The object of the present invention is a magnetic actuator and notably a magnetic micro-actuator which may be made by means of microtechnological techniques, i.e., micro-machining techniques used in microelectronics.
Such an actuator may be used in various systems, for example as an electrical micro-relay for controlling the opening, the closing, or switching of an electrical contact, for example for controlling transistors, as an optical micro-relay for controlling the passage, the blanking out, the switching or branching of a light ray, as a microvalve or microgate for controlling the passage, the stopping or the branching of a fluid, as an impact or displacement sensor, as a micropump, as a positioner for magnetic or optical heads, for carrying out AFM (Atomic Force Microscope) or thermal recordings, in positioning tables.
Presently, actuators made by using microtechnological techniques, are essentially thermal or electrostatic actuators. Presently, electrostatic actuators are the most studied actuators. Lucent markets an optical multiplexer known under the designation of “lambda router”, including electrostatic actuators. It is capable of directing a light beam from an optical fiber towards another optical fiber selected from a group of optical fibers. Its principle is based on the displacement of micromirrors pivotally linked with a substrate. This multiplexer has a relatively slow switching time. Moreover, such actuators pose a significant problem as regards their electric power supply. Indeed, they need to be supplied with voltages of several tens or even hundreds of volts. So they need to be associated with a specific power supply which poses problem in standalone applications. Another drawback is that the displacements remain limited with respect to the size of the object.
Although the manufacturing technique is more complicated, there exist a few magnetic actuators as well. They operate on the electromagnet principle and essentially use iron-based magnetic circuits and an energizing coil. They include a fixed magnetic part and a mobile magnetic part which is mechanically connected to the fixed magnetic part. The mobile magnetic part may be energized by an electrical circuit in order to cause it to assume a working position by causing it to move relatively to the fixed magnetic part. In the absence of energization, the mobile magnetic part is in an idle position.
A magnetic micro-actuator with a magnet made on a silicon substrate is known from the article “Latching micromagnetic relays with multistrip permalloy cantilevers” of M. Ruan and J. Shen, published in IEEE MEMS 2001, pages 224-227. The magnet is fixed, it is embedded into the silicon and covered with a control coil. The mobile magnetic part is beam-shaped with a pivot linkage in its center allowing a swinging movement relatively to the fixed magnetic part.
Another type of magnetic micro-actuator with a magnet was described on the Internet web site of the IBM Research Laboratory in Zurich (www.zurich.ibm.com) under the title “Electromagnetic scanner” in April 2001. The micro-actuator operates on the principle of a loudspeaker. Planar coils placed on a substrate control the displacement of magnets integral with a base plate, the latter being mechanically suspended by flexible beams to a fixed frame integral with the substrate.
In all these actuators, the mobile magnetic part is mechanically connected to the fixed magnetic part. This mechanical connection is tricky to make with collective manufacturing techniques. Moreover, this connection limits the mobility of the mobile magnetic part, this mobility results from deformation of one of the components connecting the mobile component part to the fixed component part. This deformation during displacements may induce fatigue of the component connecting the mobile magnetic component part to the fixed magnetic component part. Speed performances of such magnetic actuators are low.
The forces driving the mobile magnetic part are due to the magnetic field created by at least one coil. Now, at a constant current density, a microcoil creates a much weaker force than a coil of the same shape but of larger dimensions. The performances of such actuators therefore remain poor. The mass forces which they are able to provide are weak, comparatively to their size.
Moreover, such actuators need to be electrically powered when they are in a working position. In the absence of any power supply, they return to their idle position. Their electrical power consumption is not insignificant.
The very object of the present invention is to propose a magnetic actuator which does not have the aforementioned drawbacks.
This actuator utilizes the principle of magnetically guiding a mobile magnetic part, i.e., displacing it without any mechanical contact other than that of the ambient air, when it is used in air.
The magnetic actuator of the present invention is particularly adapted to being made with microtechnology.
