Nov 1996 | A |
5694099 | Connell et al. | Dec 1997 | A |
6046660 | Gruner | Apr 2000 | A |
6218921 | Eberts et al. | Apr 2001 | B1 |
6246131 | Sheng | Jun 2001 | B1 |
6246306 | Gruner | Jun 2001 | B1 |
6252478 | Gruner | Jun 2001 | B1 |
6292075 | Connell et al. | Sep 2001 | B1 |
6563409 | Gruner | May 2003 | B2 |
6661319 | Schmelz | Dec 2003 | B2 |
6788176 | Schmelz | Sep 2004 | B2 |
6831535 | Wen et al. | Dec 2004 | B1 |
6836108 | Balko et al. | Dec 2004 | B1 |
6906637 | Martin | Jun 2005 | B2 |
6972555 | Balko et al. | Dec 2005 | B2 |
7049932 | French et al. | May 2006 | B2 |
7362232 | Holle et al. | Apr 2008 | B2 |
7990239 | Brown et al. | Aug 2011 | B2 |
20050057101 | Nakagawa et al. | Mar 2005 | A1 |
20050162149 | Makinson et al. | Jul 2005 | A1 |
20060043961 | Loy | Mar 2006 | A1 |
20090294260 | Makinson et al. | Dec 2009 | A1 |
Number | Date | Country |
---|---|---|
78 23 613 | Nov 1979 | DE |
1 365 498 | Nov 2003 | EP |
1 463 186 | Sep 2004 | EP |
2413703 | Mar 2007 | GB |
9004056 | Apr 1990 | WO |
04001777 | Dec 2003 | WO |
2005106907 | Nov 2005 | WO |
2006024855 | Mar 2006 | WO |
2007012883 | Feb 2007 | WO |
Number | Date | Country | |
---|---|---|---|
20100283561 A1 | Nov 2010 | US |