Magnetic low-pass filter

Information

  • Patent Grant
  • 10012704
  • Patent Number
    10,012,704
  • Date Filed
    Thursday, January 21, 2016
    8 years ago
  • Date Issued
    Tuesday, July 3, 2018
    6 years ago
Abstract
Methods and configurations are disclosed for providing band-pass magnetic filtering of signals in magnetic communications and anomaly detection using diamond nitrogen-vacancy (DNV).
Description
FIELD

The subject technology generally relates to magnetometers, and more particularly, to a magnetic band-pass filter.


BACKGROUND

A number of industrial applications including, but not limited to, medical devices, communication devices, and navigation systems, as well as scientific areas such as physics and chemistry can benefit from magnetic detection and imaging. Many advanced magnetic imaging systems can operate in limited conditions, for example, high vacuum and/or cryogenic temperatures, which can make them inapplicable for imaging applications that require ambient conditions. Furthermore, small size, weight and power (SWAP) magnetic sensors of moderate sensitivity, vector accuracy, and bandwidth are valuable in many applications.


Magnetic communication is a promising field that has many advantageous features for environments such as water, in which acoustic waves have been widely used for many decades. The use of acoustic waves for underwater wireless communication (e.g., sonar) although wide spread, may be faced with a number of challenges such as large propagation delays, low bandwidth, and high bit-error rates, due to adverse effects by ambient noise, fading, and multipath propagation. Magnetic communication may also be advantageous in harsh environments such as ground penetration applications.


SUMMARY

Various aspects of the subject technology provide methods and systems for filtering signals in magnetic communication and anomaly detection using diamond nitrogen-vacancy (DNV) technology. In some implementations, digital filtering is performed on the signals detected by a DNV sensor. Such digital filtering uses additional computing power and algorithms to filter out unwanted signals from the useable signal data. Moreover, such digital filtering may add additional computational components to the system, thereby increasing the size of the system. Accordingly, it may be useful to construct an analog filter for filtering unwanted signals from the useful signals prior to digital processing of the DNV signal data. Such analog filtering may include a low pass filter that uses one or more loops of wire about a portion of the DNV sensor and a resistor to filter out high frequency magnetic content from the signal detected by the DNV sensor. In some instances, the resistor may be a variable resistor, such as a potentiometer, to modify the filtering frequency. In some implementations, the analog filtering may include a high pass filter that uses a diamagnetic material with the DNV sensor to filter out low frequency magnetic content from the signal detected by the DNV sensor. In some implementations, the low pass and high pass filters can be combined to create a bandpass filter for the DNV sensor. In some instances, the orientation of the one or more loops of wire and/or diamagnetic material relative to the DNV sensor may permit spatial attenuation of the magnetic signal detected by the DNV sensor.


One implementation relates to a diamond nitrogen vacancy sensor that includes a diamond having one or more nitrogen vacancies, a loop of conductive material positioned about a portion of the diamond, and a resistor coupled to a first end of the loop and a second end of the loop. The loop and resistor form a low pass filter for the DNV sensor.


In some implementations, the loop includes several loops. In some implementations, the resistor is a variable resistor, such as a potentiometer. In some implementations, a modification to the potentiometer selectively attenuates a set of high frequency magnetic signals.


Another implementation relates to a DNV sensor that includes a diamond having one or more nitrogen vacancies, a first loop of conductive material positioned about a first portion of the diamond, a second loop of conductive material positioned about a second portion of the diamond, a first resistor coupled to a first end of the first loop and a second end of the first loop, and a second resistor coupled to a third end of the second loop and a fourth end of the second loop. The first loop of conductive material is positioned within a first plane, and the first loop and first resistor form a first low pass filter for the DNV sensor in a first spatial orientation. The second loop of conductive material is positioned within a second plane, and the second loop and second resistor form a second low pass filter for the DNV sensor in a second spatial orientation. The second plane and first plane may be orthogonal.


