The present invention relates generally to decorative lights. More specifically the invention relates to decorative lights that are mounted to metal surfaces by means of imbedded magnets.
Decorative lights typically do not come provided with means for mounting them to display surfaces such as housing sides or poles. The traditional means of attaching such decorative lights is by stapling them to the sides of houses or trees or wrapping them around poles and trees. However, stapling has several potential drawbacks including damage to the mounting surface (which increases with repeated mounting and dismounting of the lights), potential damage to the electrical cord from the staples, as well as potential injury to the user during the stapling process. Stapling also turns the light mounting process into a two-handed operation, requiring one hand to hold the lights and wires in place and the other to work the stapler. Stapling is also unsatisfactory in cases where houses have metal siding.
In the case of metal poles or similar objects, simply wrapping the light wires may not properly secure them in position and prevent them from falling. In such situations, securing methods such as tape might not provide sufficient long term adherence, especially outdoors, and might be visually unappealing.
Several methods have been proposed in the prior art for overcoming the above disadvantages. One solution is provided by Dougan et al. (U.S. Pat. No. 5,388,802). This approach provides a clip that is secured to the electric cord that connects a string of lights. The main body of the clip is a flexible, V-shaped member which is compressed and wedged between the fascia and soffit of a house. When installed, the lights protrude perpendicularly below the fascia and are clearly visible, while the wedge shaped members are substantially hidden from view by the fascia. While the Dougan invention offers substantial improvements over simply stapling the lights in place, it is limited to mounting lights on the eaves on a house. Furthermore, Dougan requires a separate set of clips/wedges to be purchased and then added to the string of lights before mounting them. While the insertion and removal of the wedges from the fascia and soffit may seem simple in theory, it is likely the user will encounter some difficulties in this operation.
Another proposed solution to mounting decorative lights is that of Clement (U.S. Patent Application No. 2006/0138293). Similar to Dougan, Clement provides a member that is clipped to the electrical cord of a string of decorative lights. Unlike Dougan, the member taught in Clement uses a magnet to secure it to metal surfaces. This approach provides more flexibility in mounting options as well as greater ease of mounting than the Dougan invention. However, Clement still requires the user to purchase a separate set of members and then clip them onto the electrical cord of the light sting before mounting the lights, requiring additional time and effort.
Therefore, it would be desirable to have a method for temporarily mounting a string of decorative lights to a metal surface without the need for damaging the surface and without the need to install additional items to the light string.
The present invention provides a light fixture assembly. In one embodiment of the invention, the assembly includes a light bulb socket with an opening at one end for accommodating C7/C9 light bulbs and at least one opening at the second end. The socket includes a conductor that places a light bulb into electrical contact with electrical wires inserted through the side of the socket. The assembly also includes a base attached to the second end of the socket. The base includes a wire clamp that fits through the opening in the second end of the socket and holds the electrical wires in contact with the conductor. Retaining clips on the base apply a retaining force against the socket to hold the base in place. The retaining clips may be molded from the sides of the wire clamp or independent from the clamp and inserted through separate holes in the end of the socket. In one embodiment, an N40 neodymium disc magnet is embedded in the base, thereby allowing the assembly to be mounted magnetically to metal surfaces. Although neodymium magnets have been selected as the best choice for this invention given the cost, weight, and strength of such magnets, other types of magnets such as samarium cobalt and alnico may be used without departing from the scope and spirit of the invention. In an embodiment, the neodymium magnet is ½ inch diameter and ⅛ inch thick and mounted flush with the surface of the base, with a pull strength of approximately 16 pounds. In an alternate embodiment, the light assembly may also include an external clip on the side of either the base or the socket. In an alternative embodiment, the magnet may be embedded into a separate component to allow for removable attachment to the base of the light fixture assembly such that damaged or lost magnets can be easily replaced without replacing the entire light fixture assembly.
The novel features believed characteristic of the invention are set forth in the appended claims. The invention itself, however, as well as a preferred mode of use, further objects and advantages thereof, will best be understood by reference to the following detailed description of an illustrative embodiment when read in conjunction with the accompanying drawings, wherein:
The present invention provides a magnetic base for decorative lights that are strung together by an electrical cord. The invention works with standard C7/C9 light bulbs and other light bulbs known in the art.
