Magnetic locking mechanism for prosthetic or orthotic joints

Information

  • Patent Grant
  • 11707365
  • Patent Number
    11,707,365
  • Date Filed
    Monday, June 15, 2020
    4 years ago
  • Date Issued
    Tuesday, July 25, 2023
    a year ago
Abstract
A magnetic locking actuator for a prosthetic or orthotic device is provided. The actuator includes a first component including one or more magnets and a second component including one or more magnets. The first and second components are coupled to separate portions of the device. The magnets allow for adjustment of a length of the actuator to adjust an angular orientation of the first and second portions of the device. When magnets in the second component are aligned with magnets in the first component having an opposite polarity, a position of the second component is fixed relative to the first component, locking the actuator. When magnets in the second component are not aligned with magnets in the first component having the opposite polarity, the position of the second component is adjustable relative to the first component, thereby allowing adjustment of the height of the actuator.
Description
BACKGROUND
Field

The present application relates to actuators, and more particularly, to actuators used in prosthetic or orthotic joints.


Description of the Related Art

Various types of prosthetic devices are available as artificial substitutes for a missing body part, such as an arm or leg. Prosthetic joints are also available as substitutes for human joints, such as an ankle or knee. Prosthetic joints can include actuators to create motion of the joint, such as to adjust a heel height of the prosthetic foot.


SUMMARY

According to a first aspect of the present disclosure, a prosthetic foot is provided that includes a first plate extending between a proximal end and a distal end, a second plate disposed below the first plate and extending between a proximal end and a distal end, an adapter pivotally coupled to the proximal end of the first plate at a first joint, and a mechanical actuator assembly coupled to the proximal end of the second plate and pivotally coupled to the adapter at a second joint disposed rearward of the first joint, the actuator adjustable to adjust a heel height of the prosthetic foot. The actuator can include a first component having one or more magnets; a second component having one or more magnets, the second component sized to extend into an opening in the first component; wherein when at least one magnet or at least a portion of at least one magnet in the first component having a first polarity is aligned with at least one magnet or at least a portion of at least one magnet in the second component having a second polarity opposite to the first polarity, a position of the second component is substantially fixed relative to the first component, substantially locking the actuator, and wherein when the at least one magnet or at least a portion of at least one magnet in the first component is not aligned with the at least one magnet or at least a portion of at least one magnet in the second component, the position of the second component is adjustable relative to the first component to adjust a heel height of the prosthetic foot.


The prosthetic foot can be arranged such that the magnets are bar magnets.


The prosthetic foot can be arranged such that the first component comprises a connector configured to couple the first component to the adapter and an outer housing, wherein the one or more magnets are disposed in the outer housing and the outer housing is disposed around at least a portion of the connector. The prosthetic foot can be further configured such that the connector comprises a ball joint configured to be coupled to the adapter. The prosthetic foot can be configured such that the connector comprises a threaded shaft configured to engage a first internally threaded portion of the second component. The prosthetic foot can be further configured such that the actuator further comprises a third component comprising a connector configured to couple the actuator to the proximal end of the second plate. The prosthetic foot can be further configured such that the heel height of the prosthetic foot is adjusted by rotating the second component relative to the first and/or third components.


The prosthetic foot can be arranged such that the first and second components define a stepper magnet actuator.


According to another aspect of the present disclosure, an actuator can be provided that includes a first component having one or more magnets; a second component having one or more magnets, the second component sized to extend into an opening in the first component; wherein when at least one magnet or at least a portion of at least one magnet in the first component having a first polarity is aligned with at least one magnet or at least a portion of at least one magnet in the second component having a second polarity opposite to the first polarity, a position of the second component is substantially fixed relative to the first component, substantially locking the actuator, and wherein when the at least one magnet or at least a portion of at least one magnet in the first component is not aligned with the at least one magnet or at least a portion of at least one magnet in the second component, the position of the second component is adjustable relative to the first component to adjust a length of the actuator.


The actuator can be arranged such that the length of the actuator is adjusted by rotating the second component relative to the first component.


The actuator can be arranged such that the actuator is configured for use in a prosthetic or orthotic device.


The actuator can be arranged such that the magnets are bar magnets.


The actuator can be arranged such that the first component comprises a connector configured to couple the first component to a first portion of an orthotic or prosthetic device and an outer housing, wherein the one or more magnets are disposed in the outer housing and the outer housing is disposed around at least a portion of the connector. The actuator can be further arranged such that the connector comprises a ball joint configured to be coupled to the adapter. The actuator can be arranged such that the connector comprises a threaded shaft configured to engage a first internally threaded portion of the second component. The actuator can be further arranged such that the actuator further includes a third component comprising a connector configured to couple the actuator to a second component of the orthotic or prosthetic device. The actuator can be further arranged such that the connector of the third component comprises a threaded shaft configured to engage a second internally threaded portion of the second component. The actuator can be further arranged such that a height of the orthotic or prosthetic device is adjusted by rotating the second component relative to the first and/or third components.


All of these embodiments are intended to be within the scope of the disclosure herein. These and other embodiments will become readily apparent to those skilled in the art from the following detailed description having reference to the attached figures, the disclosure not being limited to any particular disclosed embodiment(s).





BRIEF DESCRIPTION OF THE DRAWINGS

These and other features, aspects, and advantages of the present disclosure are described with reference to the drawings of certain embodiments, which are intended to schematically illustrate certain embodiments and not to limit the disclosure.



FIG. 1 illustrates a perspective view of an example embodiment of an actuator or adjustment mechanism;



FIG. 2 illustrates a cross-sectional view of the actuator of FIG. 1;



FIGS. 3A-3B illustrate exploded views of the actuator of FIGS. 1-2;



FIG. 4 illustrates an upper component of the actuator of FIGS. 1-3B;



FIG. 5 illustrates a cross-sectional view of the upper component of FIG. 4;



FIG. 6 illustrates the upper component of FIGS. 4-5 with an outer housing removed;



FIG. 7 illustrates a central component of the actuator of FIGS. 1-3B;



FIG. 8A illustrates a cross-sectional view of the central component of FIG. 7;



FIG. 8B illustrates a partial cross-sectional view of the upper and central components of FIGS. 7 and 8A;



FIG. 9 illustrates a lower component of the actuator of FIGS. 1-3B;



FIG. 10 illustrates the lower component of FIG. 9 with an outer housing removed;



FIG. 11 illustrates a perspective view of an example embodiment of an actuator or adjustment mechanism;



FIG. 12 illustrates a cross-sectional view of the actuator of FIG. 11;



FIGS. 13A-B illustrate exploded views of the actuator of FIGS. 11-12;



FIG. 14 illustrates an upper component of the actuator of FIGS. 11-13B;



FIG. 15A illustrates a cross-sectional view of the upper component of FIG. 14;



FIG. 15B illustrates an exploded view of an outer housing of the upper component of FIG. 14 having an outer housing main body, a washer, and an end cap.