In some implementations, the first loop includes several loops. In some implementations, the first resistor is a variable resistor, such as a potentiometer. In some implementations, the second resistor is a variable resistor, such as a potentiometer. In some implementations, a first modification to the first variable resistor or first potentiometer selectively attenuates a first set of high frequency magnetic signals for the first low pass filter for the first spatial orientation, and a second modification to the second variable resistor or second potentiometer selectively attenuates a second set of high frequency magnetic signals for the second low pass filter in the second spatial orientation.


Yet another implementation relates to a system that includes a DNV sensor and a controller configured to modify a variable resistor of the DNV sensor. The DNV sensor includes a diamond having one or more nitrogen vacancies, a loop of conductive material positioned about a portion of the diamond, and a variable resistor coupled to a first end of the loop and a second end of the loop. The loop and variable resistor form a low pass filter for the DNV sensor.


In some implementations, the controller modifies the variable resistor to selectively attenuate the low pass filter. In some implementations, the controller modifies the variable resistor to selectively attenuate the low pass filter based on an orientation of a detected magnetic signal.


Still a further implementation relates to a system that includes a DNV sensor and a controller configured to modify an orientation of the DNV sensor. The DNV sensor includes a diamond having one or more nitrogen vacancies, a loop of conductive material positioned about a portion of the diamond, and a variable resistor coupled to a first end of the loop and a second end of the loop. The loop and variable resistor form a low pass filter for the DNV sensor.


In some implementations, the controller modifies the orientation of the DNV sensor based on an orientation of a detected magnetic signal.


Yet a further implementation relates to a DNV sensor that includes a diamond having one or more nitrogen vacancies, a first loop of conductive material positioned about a first portion of the diamond, a second loop of conductive material positioned about a second portion of the diamond, a third loop of conductive material positioned about a third portion of the diamond, a first resistor coupled to a first end of the first loop and a second end of the first loop, a second resistor coupled to a third end of the second loop and a fourth end of the second loop, and a third resistor coupled to a fifth end of the third loop and a sixth end of the third loop. The first loop of conductive material is positioned within a first plane, and the first loop and first resistor form a first low pass filter for the DNV sensor in a first spatial orientation. The second loop of conductive material is positioned within a second plane, and the second loop and second resistor form a second low pass filter for the DNV sensor in a second spatial orientation. The third loop of conductive material is positioned within a third plane, and the third loop and third resistor form a third low pass filter for the DNV sensor in a third spatial orientation. The second plane and first plane may be orthogonal, and the third plane may be orthogonal to the first plane and the second plane.


In some implementations, the first resistor, second resistor, and/or third resistor is a variable resistor or potentiometer. In some implementations, a first modification to the first potentiometer selectively attenuates a first set of high frequency magnetic signals for the first low pass filter for the first spatial orientation, a second modification to the second potentiometer selectively attenuates a second set of high frequency magnetic signals for the second low pass filter in the second spatial orientation, and a third modification to the third potentiometer selectively attenuates a third set of high frequency magnetic signals for the third low pass filter in the third spatial orientation.


Another implementation relates to a DNV sensor that includes a diamond having one or more nitrogen vacancies, a first loop of conductive material positioned about a first portion of the diamond, a second loop of conductive material positioned about a second portion of the diamond, a third loop of conductive material positioned about a third portion of the diamond, a first resistor coupled to a first end of the first loop and a second end of the first loop, a second resistor coupled to a third end of the second loop and a fourth end of the second loop, and a third resistor coupled to a fifth end of the third loop and a sixth end of the third loop. The first loop of conductive material is positioned within a first plane, and the first loop and first resistor form a first low pass filter for the DNV sensor in a first spatial orientation. The second loop of conductive material is positioned within a second plane, and the second loop and second resistor form a second low pass filter for the DNV sensor in a second spatial orientation. The third loop of conductive material is positioned within a third plane, and the third loop and third resistor form a third low pass filter for the DNV sensor in a third spatial orientation. The second plane and first plane may be orthogonal, and the third plane may be orthogonal to the first plane and the second plane. The DNV sensor further includes a diamagnetic material positioned adjacent to the diamond.