A neodymium magnet can be made from a combination of neodymium, iron, and boron (Nd2Fe14B). Neodymium magnets have replaced the marginally weaker samarium-cobalt magnets in most applications, due mainly to lower cost. These magnets are very strong in comparison to their mass and are graded in strength from N24 to the strongest N54. The number after the N represents the magnetic energy product, in megagauss-oersteds (MGOe). In an embodiment, the neodymium magnet is an N40 type with a pull force of 16 pounds. Other types of magnets such as samarium-cobalt and alnico with various strengths and dimensions may be used, but ideally, the magnet pull force should be sufficient to hold the light assembly in place in normal outdoor conditions including wind. A pull force of 5 pounds for a typical C7/C9 assembly may be sufficient in most cases, but a higher pull force as is provided with the neodymium magnet is preferred to provide sufficient margin to avoid detachment by wind forces. For lighter assemblies, less force is required to prevent detachment. As mentioned, however, other magnets of sufficient strength can be used without departing from the scope and spirit of the invention.
As shown, the magnet 1 is embedded flush with the surface of the assembly base 3, allowing only the face of the magnet to be exposed. The exposed face of the magnet 1 is illustrated in the plan view of the base in
The base 3 also includes two retaining clips 5 for engaging the light socket 8 and holding the base in place. A molded wire clamp 4 in the base helps to hold the electrical wires 9 in contact with a copper conductor 10 in the socket 8 when the base 3 and socket 8 are assembled, as shown in
The assembly base 3 may optionally include a side clip 6 which may be used to mount the light on a nonmetallic structure or may be used to mount additional decorations to the light.
The socket 8 includes two slots 11, which accommodate the retaining clips 5 on the base 3. Inside the socket 8 is a retaining tab 12. The retaining tab 12 applies a retaining force against the ends of the retaining clips 5 when the assembly base 3 is mounted to the bottom of the socket 8. The retaining tab 12 also helps hold the electric wires 9 in place by acting as the opposing surface to the wire clamp 4 when the base and socket are assembled, as illustrated in
Unlike the assembly base 3 depicted in
In an alternative embodiment not shown in the drawings, the base of the light assembly can be separated into two components such that the magnet can be replaced without replacing the entire light assembly. A separate end piece for the base contains a magnet embedded as described above in reference to other embodiments. One end of the separate end can be removably joined to the main base of the light assembly. The manner of joining can be by threading the main base and the separate end piece to allow the end piece with magnet embedded to be screwed into the main base of the light assembly. Other means of attachment such as a quick disconnect type snap may be employed without departing from the scope and spirit of the invention. Should the magnet fail, or should it become dislodged from the separate end piece, the separate end piece can be removed and replaced with a new one.
The description of the present invention has been presented for purposes of illustration and description, and is not intended to be exhaustive or limited to the invention in the form disclosed. Many modifications and variations will be apparent to those of ordinary skill in the art. The embodiment was chosen and described in order to best explain the principles of the invention, the practical application, and to enable others of ordinary skill in the art to understand the invention for various embodiments with various modifications as are suited to the particular use contemplated. It will be understood by one of ordinary skill in the art that numerous variations will be possible to the disclosed embodiments without going outside the scope of the invention as disclosed in the claims.
This application is a continuation-in-part patent application of a pending application of U.S. Ser. No. 11/676,146 filed on Feb. 16, 2007, now U.S. Pat. No. 7,549,779 entitled “Magnetic Light Fixture,” the technical disclosure of which is hereby incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
2474942 | Hawkins | Jul 1949 | A |
3038139 | Bonanno | Jun 1962 | A |
5388802 | Dougan | Feb 1995 | A |
5788362 | Chou | Aug 1998 | A |
5873651 | Hofer et al. | Feb 1999 | A |
20060138293 | Raymond | Jun 2006 | A1 |
Number | Date | Country | |
---|---|---|---|
20100290240 A1 | Nov 2010 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11676146 | Feb 2007 | US |
Child | 12463129 | US |