More specifically, the present invention is a magnetic actuator including a mobile magnetic part, a fixed magnetic part and means for triggering the displacement of the mobile magnetic part relatively to the fixed magnetic part. It includes at least two amagnetic supports placed in different planes, delimiting a gap between them, the fixed magnetic part being integral with at least one of the supports, the supports each having a abutment area for the mobile magnetic part, the abutment area and the fixed magnetic part being distinct. The mobile magnetic part is in levitation in the gap between both supports by means of a magnetic guide, due to the fixed magnetic part when it is not abutted against the abutment area of one of the supports, the mobile magnetic part is able to assume several stable magnetic positions and in these positions, it is abutted against a support.
By stable magnetic position, a stable position is meant in which there is magnetic interaction between the mobile magnetic part and the fixed magnetic part and which does not require any electric power supply for maintaining this position.
Hence, during its displacement, the mobile magnetic part is not mechanically connected to the fixed magnetic part, and there is no mechanical guide between the mobile magnetic part and the fixed magnetic part.
Simply and advantageously, the mobile magnetic part includes a magnet.
The fixed magnetic part may include at least one magnetic component part.
The magnetic component part may be a magnet. It may be thermomagnetic.
The fixed magnetic part may include at least a pair of magnetic component parts on a support.
Interaction between the fixed magnetic part and the mobile magnetic part achieves centering of the mobile magnetic part on the abutment area, but this centering may be reinforced. For this, the mobile magnetic part and at least one of the supports may include means for mechanically centering the mobile magnetic part on the abutment area of said support.
The magnetic centering means may be substantially bevelled or chamfered relief features both borne by the support and the mobile magnetic part, these relief features having conjugate shapes.
The fixed magnetic part contributes to delimit at least one of the abutment areas.
The means for triggering displacement of the mobile magnetic part may be borne by at least one of the supports.
They may have a magnetic effect.
The means for triggering the displacement of the mobile magnetic part may heat the fixed magnetic part and change its magnetic properties.
In one alternative, the means for triggering the displacement of the mobile magnetic part may create a magnetic field in the vicinity of the mobile magnetic part. In this case, they may be embodied by at least one conductor able to have an electric current flow through it. Power consumption is zero when the mobile magnetic part abuts against one of the amagnetic supports, i.e., in the working position.
It is possible to provide means for controlling the current to be caused to flow in the conductor, by the position of the mobile magnetic part so that it may assume a plurality of stable positions in levitation. The magnetic actuator may then be used as a positioner.
According to another embodiment, the means for triggering the displacement of the mobile magnetic part may be pneumatic or hydraulic means.
The fixed magnetic part may be made in a material selected from the group of soft magnetic materials, hard magnetic materials, materials with hysteresis, superconducting materials, diamagnetic materials, these materials being taken alone or combined.
The supports may be made on the basis of semiconducting material, dielectric material or conducting material, these materials being taken alone or combined.
From the manufacturing point of view, it is particularly advantageous that the magnetization of the fixed magnetic part and that of the mobile magnetic part are pointing in a same direction.
In order that the magnetic actuator may operate as an electrical relay, at least one abutment area includes a pair of electrical contacts and the mobile magnetic part includes at least one electrical contact, the mobile magnetic part moving to connect both electrical contacts of the pair of electrical contacts, when it abuts against the abutment area.
In order that the magnetic actuator may operate as a valve, at least one of the supports includes in the abutment area, a port through which fluid passes.
In order that the magnetic actuator may operate as an optical relay, the mobile magnetic part includes a mirror to be passed through a slot of one of the supports.
The present invention also relates to a matrix of magnetic actuators, it includes a plurality of thereby characterized magnetic actuators, these magnetic actuators sharing at least a same support.
The present invention also relates to a method for making a magnetic actuator. It includes the following steps:
The method may include a step for inserting at least one spacer between the first and second substrates at the moment of assembly.
In one alternative, the gap may be formed with beads of meltable material, inserted between the first and the second substrate at the moment of the assembly and by annealing said beads after assembly.
The method may include, before assembling both of the substrates, the following steps:
The method may provide a step for magnetizing the mobile magnetic part and optionally the fixed magnetic part before the step for releasing the mobile magnetic part.
The first substrate is tapered before the step for etching the first substrate, the etched part having a mirror function.
