This application claims priority to European Patent Application No. 10171892.2, filed Aug. 4, 2010, which is incorporated herein by reference.
The present disclosure relates to a lock for a control unit in an elevator installation.
Control units are usually mounted in elevator cages and/or in front of shaft doors in elevator installations. Such control units serve for, for example, the input of a destination story by the passenger and for the indication of items of information, such as, for example, a designation of a story at which the elevator cage is currently located. In that case, the control units are usually connected with switching and safety circuits of the elevator installation by cable connections. At the time of service operations at the elevator installation it can be necessary to open a control unit in order to gain access to the interior of the control unit.
Generally, such control units are merely hooked in place or screw-connected. Control units which are hooked in place are often readily accessible to persons not intended to have access. Screw-connected control units generally are awkward to open.
However, in order to provide protection against vandalism, such control units are sometimes locked. Simple locks such as, for example, triangular locks sometimes do not offer effective protection against vandalism. Other locks are sometimes expensive on the one hand, and on the other hand are similarly exposed to vandalism. Thus, for example, the keyhole can be locked or damaged.
At least some embodiments of the disclosed technologies provide a control unit with a lock which can be securely locked and can be opened in simple manner and which is convenient to produce. In at least some cases, the lock is simple to integrate into an overall design of the control unit.
Some embodiments comprise a control unit with a magnetic lock. The control unit for an elevator installation comprises a cover and a base. The control unit further comprises a lock which can lock the cover to the base or release it from the base. The lock comprises a locking bar with a magnet, wherein this locking bar is movable back and forth from a closed position to an open position by movement of a magnetic key on a surface of the cover. In that case the locking bar with the magnet is stabilized in the closed position by a first magnetic element and the cover is locked. In the open position the locking bar is stabilized by a second magnetic element and the cover is released.
A control unit with such a magnetic lock can have the advantage that the lock is not visible externally and is therefore not at risk of vandalism. Nevertheless, such a lock is capable of securely locking a control unit. Moreover, it can be economic in production, since neither lock cylinders nor keys matching therewith have to be made. In addition, it is advantageous that such a lock can be accommodated in simple mode and manner in a design of a control unit. Thus, such a magnetic lock can, for example, be located under a company logo or at a place on the control unit without text.
The control unit comprises a cover and a base. In that case the base is fastened to a component of the elevator installation such as, for example, a cage inner wall or a shaft door post. The cover is, for example, rotatably connected with the base by way of a hinge. However, in an alternative embodiment the cover can also be completely separate from the base. The cover can consist merely of the cover surface of the control unit or, however, also include buttons or displays and/or electronic components. Equally, the base can consist only of a frame or, however, comprise buttons or displays and/or electronic components. It will be clear to the expert that the distribution of the individual components of a control unit on the cover or to the base can be undertaken in various ways.
The control unit can on the one hand, be control units for passengers such as used, for example, in elevator cages or on stories. On the other hand, control units are also used for the control of elevator installations by maintenance personnel. Such control units are located, for example, on roofs of elevator cages or in engine rooms. Moreover, the control unit can also be control units for the fire service or other bodies with special access authorization. Consequently, a control unit with such a magnetic lock can be used with versatility, wherein the above list is not exhaustive.
In an exemplary embodiment the locking bar is guided in the base in such a manner that it is secured at least in the open position and in the closed position against falling out of the base. For this purpose the locking bar can have, for example, a trapezoid-shaped cross-section along a movement direction of the locking bar, wherein a shorter base side of the trapezoid is closer to the cover than a longer base side of the trapezoid. In that case, the base of the control unit engages around the longer base side of the trapezoid and at least in part the lateral sides of the trapezoid.
In further embodiments the locking bar is guided along a movement direction, wherein a movement of the locking bar is limited by abutments to a region between the open and closed positions.
In a further embodiment a marking is arranged on a surface of the cover and indicates to a user in which regions of the surface the magnetic key can open and close the lock.