FIG. 16 illustrates the upper component of FIGS. 14-15B with an outer housing removed;



FIG. 17 illustrates a central component of the actuator of FIGS. 11-13B;



FIG. 18A illustrates a cross-sectional view of the central component of FIG. 17;



FIG. 18B illustrates a partial cross-sectional view of the upper and central components of FIGS. 17 and 18A;



FIG. 19 illustrates a lower component of the actuator of FIGS. 11-13B;



FIG. 20 illustrates the lower component of FIG. 19 with an outer housing removed;



FIG. 21 illustrates the actuator of FIGS. 11-20B incorporated into an example embodiment of an ankle module; and



FIGS. 22A-22B illustrate the actuator of FIGS. 11-20B incorporated into a prosthetic foot.





DETAILED DESCRIPTION

Although certain embodiments and examples are described below, those of skill in the art will appreciate that the disclosure extends beyond the specifically disclosed embodiments and/or uses and obvious modifications and equivalents thereof. Thus, it is intended that the scope of the disclosure herein disclosed should not be limited by any particular embodiments described below. While the actuator or adjustment mechanism described in the embodiments below is described in the context of a prosthetic joint, one of skill in the art will recognize that the disclosed actuator or adjustment mechanism embodiments can also be implemented in an orthotic or other exoskeleton device, and the scope of the disclosure is intended to cover these as well.



FIGS. 1-3B illustrate an example embodiment of an actuator or adjustment mechanism 100. In some embodiments, the actuator 100 can be incorporated into a prosthetic joint, for example, a prosthetic ankle. As shown in the exploded views of FIGS. 3A-3B, in the illustrated embodiment, the actuator 100 includes an upper component 120, a lower component 140, and a central component 130. As also shown in FIGS. 4-6, the upper component 120 includes an upper connector 110 and an outer housing 121. As also shown in FIGS. 9-10, the lower component 140 includes a lower connector 112 and an optional outer housing or bellows 141. The upper 110 and lower 112 connectors extend from opposite ends of the actuator 100. In some embodiments, the upper 110 and lower 112 connectors are ball joint rod end bearings. The upper connector 110 has a ball joint 110a at one end of the upper connector 110 and a threaded shaft 111 (shown in FIG. 6) extending between the ball joint 110a and a distal end 110b at an opposite end of the upper connector 110. The lower connector 112 has a ball joint 112a at one end of the lower connector 112 and a threaded shaft 113 (shown in FIG. 10) extending between the ball joint 112a and a proximal end 112b at an opposite end of the lower connector 112. The ball joints 110a, 112a are oriented at the top and bottom, respectively, of the actuator 100, and the ends 110b, 112b are disposed opposite each other along a longitudinal axis (e.g., central axis or symmetrical axis) of the actuator 100. In one embodiment, one of the connectors 110, 112 can have clockwise threads while the other of the connectors 110, 112 can have counter-clockwise threads.


As shown in FIG. 5, the outer housing 121 of the upper component 120 is hollow, cylindrical or generally cylindrical, and disposed around at least a portion of the upper connector 110, for example, around the threaded shaft 111. The outer housing 121 can be integrally formed with or attached to the upper connector 110. For example, the outer housing 121 can be attached to the upper connector 110 just below the ball joint 110a. With continued reference to FIG. 5, the threaded shaft 111 of the upper connector 110 can extend through the outer housing 121 such that a circumferential annulus 115 is defined between an inner surface of the outer housing 121 and a threaded surface of the upper connector 110.


As shown in FIGS. 7-8A, in the illustrated embodiment, the central component 130 has an outer shell 132 and an inner shaft 134. In the illustrated embodiment, the outer shell 132 has a base 136 and a cylindrical shaft 138. The inner shaft 134 is disposed within and can be permanently or removably coupled to the outer shell 132. In the illustrated embodiment, the base 136 is generally circular. However, the shape of the base is not limiting. For example, the base can have a triangular or polygon-shaped perimeter, or have other shapes. The base 136 can be attached or positioned distal to the cylindrical shaft 138. For example, the base 136 can be attached to and/or positioned adjacent a distal end of the shaft 138. In some embodiments, an inner surface of the base 136 has a recess 131 (as shown in, for example, FIG. 8A). As shown in FIG. 2, a top portion 143 of the optional outer housing 141 of the lower component 140 is disposed in the recess 131. As shown in FIG. 8A, at least a portion of the inner shaft 134 is internally threaded. In the illustrated embodiment, the inner shaft 134 includes an upper internally threaded portion 135a and a lower internally threaded portion 135b. In some embodiments, the central component 130 can be a single component without a separate outer shell 132 and inner shaft 134.


Returning to FIG. 2, the internally threaded inner shaft 134 receives and threadedly engages the threaded shafts 111, 113 (see FIGS. 6, 10) of the upper connector 110 and the lower connector 112, respectively. For example, in the illustrated embodiment, the upper internally threaded portion 135a (shown in FIG. 8A) threadedly engages the threaded shaft 111 of the upper connector 110, and the lower internally threaded portion 135b (shown in FIG. 8A) threadedly engages the threaded shaft 113 of the lower connector 112. The cylindrical shaft 138 of the central component 130 is at least partially disposed within the circumferential annulus 115 in the upper component 120 between the outer housing 121 and the threaded shaft 111 of the upper connector 110. In use, the central component 130 can be rotated to adjust a height or length of the actuator 100. Rotation of the central component 130 is translated into linear motion of the connectors 110, 112 and causes the distance between the ends 110b, 112b of the connectors 110, 112 to increase or decrease, depending on the direction of rotation of the central component 130.


With continued reference to FIGS. 7-8A, in some embodiments, the inner shaft 134 can have a tab 133 extending outwardly from an upper end of the inner shaft 134. The tab 133 can act as a travel limit during assembly and/or use. As shown in FIG. 8B (in which the outer shell 132 is removed for clarity), the tab 133, or a portion of the upper end of the inner shaft 134 including the tab 133, has a larger diameter than an inner surface of a lower portion 121a of the outer housing 121. An inner surface of an upper portion 121b of the outer housing 121 can have a larger diameter than the inner surface of the lower portion 121a to accommodate the tab 133. The inner surface of the lower portion 121a of the outer housing 121 can include a groove or channel 127. During assembly, the groove or channel 127 accommodates the tab 133 and allows the tab 133, and therefore the central component 130, to move upwards into the outer housing 121 of the upper component 120. During use, the tab 133 no longer aligns with the groove or channel 127. If the central component 130 is rotated relative to the upper component 120, for example, to adjust a height of the actuator as described herein, such that the central component 130 moves away from the upper component 120, the central component 130 can rotate relative to the upper component 120 until the tab 133 contacts an upper ledge 125 of the lower portion 121a of the outer housing 121. The upper ledge 125 has an internal diameter configured to prevent the tab 133 from moving further away from the upper component 120. The tab 133 contacting the upper ledge 125 therefore acts as a stop such that the upper and central components 120, 130 cannot be unscrewed from each other beyond a certain extent. In other embodiments, the outer housing 121 can comprise a plurality of components instead of or in addition to the groove/channel 127 for assembly purposes, which will be described in greater detail below.