The first substrate and the second substrate may be made on the basis of semiconducting material or dielectric material.
The present invention will be better understood upon reading the description of exemplary embodiments given as purely indicative and by no means limiting, with reference to the appended drawings wherein:
FIGS. 10A-10I1 and 10I2 show an exemplary embodiment of the first support, of the mobile magnetic part, of a pair of magnets and of a pair of conductors of a magnetic actuator according to the invention;
FIGS. 11A-11D1 and 11D2 show an exemplary embodiment of the second support, of a pair of magnets and of a pair of conductors of a magnetic actuator according to the invention;
FIGS. 12A1, 12A2, 12B1, 12B2 show the steps for assembling both supports and for releasing the mobile magnetic part;
Identical, similar or equivalent portions of the different figures described hereafter bear the same numerical references in order to facilitate the passage from one figure to another.
The different parts illustrated in the figures are not necessarily illustrated according to a uniform scale, so as to make the figure more legible.
Reference will be made to
In
This actuator also includes a fixed magnetic part 5 integral with at least one of the supports 1, 2. In
These magnetic component parts may be integral with its other main face, on the side of the gap 3, as are the magnets 51, 52 shown on
The mobile magnetic part 4 includes a magnet 40. It lacks any mechanical linkage with the fixed magnetic part 5. The amagnetic supports 1, 2 each include an abutment area 10, 20 for the mobile magnetic part 4. In the example of
The magnetic actuator also includes means 6 for triggering the displacement of the mobile magnetic part 4. The means 6 for triggering the displacement of the mobile magnetic part 4 have the function of changing the forces which interact on the mobile magnetic part 4 and of therefore changing the equilibrium of the fixed magnetic part/mobile magnetic part assembly. They initiate the displacement of the mobile magnetic part 4. The displacement is then due to the interactions between the fixed magnetic part 5 and the mobile magnetic part 4.
It is assumed in this example that the means 6 for triggering the displacement of the mobile magnetic part have a mechanical effect. They are of the pneumatic or hydraulic type. The first support 1 is provided with a port 7 which is found in the abutment area 10. One tries to have the mobile magnetic part 4 in a stable magnetic position move and be forcibly applied against the first support 1 in the abutment area 10 by the interaction exerted on it by the fixed magnetic part 5. It then closes up the port 7. Nothing can penetrate into the gap 3 through the port 7. When a fluid f is injected through the port 7 towards the gap 3 and when it has a sufficient pressure for displacing the mobile magnetic part 4, the latter moves and places itself in the abutment area 20, forcibly applied against the second support 2 (
The interaction between the fixed magnetic part and the mobile magnetic part has the effect of centering the mobile magnetic part in the abutment area. To enhance centering of the mobile magnetic part in the abutment area 10, 20 of at least one of the supports 1, 2, means may be provided for mechanically centering 8 the mobile magnetic part 4 at the abutment area 10, 20 of at least one of the supports 1, 2. The mobile magnetic part 4 and the relevant abutment area 10 may each be provided with a relief feature 80, 81, these relief features 80, 81 having conjugate shapes. These relief features may be chamfered or bevelled parts which are then substantially pyramidal or conical. These relief features 80, 81 cooperate when the mobile magnetic part 4 is abutted against the support 1, 2, it moves and fits into the support.
In
In the example of
It might have been contemplated that the mobile magnet be borne by a base and that it be this base which includes the centering means. These relief features may easily be made by chemical etching notably when techniques used in microelectronics are used for making the magnetic actuator.
In the example of
Instead of using means 6 for triggering the displacement of the mobile magnetic part 4, pneumatically with a mechanical effect, it is possible to use means with a magnetic effect. These means may generate a localized increase in temperature and thereby change the magnetic characteristics of the fixed magnetic part 5.
The mobile magnetic part 4 is able to assume several stable magnetic positions, in each of these positions, it is abutted against a support 1, 2. These stable magnetic positions do not require any electric power supply, the mobile magnetic part is in magnetic interaction with the fixed magnetic part 5.