Further details of the disclosed technologies are described in the following by way of exemplifying embodiments and with reference to the schematic drawings, in which:
An elevator cage is shown in three-dimensional illustration in
A cage control unit 1 is fastened to a side wall 2. The cage control unit 1 can in principle be fastened to any side wall 2. The cage control unit 1 is connected with switching and safety circuits (not illustrated) of the elevator installation.
The cage control unit 1 comprises a display 7 and buttons 8. The display 7 is suitable for the purpose of illustrating items of information for the passenger such as, for example, a designation of a story at which the elevator cage is currently located. The buttons 8 serve for, for example, the input of a destination story by the passenger or for triggering an emergency call in an emergency situation. A story control unit 10 is arranged in the shaft opening 6. The story control unit 10 similarly has a button 18 and displays 17. The button 18 is suitable for the purpose of calling an elevator cage. The displays 17 serve the purpose of indicating to a waiting passenger in which direction the arriving elevator cage is traveling.
In at least some cases, for maintenance and service operations it can be necessary to open the cage control unit 1 and/or the story control unit 10 in order to gain access to internal components. In this exemplifying embodiment the cage control unit 1 has hinges 9 arranged laterally thereof so that the cage control unit 1 can be opened without having to be separated from the cage side wall 2. Analogously thereto, the story control unit 10 has laterally arranged hinges 19 so that the story control unit 10 can be opened without having to be separated from the inner wall of the shaft opening 6.
No magnetic lock is visible in
An exemplifying form of embodiment of a magnetic lock is shown in sectional illustration in
The control unit illustrated in
A hand of a user 38 positions a magnetic key 25 on a surface 32 of the cover 21. If the magnetic key 25 is positioned as in
In order to fix the cover 21 to the base 22 in a closed position, the locking bar 26 has a projection 31 which can engage in a hook 28 of the cover 21. In
The magnetic elements 23, 24 can, for example, consist of iron or material with iron content. In an alternative form of embodiment the magnetic elements 23, 24 are formed as permanent magnets. The magnetic key 25 possibly comprises a permanent magnet. Alternatively thereto the magnetic key 25 can also comprise electromagnets which are activatable, for example, by a button.
With respect to the construction of the magnetic elements 23, 24 it is, however, to be noted that the magnetic force of the magnetic key 25 should generally be of sufficient magnitude to move the lock from one position to the other position. In that case the magnetic forces or the spacings between the magnetic key 25, the magnet 27 and the magnetic elements 23, 24 can be so selected that the locking bar 26 is switched over by mere positioning of the magnetic key on the surface 32 of the cover 21. Alternatively thereto the magnetic forces can also be selected so that a displacement of the magnetic key 25 on the surface 32 of the cover 21 is necessary in order to switch over the locking bar 26.
It is evident that the design of the magnetic components 23, 24, 25, 27 can be carried out in numerous ways in order to ensure the characteristics described here. The forms of embodiment expressed here are therefore to be understood merely as examples deriving from a multiplicity of possible alternatives.
An alternative form of embodiment of a control unit 20 is illustrated in
An alternative mechanism for securing the locking bar 26 against falling out of the base 22 is illustrated in
Two exemplifying embodiments of a detail of a control unit 20 are illustrated in plan view in
In
In
Having illustrated and described the principles of the disclosed technologies, it will be apparent to those skilled in the art that the disclosed embodiments can be modified in arrangement and detail without departing from such principles. In view of the many possible embodiments to which the principles of the disclosed technologies can be applied, it should be recognized that the illustrated embodiments are only examples of the technologies and should not be taken as limiting the scope of the invention. Rather, the scope of the invention is defined by the following claims and their equivalents. I therefore claim as my invention all that comes within the scope and spirit of these claims.
Number | Date | Country | Kind |
---|---|---|---|
10171892.2 | Aug 2010 | EP | regional |