Returning to FIGS. 5-6, the outer housing 121 of the upper component 120 includes one or more magnets 122. The outer housing 121 can include one or more longitudinally or axially extending grooves, channels, or apertures 124, for example as shown in FIGS. 2 and 5. Each of the channels 124 can receive and contain a cylindrical or bar magnet 122. In the illustrated embodiment, the outer housing 121 includes three magnets 122, as shown in FIG. 6. The upper component 120 can include an end cap 123 coupled to an end of the outer housing 121 nearest the end 110b of the connector 110 or away from the ball joint 110a, for example as shown in FIGS. 5 and 6, to help hold and secure the magnets 122 within the outer housing 121. As shown in FIG. 7, the central component 130, for example, the cylindrical shaft 138 of the outer shell 132, includes one or more corresponding cylindrical or bar magnets. The cylindrical shaft 138 can itself be formed of one or more magnets or can include one or more magnets attached to the cylindrical shaft 138. For example, in the illustrated embodiment, the cylindrical shaft 138 includes a plurality of adjacent bar magnets 137 disposed around an outer perimeter or surface of the cylindrical shaft 138. Although in the illustrated embodiment the magnets 137 extend around the entirety of the cylindrical shaft 138 and are adjacent one another, in other embodiments the magnets 137 may extend around only a portion of the cylindrical shaft 138 and/or may be spaced from each other. Additionally, in some embodiments, the cylindrical shaft 138 and/or magnet 137 can be a single piece of material that may be magnetized in steps to have different polarities as described below.


The magnets 122 in the outer housing 121 and magnets 137 on the cylindrical shaft 138 can have opposing poles such that the magnets attract each other. When the central component 130 is rotated relative to the outer housing 121 such that the magnets 137 in the central component 130 are aligned with the magnets 122 in the outer housing 121, the attraction between the magnets locks or substantially locks the position of the central component 130 relative to the outer housing 121 and therefore locks or substantially locks the height or length of the actuator 100. If desired, a user can overcome the magnetic force between the magnets to rotate the central component 130 relative to the outer housing 121 and adjust the height of the actuator 100 (e.g., by rotating the central component 130 relative to the upper component 120 with a rotational force that is higher than the magnetic force between the magnets).


In the illustrated embodiment, adjacent magnets 137 in the central component 130 have alternating polarities. In some embodiments, instead of a plurality of adjacent magnets 137, the cylindrical shaft 138 and/or a magnet coupled to and/or disposed around the cylindrical shaft 138 can be a single piece of material that is magnetized in steps to form a plurality of adjacent sections of different, e.g., alternating, polarities. The magnets 122 in the upper component 120 can have split polarities. For example, as shown in FIG. 6, half 122a of each magnet 122 can have one polarity and the other half 122b of each magnet 122 can have the opposite polarity. The central component 130 can be rotated relative to the upper component 120 such that the magnets 122 in the upper component 120 are aligned with magnets 137 in the central component 130 of the same or opposing polarity. The attraction between magnets 122 and magnets 137 of opposing polarity can be overcome by the user physically rotating the central component 130. The user can therefore rotate the central component 130 to adjust the distance between the connectors 110, 112 and therefore the height or length of the actuator 100. Once the desired height is achieved, the user can lock the actuator 100 by, if needed, slightly further rotating the central component 130 until the magnets 122 are aligned with the nearest magnets 137 of opposing polarity. In some embodiments, the base 136 can include one or more markings 139, some or all of which may be labeled (e.g., with letters A and B in FIG. 7). In the illustrated embodiment, markings 139 are disposed around the entirety circumference of the base 136 at even intervals; however, in other embodiments, the markings 139 may have unequal spacing, the marks 139 may not extend around the entirety of the circumference of the base 136, and/or the base 136 may include more or fewer markings 139 than shown. The outer housing 121 of the upper component 120 can include one or more markings 129, for example as shown in FIG. 4. The markings 129 and 139 can be arranged and configured such that alignment of marking(s) 129 with a specific marking (or specific markings) 139 indicates a locked or unlocked position of the actuator 100. Additionally or alternatively, in some embodiments, the markings 129 and/or 139 can be arranged and configured such that alignment of marking(s) 129 with a specific marking (or specific markings) 139 indicates a height of the actuator 100.


In some embodiments, the actuator 100 includes or acts as a stepper magnet. The central component 130 can be rotated among discrete locations or positions to adjust the length of the actuator 100, thereby, for example, adjusting the heel height of a prosthetic foot that incorporates the actuator 100. When the central component 130 is positioned in one of the discrete locations, attraction between the magnets 122, 137 holds the rotational position of the central component 130 in a locked position.



FIGS. 11-20 illustrate another embodiment of an actuator or adjustment mechanism 1300 having the same or similar features as the actuator 100 of FIGS. 1-10 except as described herein. Reference numerals of same or similar components of the actuators 100 and 1300 have the same last two digits. Accordingly, features of the actuator 1300 can be incorporated into features of the actuator 100 and features of the actuator 100 can be incorporated into features of the actuator 1300, for example, the upper component (also referred to as a first actuator assembly) 1320, and the central 1330 and lower 1340 components (also referred to collectively as a second actuator subassembly).


In the illustrated embodiment, as shown in FIG. 15B, which illustrates an exploded view of an outer housing of the upper component 1320 of FIG. 14, the upper ledge 1325 can be formed by a component (e.g., a ring or washer in the illustrated embodiment) that is separately formed from a main body of the outer housing 1321. The outer housing 1321 can include one or more channels 1324 each for receiving a magnet 1322, for example, as shown in FIG. 15A. As shown in FIG. 16, a half 1322a of the magnet 1322 can have one polarity and the other half 1322b of the magnet 1322 can have the opposite polarity. The outer housing main body can have an inner diameter that can accommodate the tab 1333 and can allow the tab 1333, and therefore the central component (also referred to as a first portion of the second actuator subassembly) 1330, to move upwards into the outer housing 1321 during assembly. The washer forming the upper ledge 1325 and the end cap 1323 of the outer housing 1321 can be advanced into the outer housing 1321 following the advancement of the central component 1330. An inner surface of a lower portion 1321a of the outer housing 1321 can have a larger diameter than the inner surface of an upper portion 1321b of the outer housing 1321 as shown. When assembled, the end cap 1323 and the washer forming the upper ledge 1325 are disposed within the lower portion 1321a of the outer housing 1321. The washer forming the upper ledge 1325 can optionally be sandwiched between the end cap 1323 and a lower ledge 1328 of the upper portion 1321b. As shown, the washer forming the upper ledge 1325 has an inner diameter that is smaller than the diameter of the inner surface of the upper portion 1321b. During use, the upper ledge 1325 can act as a stopper for the tab 1333 as described herein. A threaded shaft 1311 of the upper connector 1310 can extend through the outer housing 1321 such that a circumferential annulus 1315 is defined between the end cap 1323 and a threaded surface of the upper connector 1310.