By spreading the means 6 for triggering the displacement of the mobile magnetic part 4 over both supports 1, 2, it is easier to control its movement.
A fixed magnetic part 52-54 provided with such resistors R is made in a thermomagnetic material, the magnetic properties of which depend on temperature. A material with a low Curie point, for example less than or equal to 100° C., may be used, this material is magnetic for a lower temperature than its Curie point and amagnetic for a higher temperature. It is also possible to use a material for which ferromagnetic properties are obtained above a so-called transition temperature.
Heating should not perturb the magnetic properties of the mobile magnetic part 4. For example, the magnet 40 of the mobile magnetic part 4 may be made in a material for which the Curie point is higher than that of the magnets 51, 52 of the fixed magnetic part 5, or it may be thermally isolated from the fixed magnetic part 5.
Instead of achieving the heating with a resistor R, irradiating the fixed magnetic part 5 with a light beam (for example from an infrared diode or laser) in order to heat it up, may be contemplated. It is also possible to have a current directly flow into the fixed magnetic part 5 to heat it up.
As soon as the movement of the mobile magnetic part 4 has been initiated, since it leaves by magnetic guiding and abuts against one of the amagnetic supports, heating may be interrupted, there is no longer any power consumption. When the mobile magnetic part 4 abuts on one of the supports 1, 2, power consumption is also zero.
In
Instead of having means 6 for triggering the displacement of the mobile magnetic part 4 that change the magnetic characteristics of the fixed magnetic part 5, it is possible that they create a magnetic field which changes the magnetic equilibrium between the fixed magnetic part 5 and the mobile magnetic part 4 and accordingly the equilibrium position of the mobile magnetic part 4.
In order to trigger the displacement of the mobile magnetic part 4, while it is in a stable magnetic position abutted against one 2 of the supports, it must be submitted to a force perpendicular to the support (i.e., perpendicular to the sheet, here) which is larger than and opposed to the force which maintains it in abutment.
When an electric current is caused to flow in an electric conductor in the vicinity of a magnet, such that the current is perpendicular to the magnetic field, a force both perpendicular to the current and to the magnetic field is generated according to Laplace's Law. The direction of the force depends on the direction of flow of the current if the magnetization direction of the magnet is set.
The means 6 for triggering the displacement of the mobile magnetic part 4 are formed with two distinct conductors 61, 62, each surrounding a pole of the magnet 40. Arrows show the direction of flow of current I in conductors 61, 62, so that a force is applied on the magnet 40, aimed at detaching it from the second support 2.
Instead of using two conductors 61, 62 in an open loop as in
It is assumed that the magnetic actuator of
The pair of electrical contacts C1, C2 is included in an electrical circuit (not shown) which is closed when the mobile magnetic part 4 abuts against the thereby equipped support 1 and open when the mobile magnetic part 4 abuts against the other support 2. The other support 2 does not include any fixed magnetic part or means for triggering the displacement of the mobile magnetic part 4.
As in
A double electrical relay or an electrical switch are then achieved if an electrical contact of one of the pairs is connected to an electrical contact of the other pair.
In
In
Two substantially annular magnetic component parts 51, 53 are seen in
In this example, the fixed magnetic parts 51, 53 are embedded in supports 1, 2 and in the abutment areas 10, 20, the supports are tapered.
A substantially U-shaped magnetic component part 51 integral with support 1 is seen in
The magnetic actuator according to the invention may have a positioner function. The means 6 for triggering the displacement of the mobile magnetic part is then also used for maintaining the mobile magnetic part 4 in a fixed position in levitation. Instead of sending a current pulse into conductors 61 to 64, the current may be controlled according to the position of the mobile magnetic part 4.
A device 65 which detects the position of the mobile magnetic part 4, may be used. The signal delivered by this device is compared with a set value K in a comparator 66 and the result of the comparison is used for controlling a provided power supply source 67 for powering the conductors 61-64. The device 65 which detects the position of the mobile magnetic part 4 may assume the form of two capacitive sensors 65.1, 65.2, each localized on one of the supports 1, 2. They measure the capacitances between the relevant support 1, 2 and the mobile magnetic part 4. A differentiator device 65.3 receives signals from both capacitive sensors 65.1, 65.2, produces their difference and delivers the signal representative of the mobile magnetic part's 4 position to the comparator 66.