In some implementations, the first resistor, second resistor, and/or third resistor is a variable resistor or potentiometer. In some implementations, a first modification to the first potentiometer selectively attenuates a first set of high frequency magnetic signals for the first low pass filter for the first spatial orientation, a second modification to the second potentiometer selectively attenuates a second set of high frequency magnetic signals for the second low pass filter in the second spatial orientation, and a third modification to the third potentiometer selectively attenuates a third set of high frequency magnetic signals for the third low pass filter in the third spatial orientation.


Yet another implementation relates to a DNV sensor that includes a diamond having a nitrogen vacancy and a diamagnetic material positioned relative to the diamond to form a high pass filter.


In some implementations, the diamagnetic material is a first diamagnetic material positioned at a first end of the diamond. In some implementations, the DNV sensor further includes a second diamagnetic material positioned at a second end of the diamond. In some implementations, the first end is opposite the second end. In some implementations, the diamagnetic material is a liquid and the diamond is positioned within the diamagnetic material. In some implementations, the diamagnetic material surrounds the diamond. In some implementations, the DNV sensor further includes a loop of conductive material positioned about a portion of the diamond and a variable resistor coupled to a first end of the loop and a second end of the loop. The loop and variable resistor forming a low pass filter for the DNV sensor.


Yet a further implementation relates to a method for neutralizing a magnetic signal. The method includes providing a DNV sensor, detecting a magnetic signal, and modifying a value for one or more of a first variable resistor or a second variable resistor based on the detected magnetic signal. The DNV sensor may include a diamond having one or more nitrogen vacancies, a first loop of conductive material positioned about a first portion of the diamond, a second loop of conductive material positioned about a second portion of the diamond, a first resistor coupled to a first end of the first loop and a second end of the first loop, and a second resistor coupled to a third end of the second loop and a fourth end of the second loop. The first loop of conductive material is positioned within a first plane, and the first loop and first resistor form a first low pass filter for the DNV sensor in a first spatial orientation. The second loop of conductive material is positioned within a second plane, and the second loop and second resistor form a second low pass filter for the DNV sensor in a second spatial orientation. The second plane and first plane may be orthogonal.


In some implementations, the first variable resistor or the second variable resistor is a potentiometer. In some implementations, the DNV sensor further includes a third loop of conductive material positioned about a third portion of the diamond with the third loop of conductive material positioned in a third plane and the third plane being orthogonal to the first plane and second plane. The third variable resistor is coupled to a fifth end of the third loop and a sixth end of the third loop, and the third loop and third variable resistor forming a third low pass filter for the DNV sensor in a third spatial orientation.


Still a further implementation relates to a method for neutralizing a magnetic signal. The method includes providing a DNV sensor, detecting a magnetic signal, and modifying an orientation of the loop of the DNV sensor based on the detected magnetic signal. The DNV sensor includes a diamond having a nitrogen vacancy, a loop of conductive material positioned about a portion of the diamond, and a resistor coupled to a first end of the loop and a second end of the loop to form a low pass filter for the DNV sensor.


In some implementations, the resistor is a potentiometer.


In the following description, reference is made to the accompanying attachments that form a part thereof, and in which are shown by way of illustration, specific embodiments in which the subject technology may be practiced. It is to be understood that other embodiments may be utilized and changes may be made without departing from the scope of the subject technology.





BRIEF DESCRIPTION OF THE DRAWINGS

The details of one or more implementations are set forth in the accompanying drawings and the description below. Other features, aspects, and advantages of the disclosure will become apparent from the description, the drawings, and the claims, in which:



FIG. 1 is an overview diagram of a diamond of a DNV sensor with a low pass filter and a high pass filter;



FIG. 2 is graphical diagram of an example signal detected with a DNV sensor that includes a test signal without filtering;



FIG. 3 is an overview diagram of a diamond of a DNV sensor with a low pass filter and showing a magnetic field of the environment, a change in the magnetic field of the environment, and an induced magnetic field by the low pass filter to filter high frequency signals;



FIG. 4 is another overview diagram of a diamond of a DNV sensor with two low pass filters arranged for spatial attenuation;



FIG. 5 is an overview diagram of a diamond of a DNV sensor relative to a diamagnetic material and showing alignment of the poles of the diamagnetic material relative to the induced magnetic field;



FIG. 6 is a graphical diagram of magnetism in a diamagnetic material relative to the applied magnetic field;



FIG. 7 is a process diagram for modifying a filtering frequency of a low pass filter for a DNV sensor based on a detected magnetic field;



FIG. 8 is a process diagram for modifying an orientation of a DNV sensor with a low pass filter based on a detected magnetic field;



FIG. 9 is a block diagram depicting a general architecture for a computer system that may be employed to implement various elements of the systems and methods described and illustrated herein.