The outer housing 1321 of the upper component 1320 can include a marking 1329, for example as shown in FIG. 14. The central component 1330 can have an outer shell 1332 and an inner shaft 1334. In the embodiment of FIGS. 11-20, the base 1336 can have markings 1339 of a different kind than those shown in FIG. 7. As shown in FIG. 17, the markings 1339 can be numbers. The number and type of markings shown are for exemplary purposes only and are not limiting. Instead of or in addition to the markings 1339, the actuator 1300 can have markings indicative of the height of the actuator 1300 and/or the travel of the actuator 1300 during adjustment. For example, markings indicative of height can be located on an outer surface of the cylindrical shaft 1338 or an outer surface of the optional outer housing 1341, or on both the outer surfaces of the cylindrical shaft 1338 and optional outer housing 1341. The locations of the markings indicative of height described are not limiting. Non-limiting examples of the markings indicative of height can be at least one of scales, numbers, symbols, or the like. The markings can advantageously allow reproducibility of height settings. The actuator 100 can also include such markings, for example, on the shaft 138 and/or the outer housing 141, indicative of the height and/or travel of the actuator 100. In the illustrated embodiment, the cylindrical shaft 1338 and/or magnet 1337 is a single piece of material that may be magnetized in steps to have different polarities as described above.


Also as shown in FIG. 19, the optional outer housing 1341 can have a substantially smooth outer surface instead of ridges (e.g., bellows) on an outer surface of the optional outer housing 141 as shown in FIG. 9. The optional outer housing 1341 does not have a top portion that can be retained in the recess 1331 of the base 1336 of the central component 1330. Instead, as shown in FIG. 12, the recess 1331 can accommodate an O-ring 1342 fitted on the outer surface of the optional outer housing 1341, thereby retaining the optional outer housing 1341. The O-ring 1342 allows the lower component (also referred to as a second portion of the second actuator subassembly) 1340 to independently rotate relative to the central component 1330 to adjust the height of the adapter 1300.


In some embodiments, the actuator 100, 1300 can be used in a prosthetic joint. For example, a prosthetic ankle incorporating the actuator 1300 is shown in the example embodiments of FIGS. 21-22B. As shown, a prosthetic ankle module 200 incorporating the actuator 1300 can include an upper attachment portion 210 and a lower attachment portion 230. The upper connector 1310, e.g., the ball joint 1310a of the upper connector 1310, is coupled to the upper attachment portion 210, and the lower connector 1312, e.g., the ball joint 1312a of the lower connector 1312, is coupled to the lower attachment portion 230. The upper connector 1310 has the ball joint 110a at one end of the upper connector 1310 and the threaded shaft 111 extending between the ball joint 1310a and a distal end 1310b at an opposite end of the upper connector 1310. The lower connector 1312 has a ball joint 112a at one end of the lower connector 1312 and a threaded shaft 113 (shown in FIG. 20) extending between the ball joint 1312a and a proximal end 1312b at an opposite end of the lower connector 1312. The inner shaft 1334 includes an upper internally threaded portion 1335a and a lower internally threaded portion 1335b to threadedly engage the threaded shafts 1311, 1313 of the upper connector 1310 and the lower connector 1312, respectively. FIG. 22A illustrates an example embodiment of a prosthetic foot 300 incorporating the ankle module 200. FIG. 22B illustrates another example embodiment of a prosthetic foot 300 incorporating the ankle module 200 and disposed in a cosmesis 400. The actuator 100 can be incorporated in the ankle module 200 and/or the prosthetic foot 300 in the same or a similar manner as the actuator 1300. Additional examples of incorporating an actuator into a prosthetic foot for heel height adjustment purposes are illustrated in U.S. patent application Ser. No. 14/704,117, filed May 5, 2015 and entitled “PROSTHETIC FOOT WITH REMOVABLE FLEXIBLE MEMBERS,” the entirety of which is incorporated herein by reference and should be considered a part of this specification.


In the illustrated embodiment, the prosthetic foot 300 includes an upper foot member 240, an intermediate foot member 250, and a lower foot member 260. In the illustrated embodiment, the lower foot member 260 extends from a heel end to a toe end, the upper foot member 240 is L-shaped, the intermediate foot member 250 is generally straight, and the intermediate 250 and upper 240 foot members extend from proximal ends to distal ends that are proximal of the toe end of the lower foot member 260. However, other numbers and configurations of foot members are also possible, and the ankle module 200 can be adapted for use with other arrangements of foot members. For example, the upper foot member 240 can be C-shaped. The lower foot member 260 may not extend to a toe end, and the upper 240 or intermediate 250 foot member may instead extend to a toe end. In some embodiments, the prosthetic foot 300 may only include an upper foot member 240 and a lower foot member 260.


In the illustrated embodiments, the upper attachment portion 210 has three connection portions or points 212, 214, 216. The first connection portion 212 attaches the ankle module 200 to a user or another prosthetic device. In the illustrated embodiment, the first connection portion is a pyramid connector, although other connectors and adapters are also possible. The upper connector ball joint 1310a connects to the upper attachment portion 210 at the second connection point 214 rotatably or non-rotatably. The upper attachment portion 210 connects to the proximal end of the upper foot member 240 at the third connection portion 216. In the illustrated embodiment, a brace 226 is attached, pivotably or non-pivotably, to the upper attachment portion 210 at the third connection portion 216, and the upper foot member 240 is coupled to the brace 226. The upper foot member 240 can be secured to the brace 226 via one or more fasteners 227, such as one or more screws. In an embodiment in which the prosthetic foot 300 only includes an upper foot member 240 and a lower foot member 260, the ankle module 200 can be modified such that the third 216 connection portion couples to the upper foot member 240. In the illustrated embodiment, the third connection portion 216 is in a front portion of the upper attachment portion 210, and the second connection portion 214 is in a rear portion of the upper attachment portion 210. Therefore, the actuator 1300 is located at a rear portion of the ankle module 200. However, in other embodiments the actuator 1300 can be positioned in a front portion of the ankle module 200.


In the illustrated embodiment, the lower attachment portion 230 couples to the proximal end of the intermediate foot member 250. The intermediate foot member 250 can be secured to the lower attachment portion 230 via one or more fasteners 231, such as one or more screws. The lower attachment portion also couples to the lower connector 1312, either rotatably or non-rotatably, at a fourth connection portion 232.