Soft magnetic materials, hard magnetic materials, magnetic materials with hysteresis, diamagnetic materials, superconducting materials, these materials being taken alone or combined, may be used for producing the fixed magnetic part 5. Soft magnetic materials such as iron, nickel, iron-nickel iron-cobalt, iron-silicon alloys are magnetized depending on an induction field to which they are submitted. Hard magnetic materials correspond to magnets such as ferrite magnets, samarium-cobalt magnets, neodymium-iron-boron magnets, platinum-cobalt magnets. Their magnetization is not very dependent on the external magnetic field. The materials with hysteresis, for example of the aluminium-nickel-cobalt (AlNiCo) type, have properties which are between those of soft magnetic materials and those of hard magnetic materials. They are sensitive to the magnetic field in which they are found. As for diamagnetic materials such as bismuth or pyrolitic graphite, their magnetization is collinear with the magnetic induction field but of opposite direction. Superconducting materials might be niobium-titanium (NbTi), yttrium-barium-copper-oxygen (YBaCuO) alloys for example.
The mobile magnetic part 4 may be made in ferrite, in samarium-cobalt, in neodymium-iron-boron, in platinum-cobalt, for example.
Magnetic materials with a low Curie point which are suitable for making the fixed magnetic part 5, are manganese-arsenic (MnAs), cobalt-manganese-phosphorus (CoMnP), erbium-iron-boron (ErFeB) alloys, for example. Iron-rhodium (FeRh) alloys are also suitable for the fixed magnetic part 5, they become ferromagnetic above a transition temperature. This transition is clear and therefore only requires little thermal energy. The transition temperature may be adjusted by adapting the chemical composition of the alloy.
Several thereby described magnetic actuators may share at least a common support. Reference may be made to
In
An exemplary magnetic actuator according to the invention will now be described by providing geometrical characteristics and explaining a possible method for positioning its fixed and mobile magnetic parts. The magnetic actuator is illustrated in
A minimum value of the force Fz which is applied on the mobile magnetic part 4 for maintaining it forcibly applied and abutted against one of the supports 1, 2 is imposed so that the actuator may for example have sufficient impact strength. One tries to have the mobile magnetic part 4 always assume the same stable and centered magnetic position relatively to the fixed magnetic part 5 when it abuts against one of the supports 1, 2. Deviation of the mobile magnetic part 4 along the x axis or along the y axis is not wanted during the displacement. Axes x, y and z are illustrated in the figure. If it is shifted along the x direction or along the y direction, the mobile magnetic part 4 should oppose this displacement and resume its centered and stable magnetic position in the abutment area 10, 20. The mobile magnetic part should have good side stability in the high or low position.
The inventors have realized that for a fixed magnetic part 5 and a mobile magnetic part 4 with given characteristics, for a given force Fz maintaining them against one of the supports 1, 2, in order to achieve the stable and centered magnetic position, both the sep interval separating, along x, the fixed magnetic part from the mobile magnetic part and the gapz interval separating, along z, the fixed magnetic part 4 from the mobile magnetic part 5, needed to be adjusted properly when the mobile magnetic part abuts against the support 1.
It is assumed that in this example, illustrated in
The means for triggering the displacement of the mobile magnet are not illustrated in order not to overload the figure.