The ankle module 200 can advantageously provide a passive prosthetic ankle with ankle motion that is closer to a biological ankle than previously available passive prosthetic feet. The prosthetic foot 300 can advantageously store energy with less effort for the user, which can help avoid excessive pressure on the user's residual limb, while still returning high energy during the push-off or toe-off phase of the gait cycle. The fourth connection portion 232, which can be a pivot point, can act as an ankle joint and create a fixed pivot axis for ankle motion during use. This allows for separate stiffness profiles to be achieved for ankle motion at different locations in stance phase. For example, in midstance, ankle stiffness is low, which helps reduce moment and pressure on the user's residual limb. During initial loading of the foot 300 during gait, the stiffness is lower than previously available prosthetic feet. This reduced stiffness allows for lower resistance to initial dorsiflexion as the foot 300 moves through stance and less moment required from the residual limb to load the foot 300. As the user moves through stance, the prosthetic foot 300 progressively stiffens. For a given load, the prosthetic foot 300 has higher displacement and a greater range of ankle motion than previously available prosthetic feet. The prosthetic foot 300 also stores energy over a longer period of times than previously available prosthetic feet and therefore returns more energy during push-off.


Although this disclosure has been described in the context of certain embodiments and examples, it will be understood by those skilled in the art that the disclosure extends beyond the specifically disclosed embodiments to other alternative embodiments and/or uses and obvious modifications and equivalents thereof. In addition, while several variations of the embodiments of the disclosure have been shown and described in detail, other modifications, which are within the scope of this disclosure, will be readily apparent to those of skill in the art. It is also contemplated that various combinations or sub-combinations of the specific features and aspects of the embodiments may be made and still fall within the scope of the disclosure. For example, features described above in connection with one embodiment can be used with a different embodiment described herein and the combination still fall within the scope of the disclosure. It should be understood that various features and aspects of the disclosed embodiments can be combined with, or substituted for, one another in order to form varying modes of the embodiments of the disclosure. Thus, it is intended that the scope of the disclosure herein should not be limited by the particular embodiments described above. Accordingly, unless otherwise stated, or unless clearly incompatible, each embodiment of this invention may comprise, additional to its essential features described herein, one or more features as described herein from each other embodiment of the invention disclosed herein.


Features, materials, characteristics, or groups described in conjunction with a particular aspect, embodiment, or example are to be understood to be applicable to any other aspect, embodiment or example described in this section or elsewhere in this specification unless incompatible therewith. All of the features disclosed in this specification (including any accompanying claims, abstract and drawings), and/or all of the steps of any method or process so disclosed, may be combined in any combination, except combinations where at least some of such features and/or steps are mutually exclusive. The protection is not restricted to the details of any foregoing embodiments. The protection extends to any novel one, or any novel combination, of the features disclosed in this specification (including any accompanying claims, abstract and drawings), or to any novel one, or any novel combination, of the steps of any method or process so disclosed.


Furthermore, certain features that are described in this disclosure in the context of separate implementations can also be implemented in combination in a single implementation. Conversely, various features that are described in the context of a single implementation can also be implemented in multiple implementations separately or in any suitable subcombination. Moreover, although features may be described above as acting in certain combinations, one or more features from a claimed combination can, in some cases, be excised from the combination, and the combination may be claimed as a subcombination or variation of a sub combination.


Moreover, while operations may be depicted in the drawings or described in the specification in a particular order, such operations need not be performed in the particular order shown or in sequential order, or that all operations be performed, to achieve desirable results. Other operations that are not depicted or described can be incorporated in the example methods and processes. For example, one or more additional operations can be performed before, after, simultaneously, or between any of the described operations. Further, the operations may be rearranged or reordered in other implementations. Those skilled in the art will appreciate that in some embodiments, the actual steps taken in the processes illustrated and/or disclosed may differ from those shown in the figures. Depending on the embodiment, certain of the steps described above may be removed, others may be added. Furthermore, the features and attributes of the specific embodiments disclosed above may be combined in different ways to form additional embodiments, all of which fall within the scope of the present disclosure. Also, the separation of various system components in the implementations described above should not be understood as requiring such separation in all implementations, and it should be understood that the described components and systems can generally be integrated together in a single product or packaged into multiple products.


For purposes of this disclosure, certain aspects, advantages, and novel features are described herein. Not necessarily all such advantages may be achieved in accordance with any particular embodiment. Thus, for example, those skilled in the art will recognize that the disclosure may be embodied or carried out in a manner that achieves one advantage or a group of advantages as taught herein without necessarily achieving other advantages as may be taught or suggested herein.


Conditional language, such as “can,” “could,” “might,” or “may,” unless specifically stated otherwise, or otherwise understood within the context as used, is generally intended to convey that certain embodiments include, while other embodiments do not include, certain features, elements, and/or steps. Thus, such conditional language is not generally intended to imply that features, elements, and/or steps are in any way required for one or more embodiments or that one or more embodiments necessarily include logic for deciding, with or without user input or prompting, whether these features, elements, and/or steps are included or are to be performed in any particular embodiment.


Conjunctive language such as the phrase “at least one of X, Y, and Z,” unless specifically stated otherwise, is otherwise understood with the context as used in general to convey that an item, term, etc. may be either X, Y, or Z. Thus, such conjunctive language is not generally intended to imply that certain embodiments require the presence of at least one of X, at least one of Y, and at least one of Z.


Language of degree used herein, such as the terms “approximately,” “about,” “generally,” and “substantially” as used herein represent a value, amount, or characteristic close to the stated value, amount, or characteristic that still performs a desired function or achieves a desired result. For example, the terms “approximately”, “about”, “generally,” and “substantially” may refer to an amount that is within less than 10% of, within less than 5% of, within less than 1% of, within less than 0.1% of, and within less than 0.01% of the stated amount. As another example, in certain embodiments, the terms “generally parallel” and “substantially parallel” refer to a value, amount, or characteristic that departs from exactly parallel by less than or equal to 15 degrees, 10 degrees, 5 degrees, 3 degrees, 1 degree, 0.1 degree, or otherwise.


The scope of the present disclosure is not intended to be limited by the specific disclosures of preferred embodiments in this section or elsewhere in this specification, and may be defined by claims as presented in this section or elsewhere in this specification or as presented in the future. The language of the claims is to be interpreted broadly based on the language employed in the claims and not limited to the examples described in the present specification or during the prosecution of the application, which examples are to be construed as non-exclusive.

Claims
  • 1. A prosthetic foot having an adjustable heel height, the prosthetic foot comprising: a first plate extending between an anterior end and a posterior end;a second plate disposed below the first plate and extending between an anterior end and a posterior end, the first and second plates coupled at the anterior end of the second plate, the posterior end of the second plate extending rearward of the posterior end of the first plate;an adapter comprising a first joint and a second joint, the first joint pivotally coupled to the posterior end of the first plate; anda non-powered heel height adjustment module, comprising: a first component coupled to the second joint of the adapter at a proximal connector joint of the first component;a second component coupled to the posterior end of the second plate at a distal connector joint of the second component; anda third component configured to engage the first and second components from opposite ends of the third component, wherein the third component is configured to be manually translated relative to a longitudinal axis of one or both of the first or second components to adjust the heel height of the prosthetic foot, a position of the third component relative to the first and second components configured to be reversibly locked by magnets.
  • 2. The prosthetic foot of claim 1, wherein the magnets comprise at least one magnet coupled to the first component and at least one magnet coupled to the third component.
  • 3. The prosthetic foot of claim 2, wherein the at least one magnet coupled to the first component extends circumferentially around the longitudinal axis of the first component.
  • 4. The prosthetic foot of claim 2, wherein the first component comprises a housing, the at least one magnet coupled to the first component being secured within the housing.
  • 5. The prosthetic foot of claim 4, wherein the at least one magnet coupled to the first component is secured about a longitudinal axis of the housing.
  • 6. The prosthetic foot of claim 4, wherein a proximal portion of the third component partially extends into an opening of the housing.
  • 7. The prosthetic foot of claim 2, wherein the at least one magnet coupled to the third component extends circumferentially around a longitudinal axis of the third component.
  • 8. The prosthetic foot of claim 2, wherein a proximal portion of the third component is configured to threadedly engage the first component and a distal portion of the third component is configured to threadedly engage the second component.
  • 9. The prosthetic foot of claim 2, wherein one or both of the at least one magnet coupled to the first component and the at least one magnet coupled to the third component are cylindrical.
  • 10. The prosthetic foot of claim 2, wherein one or both of the at least one magnet coupled to the first component and the at least one magnet coupled to the third component comprise split polarities or adjacent sections of alternating polarities.
  • 11. The prosthetic foot of claim 1, further comprising a third foot plate located below the second foot plate, an anterior end of the third foot plate defining a toe end of the prosthetic foot, and a posterior end of the third foot plate defining a heel end of the prosthetic foot.
  • 12. The prosthetic foot of claim 11, wherein the third foot plate is coupled to the anterior ends of the first and second foot plates, the anterior ends of the first and second foot plates being more posterior than the anterior end of the third foot plate.
  • 13. The prosthetic foot of claim 1, wherein the third component is configured to be manually translated relative to the longitudinal axis of one or both of the first or second components by a manual force on the third component to adjust the heel height.
  • 14. An actuator of a prosthetic foot, the actuator having an adjustable length and comprising: a first component comprising a proximal connector joint;a second component comprising a distal connector joint; anda third component configured to engage the first and second components from opposite ends of the third component, wherein the third component is configured to be manually translated relative to a longitudinal axis of one or both of the first or second components to adjust a length of the actuator, a position of the third component relative to the first and second components configured to be reversibly locked by magnets,wherein the actuator is non-powered.
  • 15. The actuator of claim 14, wherein the first component comprises a housing and the magnets comprises at least one magnet secured within the housing about a longitudinal axis of the housing.
  • 16. The actuator of claim 15, wherein a proximal portion of the third component partially extends into an opening of the housing and is configured to threadedly engage a threaded shaft extending through the housing, a distal portion of the third component is configured to threadedly engage the second component.
  • 17. The actuator of claim 15, wherein the magnets further comprise at least one magnet coupled to the third component and extending circumferentially around a longitudinal axis of the third component.
  • 18. The actuator of claim 17, wherein one or both of the at least one magnet coupled to the first component and the at least one magnet coupled to the third component are cylindrical.
  • 19. The actuator of claim 17, wherein one or both of the at least one magnet coupled to the first component and the at least one magnet coupled to the third component comprise split polarities or adjacent sections of alternating polarities.
  • 20. An ankle module of a prosthetic foot, comprising: a proximal attachment portion;a distal attachment portion; andthe actuator of claim 14.
  • 21. The ankle module of claim 20: wherein the proximal attachment portion includes a first connection portion, a second connection portion, and a third connection portion, the first connection portion comprising an adapter configured to couple the ankle module to a user or to another prosthetic device, the second connection portion configured to connect to the proximal connector joint of the first component of the actuator, and the third connection portion configured to connect to a foot member of a prosthetic foot; andwherein the distal attachment portion includes a fourth connection portion, the fourth connection portion configured to couple to a second foot member of the prosthetic foot.
INCORPORATION BY REFERENCE TO ANY PRIORITY APPLICATIONS

Any and all applications for which a foreign or domestic priority claim is identified in the Application Data Sheet as filed with the present application are hereby incorporated by reference under 37 CFR 1.57. This application is a continuation of U.S. application Ser. No. 15/923,625, filed Mar. 16, 2018, now U.S. Pat. No. 10,722,386, which is a continuation of U.S. application Ser. No. 15/268,340, filed Sep. 16, 2016, now U.S. Pat. No. 9,949,850, issued on Apr. 24, 2018, which claims the priority benefit of U.S. Provisional Application No. 62/220,823, filed Sep. 18, 2015, the entirety of which is incorporated herein by reference.