One starts with selecting the dimensions of the magnets, their magnetization and the path of the mobile magnet. This selection is notably conditioned by the overall bulkiness that the magnetic actuator should have. One of the pairs of fixed magnets 51, 52 and the mobile magnet 40 relatively to this pair of fixed magnets are positioned arbitrarily. Initial values of sep and gapz are determined. By means of the method described in the article “3D analytical calculation of the forces between two cuboidal magnets, JAKOUN Gilles and YVONNET Jean-Paul, vol. MAG-20, No.5, September 1984” the forces Fx, Fy, Fz which are applied to the mobile magnet 40 are calculated. The force Fz which is applied to the mobile magnet 40 when it abuts on the first support 1 may then be determined. If the force Fz is not in the imposed range, sep and/or gapz and/or the geometrical characteristics of the magnets and/or their magnetization are changed in order to adjust its value. The more gapz and sep are reduced, the more the force Fz increases. Both fixed magnets may be brought closer and/or the thickness of the support 1 may be reduced since, in this example, the fixed magnets 51, 52 are placed on the side of the support 1 and the abutted mobile magnet 40 on the other side of the support 1. Oppositely, the thickening of the support 1 reduces the Fz force. When a suitable value for Fz has been reached, it should then be determined whether the pair of values, sep, gapz, which give the suitable force Fz, leads to a stable and centered magnetic position in abutment. The value of the Fx force depending on its position along x and the value of the Fy force depending on its position along y will now be determined. Indeed, it is not sufficient that in abutment, Fx=0 with x=0 and Fy=0 with y=0; it is also required that the slope of curve Fx(x) decrease for x=0 and that the slope of curve Fy(y) decrease for y=0. These decreasing slopes are the ones which condition stability.
With the pair of values, sep and gapz, which give a suitable Fz force, the x and y stability conditions are verified. If one of either conditions is not observed, at least one of the values of sep and gapz is adjusted. Fz, Fx and Fy are recalculated as shown in the flow chart of
If the holding force Fz on the other support 2 is identical, the magnets 53, 54 of the other pair will be positioned with the same intervals sep and gapz.
It may be imposed that the value of the holding force Fz be different from one support to the other. The same calculations are again performed in order to position the other pair of fixed magnets 53, 54, relatively to the mobile magnet 40, in order to obtain a suitable Fz force and stability conditions, when the mobile magnet 40 abuts on the other support 2.
On the flow chart, sep and gapz were adjusted from Fx and then from Fy. Of course, it is possible to do the opposite. It would also have been possible to change the magnetic and geometrical characteristics of the magnets.
As an example, tests were carried out with fixed magnets 51-54 with a volume of 60×40×5 cubic micrometers, a mobile magnet 40 of 160×40×5 cubic micrometers and a magnetization of 0.6 T. The weight of the mobile magnetic part is about 2.10−8 N, the force Fz for holding the mobile magnet in a stable magnetic position against the first support 1 is about 4.10−7 N. The forces provided by the means for triggering the displacement of mobile magnetic part are a few 10−6 N, the switching time is of a few milliseconds and the path of the mobile magnetic part is 200 micrometers.
In this particular case, it is noticed that the following relationship should be satisfied to obtain the stable magnetic position:
The stable magnetic position was obtained with:
An unstable position was obtained with
An example of a method for producing a microtechnological actuator according to the invention will now be described. The fixed magnetic part 5 of the actuator includes two pairs of magnets (51, 52), (53, 54), one integral with the first support 1 and the other integral with the second support 2. The mobile magnetic part 4 of the actuator includes a magnet 40 integral with a face of a base 41, this base 41 bears a mirror 50 on its other face. The means 6 for triggering the displacement of the mobile magnetic part 4 are achieved by two pairs of conductors (61, 62), (63, 64), each pair being integral with one of the supports 1, 2. In the figures, only one actuator is seen but the advantage of this method is the possibility of making several of them simultaneously; they all share at least one common support.
One starts with a first amagnetic substrate 90, for example in semiconducting material such as silicon or gallium arsenide (
A first dielectric layer 92 for example a silicon oxide layer, which will be used for making one of the pairs of magnets 51, 52, of the fixed magnetic part 5 (
The geometry of the pair of magnets 51, 52 is delimited photolithographically. A resin (not referenced) is used for this. Casings 93 are etched in the first dielectric layer 92 for the pair of magnets 51, 52 (
A second dielectric layer 94 for example a silicon oxide layer, in which the pair of conductors and the magnet of the mobile magnetic part (
The magnet 40 of the mobile magnetic part is deposited in the appropriate casing 95. This is completed by a step for planarization of the magnet 40 (
The conductors 61, 62 are deposited in the appropriate casings 96 and the pads 62.1, 62.2 in the casings 96.1. This is completed by a step for planarization of the conductors 61, 62 and of the pads 61.1, 62.1. This deposition may be performed with copper (
One or more trenches 97 are etched in both dielectric layers 92, 94, until they reach the sacrificial frame 910. These trenches delimit the flanks of the base of the mobile magnet 40 (
One starts with a second amagnetic substrate 100, in a semiconducting material, such as silicon, covered with a first dielectric layer 101, for example a silicon oxide layer. This second substrate 100 after processing will lead to the second amagnetic support 2, the lower one. For example, an oxidized bulk silicon substrate or a SOI substrate may be used directly.