US Referenced Citations (238)
Number Name Date Kind
1951622 McElroy Mar 1934 A
2475373 Catranis Jul 1949 A
2568051 Catranis Sep 1951 A
2660029 Geyer Nov 1953 A
2930659 Willmore Mar 1960 A
3022400 Ahlefeldt Feb 1962 A
3229545 Hautau Jan 1966 A
3579276 Newell May 1971 A
3678311 Mattingly Jul 1972 A
3803926 Winter Apr 1974 A
3820168 Horvath Jun 1974 A
3995324 Burch Dec 1976 A
4030141 Graupe Jun 1977 A
4065815 Sen-Jung Jan 1978 A
4152787 Meggyesy May 1979 A
4179759 Smith Dec 1979 A
4209860 Graupe Jul 1980 A
4212087 Mortensen Jul 1980 A
4387472 Wilson Jun 1983 A
4398109 Kuwako et al. Aug 1983 A
4420714 Petersen et al. Dec 1983 A
4501981 Hansen Feb 1985 A
4521924 Jacobsen et al. Jun 1985 A
4558704 Petrofsky Dec 1985 A
4569352 Petrofsky et al. Feb 1986 A
4652266 Truesdell Mar 1987 A
4711242 Petrofsky Dec 1987 A
4776852 Ruble Oct 1988 A
4876944 Wilson et al. Oct 1989 A
4892554 Robinson Jan 1990 A
4944755 Hennequin et al. Jul 1990 A
4994086 Edwards Feb 1991 A
5044360 Janke Sep 1991 A
5062856 Sawamura et al. Nov 1991 A
5062857 Berringer Nov 1991 A
5092902 Adams et al. Mar 1992 A
5112296 Beard et al. May 1992 A
5112356 Harris et al. May 1992 A
5139525 Kristinsson Aug 1992 A
5153496 LaForge Oct 1992 A
5181931 Van de Veen Jan 1993 A
5201772 Maxwell Apr 1993 A
5217500 Phillips Jun 1993 A
5219365 Sabolich Jun 1993 A
5252102 Singer et al. Oct 1993 A
5336269 Smits Aug 1994 A
5376133 Gramnaes Dec 1994 A
5376137 Shorter et al. Dec 1994 A
5376141 Phillips Dec 1994 A
5383939 James Jan 1995 A
5405407 Kodama et al. Apr 1995 A
5405409 Knoth Apr 1995 A
5405410 Arbogast et al. Apr 1995 A
5405510 Betts Apr 1995 A
5408873 Schmidt et al. Apr 1995 A
5413611 Haslam, II et al. May 1995 A
5422558 Stewart Jun 1995 A
5443521 Knoth et al. Aug 1995 A
5443524 Sawamura et al. Aug 1995 A
5443528 Allen Aug 1995 A
5466083 Hogg Nov 1995 A
5472412 Knoth Dec 1995 A
5476441 Durfee et al. Dec 1995 A
5504415 Podrazhansky et al. Apr 1996 A
5545232 Van de Veen Aug 1996 A
5545233 Fitzlaff Aug 1996 A
5571205 James Nov 1996 A
5571210 Lindh Nov 1996 A
5571212 Cornelius Nov 1996 A
5571213 Allen Nov 1996 A
5586557 Nelson et al. Dec 1996 A
5611508 Palmero Mar 1997 A
5650704 Pratt et al. Jul 1997 A
5656915 Eaves Aug 1997 A
5660495 Ukawa Aug 1997 A
5662693 Johnson et al. Sep 1997 A
5704945 Wagner et al. Jan 1998 A
5704946 Greene Jan 1998 A
5728170 Becker et al. Mar 1998 A
5746774 Kramer May 1998 A
5751083 Tamura et al. May 1998 A
5779735 Molino Jul 1998 A
5800568 Atkinson et al. Sep 1998 A
5888212 Petrofsky et al. Mar 1999 A
5888213 Sears et al. Mar 1999 A
5888239 Wellershaus et al. Mar 1999 A
5888246 Gow Mar 1999 A
5893891 Zahedi Apr 1999 A
5895430 O'Connor Apr 1999 A
5913401 Tamura Jun 1999 A
5919149 Allum Jul 1999 A
5955667 Fyfe Sep 1999 A
5957981 Gramnaes Sep 1999 A
5972035 Blatchford Oct 1999 A
5982156 Weimer et al. Nov 1999 A
5998930 Upadhyay et al. Dec 1999 A
6007582 May Dec 1999 A
6061577 Andrieu et al. May 2000 A
6084326 Nagai Jul 2000 A
6091977 Tarjan et al. Jul 2000 A
6113642 Petrofsky et al. Sep 2000 A
6129766 Johnson et al. Oct 2000 A
6164967 Sale Dec 2000 A
6165226 Wagner Dec 2000 A
6183425 Whalen et al. Feb 2001 B1
6187051 Gerad van de Veen Feb 2001 B1
6195921 Truong Mar 2001 B1
6206932 Johnson Mar 2001 B1
6206933 Shorter et al. Mar 2001 B1
6241775 Blatchford Jun 2001 B1
6301964 Fyfe et al. Oct 2001 B1
6350286 Atkinson et al. Feb 2002 B1
6361570 Gow Mar 2002 B1
6373152 Wang et al. Apr 2002 B1
6409695 Connelly Jun 2002 B1
6423098 Biedermann Jul 2002 B1
6425925 Grundei Jul 2002 B1
6430843 Potter et al. Aug 2002 B1
6436149 Rincoe Aug 2002 B1
6443993 Koniuk Sep 2002 B1
6443995 Townsend et al. Sep 2002 B1
6451481 Lee et al. Sep 2002 B1
6494039 Pratt et al. Dec 2002 B2
6500210 Sabolich et al. Dec 2002 B1
6513381 Fyfe et al. Feb 2003 B2
6517585 Zahedi et al. Feb 2003 B1
6537322 Johnson et al. Mar 2003 B1
6587728 Fang et al. Jul 2003 B2
6602295 Doddroe et al. Aug 2003 B1
6610101 Herr et al. Aug 2003 B2
6662672 Someya Dec 2003 B2
6663673 Christensen Dec 2003 B2
6671531 Al-Ali et al. Dec 2003 B2
6679920 Biedermann et al. Jan 2004 B2
6695885 Schulman et al. Feb 2004 B2
6719806 Zahedi et al. Apr 2004 B1
6740123 Davalli et al. May 2004 B2
6743260 Townsend et al. Jun 2004 B2
6755870 Biedermann et al. Jun 2004 B1
6761743 Johnson Jul 2004 B1
6764520 Deffenbaugh et al. Jul 2004 B2
6767370 Mosier et al. Jul 2004 B1
6770045 Naft et al. Aug 2004 B2
6875241 Christensen Apr 2005 B2
6876135 Pelrine et al. Apr 2005 B2
6908488 Paasivaara et al. Jun 2005 B2
6918308 Biedermann Jul 2005 B2
6955692 Grundei Oct 2005 B2
6966933 Christensen Nov 2005 B2
7025792 Collier Apr 2006 B2
7029500 Martin Apr 2006 B2
7063727 Phillips et al. Jun 2006 B2
7091679 Schroeder et al. Aug 2006 B2
7118601 Yasui Oct 2006 B2
7131998 Pasolini Nov 2006 B2
7137998 Bédard et al. Nov 2006 B2
7147667 Bédard et al. Dec 2006 B2
7164967 Etienne-Cummings et al. Jan 2007 B2
7190096 Blanding et al. Mar 2007 B2
7308333 Kern et al. Dec 2007 B2
7313463 Herr et al. Dec 2007 B2
7314490 Bédard et al. Jan 2008 B2
7462201 Christensen Dec 2008 B2
7503900 Goswami Mar 2009 B2
7520904 Christensen Apr 2009 B2
7531006 Clausen et al. May 2009 B2
7637957 Ragnarsdottir et al. Dec 2009 B2
7637959 Clausen et al. Dec 2009 B2
7655050 Palmer et al. Feb 2010 B2
7736394 Bedard et al. Jun 2010 B2
7811334 Ragnarsdottir et al. Oct 2010 B2
7867284 Bédard et al. Jan 2011 B2
7888846 Ohtera et al. Feb 2011 B2
7898121 Ramsay et al. Mar 2011 B2
7918808 Simmons Apr 2011 B2
7949429 Ohtera et al. May 2011 B2
8048172 Jonsson et al. Nov 2011 B2
8057550 Clausen Nov 2011 B2
8075633 Herr et al. Dec 2011 B2
8083807 Auberger et al. Dec 2011 B2
8092550 McCarvill Jan 2012 B2
8109890 Kamiar et al. Feb 2012 B2
8231687 Bédard et al. Jul 2012 B2
7431737 Ragnarsdottir et al. Dec 2013 C1
8657886 Clausen et al. Feb 2014 B2
8709097 Jonsson et al. Apr 2014 B2
7896927 Clausen et al. May 2014 C1
9017419 Landry et al. Apr 2015 B1
9114029 Ásgeirsson et al. Aug 2015 B2
9271851 Claussen et al. Mar 2016 B2
9351854 Jónsson et al. May 2016 B2
9949850 Clausen Apr 2018 B2
10722386 Clausen Jul 2020 B2
20020043880 Suzuki et al. Apr 2002 A1
20020087213 Bertram Jul 2002 A1
20020087216 Atkinson et al. Jul 2002 A1
20030120354 Doddroe et al. Jun 2003 A1
20030163203 Nycz et al. Aug 2003 A1
20030163206 Yasui Aug 2003 A1
20040064195 Herr Apr 2004 A1
20050071017 Lecomte et al. Mar 2005 A1
20050107889 Bédard et al. May 2005 A1
20050137717 Gramnaes Jun 2005 A1
20050192677 Ragnarsdottir et al. Sep 2005 A1
20050283257 Bisbee et al. Dec 2005 A1
20060122710 Bédard et al. Jun 2006 A1
20060136072 Bisbee et al. Jun 2006 A1
20060249315 Herr et al. Nov 2006 A1
20070027557 Jonsson et al. Feb 2007 A1
20070043449 Herr et al. Feb 2007 A1
20070050047 Ragnarsdottir et al. Mar 2007 A1
20070061016 Kuo et al. Mar 2007 A1
20070123997 Herr et al. May 2007 A1
20070162152 Herr et al. Jul 2007 A1
20080004718 Mosler Jan 2008 A1
20080122303 Santo et al. May 2008 A1
20080306612 Mosier Dec 2008 A1
20090204230 Kaltenborn et al. Aug 2009 A1
20100030343 Hansen et al. Feb 2010 A1
20100042228 Doddroe et al. Feb 2010 A1
20100094431 Albrecht-Laatsch Apr 2010 A1
20100114329 Casler et al. May 2010 A1
20100131101 Engeberg et al. May 2010 A1
20100179668 Herr et al. Jul 2010 A1
20110015761 Celebi et al. Jan 2011 A1
20110082566 Herr et al. Apr 2011 A1
20110106274 Ragnarsdottir et al. May 2011 A1
20120130508 Harris et al. May 2012 A1
20120209405 Herr et al. Aug 2012 A1
20120283845 Herr et al. Nov 2012 A1
20130218298 Mosler Aug 2013 A1
20140039642 Nijiman et al. Feb 2014 A1
20140243997 Clausen et al. Aug 2014 A1
20150066153 Palmer, III et al. Mar 2015 A1
20150164661 Ragnarsdottir et al. Jun 2015 A1
20150328020 Clausen et al. Nov 2015 A1
20160367384 Sigmon Dec 2016 A1
20170112640 Clausen et al. Apr 2017 A1
Foreign Referenced Citations (48)
Number Date Country
1074109 Jul 1993 CN
1376856 Oct 2002 CN
2776340 May 2006 CN
1929797 Mar 2007 CN
101155557 Apr 2008 CN
42 29 330 Mar 1994 DE
195 21 464 Mar 1997 DE
0 549 855 Jul 1993 EP
0 902 547 Mar 1999 EP
1 107 420 Jun 2001 EP
1 166 726 Jan 2002 EP
1 169 982 Jan 2002 EP
2 623 086 May 1989 FR
2 201 260 Aug 1988 GB
2 228 201 Aug 1990 GB
2 244 006 Nov 1991 GB
2 260 495 Apr 1993 GB
2 301 776 Dec 1996 GB
2 302 949 Feb 1997 GB
2 338 653 Dec 1999 GB
2 367 753 Apr 2002 GB
59-088147 May 1984 JP
59-189843 Oct 1984 JP
11-000345 Jan 1999 JP
11-056885 Mar 1999 JP
2001-277175 Oct 2001 JP
2002-191654 Jul 2002 JP
2005-536317 Dec 2005 JP
WO 94006374 Mar 1994 WO
WO 95026171 Oct 1995 WO
WO 96041599 Dec 1996 WO
WO 97000661 Jan 1997 WO
WO 98038951 Sep 1998 WO
WO 99005991 Feb 1999 WO
WO 00027318 May 2000 WO
WO 01017466 Mar 2001 WO
WO 01072245 Oct 2001 WO
WO 03003953 Jan 2003 WO
WO 03086245 Oct 2003 WO
WO 2004017871 Mar 2004 WO
WO 2004017872 Mar 2004 WO
WO 2004017873 Mar 2004 WO
WO 2005041819 May 2005 WO
WO 2005079712 Sep 2005 WO
WO 2007027668 Mar 2007 WO
WO 2013006585 Jan 2013 WO
WO 2014133975 Sep 2014 WO
WO 2015157723 Oct 2015 WO
Non-Patent Literature Citations (9)
Entry
Au et al., “An EMG-Position Controlled System for an Active Ankle-Foot Prosthesis: An Initial Experimental Study,” Proceedings of the 2005 IEEE 9th International Conference on Rehabilitation Robotics, Chicago, IL, Jun. 28-Jul. 1, 2005, pp. 375-379.
Blaya, et al., “Adaptive Control of a Variable-Impedance Ankle-Foot Orthosis to Assist Drop-Foot Gait,” IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 12, No. 1, Mar. 2004, pp. 24-31.
Copes Inc., “Copes/Bionic Ankle,” The Most Significant Development in Ankle Prosthetics in Over a Half Century, Brochure, Nov. 1985, pp. 3.
Dietl et al., “Der Einsatz von Elektronik bei Prothesen zur Versorgung der unteren Extremität,” Med. Orth. Tech., 1997, vol. 117, pp. 31-35.
Flowers et al., “An Electrohydraulic Knee-Torque Controller for a Prosthesis Simulator,” Journal of Biomechanical Engineering: Transactions of the ASME; vol. 99, Series K, No. 1; Feb. 1977, pp. 3-8.
International Search Report and Written Opinion in PCT Application No. PCT/US2016/052339, dated Jan. 5, 2017.
Proteor, “Assembly and Adjustment Instructions for IP50-R,” Sep. 2004, pp. 1-21.
Suga et al., “Newly Designed Computer Controlled Knee-Ankle-Foot Orthosis (Intelligent Orthosis)”, Prosthetics and Orthotics International, vol. 22, 1998, pp. 230-239.
Townsend et al., “Biomechanics and Modeling of Bipedal Climbing and Descending,” Journal of Biomechanics, vol. 9, No. 4, 1976, pp. 227-239.
Related Publications (1)
Number Date Country
20200375764 A1 Dec 2020 US
Provisional Applications (1)
Number Date Country
62220823 Sep 2015 US
Continuations (2)
Number Date Country
Parent 15923625 Mar 2018 US
Child 16901995 US
Parent 15268340 Sep 2016 US
Child 15923625 US