In the first dielectric layer 101, casings 102 are etched which will receive the other pair of magnets of the fixed magnetic part (
A second dielectric layer 103, for example a silicon oxide layer, is then deposited on the first layer 101, this second dielectric layer 103 should receive the conductors of the second pair of conductors. In this second dielectric layer 103, casings 104 are etched for the conductors of the second pair of conductors (
The first substrate 90 as obtained in
The first substrate 90 as obtained in
The mirror 50 may be made with this first semiconducting substrate 90. Its thickness, which may be adjusted, will correspond to the height of the mirror 50. Etching of one or several trenches 111 is performed in the first semiconducting substrate 90 in order to delimit the flanks of the mirror 50, and form the slots into which it will slide when the mobile magnetic part will be forcibly applied against the first support. This etching stops on the first dielectric layer 92. The sacrificial frame 910 is then removed by etching; this leads to the release of the base 41 of the mobile magnet 40 and of the mirror 50 (FIGS. 12B1 and 12B2). Tapering of the first substrate is performed on either side of the mirror so that the mirror in the high position protrudes from the top of the substrate which surrounds it and is concealed in the low position. The magnet 40 and its base 41 are able to move in the gap 3.
One first makes sure that the magnets 40, 51-54 are properly magnetized as otherwise a suitable interaction would not be obtained between the mobile magnet 40 and the pairs of magnets 51, 52 and 53, 54 of the fixed magnetic part 5. If an intervention is necessary, the magnetization may be produced by having a current flow into the conductors 61-64.
If the fixed magnetic part 5 and the means 6 for triggering the displacement of the mobile magnetic part are borne only by the first support 1, the steps from FIGS. 10 are carried out on the first substrate but not the steps from
The microtechnological manufacturing of such actuators with a similar method may easily be contemplated, by starting with glass, ceramic or plastic dielectric substrates, for example.
The magnetic actuator according to the invention, if it occupies a volume larger than about one cubic centimeter, is liable to be sensitive to the external environment such as vibrations or impacts. Its performances are likely not to be optimal in such a perturbed environment. On the other hand, unexpectedly, with smaller dimensions, its performances are largely improved regardless of the environment. The interaction between the mobile magnetic part and the fixed magnetic part is favorable and does not bring about any deterioration of the performances as in the case of a more bulky actuator.
The main characteristics of a actuator according to the invention are the fact of having a relatively high displacement speed, a capacity of exerting large mass forces and large displacements relatively to its size. The mobile magnetic part in the stable magnetic position abutted against one of the substrates, withstands impacts. The actuator consumes very little power and this only during displacement of the mobile magnetic part and not in the stable magnetic position when the mobile magnetic part is abutted against one of the substrates.
The fact that the displacement of the mobile magnetic part is performed substantially perpendicularly to the supports is very attractive in matrix applications. The surface of such matrices may be relatively small as compared to the number of mobile parts. This is also attractive for all applications with fluid.
Although several embodiments of the present invention have been illustrated and described in detail, it will be understood that different changes and alterations may be made without departing from the scope of the invention. The magnetization of the fixed magnetic part and that of the mobile magnetic part have been illustrated as having the same direction. It is possible that this be not the case. This direction follows the major sides of the magnets which are in the form of a rectangular parallelepiped.
Number | Date | Country | Kind |
---|---|---|---|
02 09882 | Aug 2002 | FR | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/FR03/02410 | 7/30/2003 | WO | 1/31/2005 |