It will be recognized that some or all of the figures are schematic representations for purposes of illustration. The figures are provided for the purpose of illustrating one or more embodiments with the explicit understanding that they will not be used to limit the scope or the meaning of the claims.


DETAILED DESCRIPTION

Following below are more detailed descriptions of various concepts related to, and implementations of, methods, apparatuses, and systems for providing filtering for signals in magnetic communications and anomaly detection using diamond nitrogen-vacancy (DNV) sensors. The subject technology provides a band-pass filter that allows users to focus on particular frequency signals for anomaly detection and an operating frequency band that permits limited environment noise for communication. A filtered signal increases signal-to-noise (SNR) for communications and anomaly detection. The filtered signal has reduced unwanted signals and allows the operator to better interpret the signal. Magnetic communication using a magnetic medium presents advantageous features for ground penetrating applications and underwater environments. A limitation to the application of the magnetic communications is the noisy operational environment. The disclosed technology addresses this issue by providing suitable magnetic filtering.


In some implementations, a system of the subject technology attenuates magnetic communication signals outside of a targeted frequency region. In the electrical world, band-pass filters may be realized using a combination of resistors and capacitors and/or other passive or active elements. In the magnetic world, however, solenoids and diamagnetic material can be employed to perform the desired filtering functions.



FIG. 1 overview diagram of a diamond 102 having a nitrogen vacancy of a DNV sensor 100 with a low pass filter 110 and a high pass filter 120. As shown in FIG. 1, the low pass filter 110 and high pass filter 120 cooperate to form a magnetic band-pass filter. The low pass filter 110 is formed by a solenoid that uses the diamond 102 as a core and includes a resistor 112 and a loop of conductive material 114 looped about a portion of the diamond 102. In some implementations, the loop 114 of conductive material may include a plurality of loops about the diamond 102. The resistor 112 is electrically coupled to a first end of the loop 114 and a second end of the loop 114. In some implementations, the resistor 112 is a constant resistor. In other implementations, the resistor 112 may be a variable resistor, such as a potentiometer or other tunable resistor element. With a variable resistor, a modification of the resistance can selectively attenuate a set of high frequency magnetic signals. That is, for instance, a modification to a resistance applied by a potentiometer can modify the upper frequency that is attenuated by the low pass filter 110. Thus, higher frequency magnetic signals can be attenuated to reduce the noise relative to an expected signal to be detected by the DNV sensor 100. The solenoid formed by the loop 114 and resistor 112 resists changing magnetic fields and generates opposing fields proportional to the rate of change of the changing magnetic field, which has a greater effect on alternating magnetic fields. In some implementations, the solenoid formed by the loop 114 and the resistor 112 may include a capacitor to control the shape of the low pass filter 110.


The high pass filter 120 is formed by a diamagnetic material 122 positioned relative to the diamond 102. The diamagnetic material 122 is repelled by an external magnetic field as the diamagnetic material 122 generates an induced magnetic field that aligns anti-parallel to an applied environmental magnetic field. Based on the selected diamagnetic material 122, the low frequency for magnetic signals that are filtered out can be changed. In some implementations, the diamagnetic material 122 may have a magnetic permeability of approximately 0.9. The diamagnetic material 122 may act as a DC blocker to filter out low frequency magnetic signals emitted from DC current or devices.


Using the combination of the diamagnetic material 122 as a high pass filter 120 and one or more solenoids as low pass filters 110, a band pass filter may be formed for the DNV sensor 100. If the low pass filter 110 includes a tunable resistor 112, then the attenuation of an alternating magnetic field can be optimized for a desired frequency band. That is, varying the resistance for the low pass filter 110 can vary the high frequency magnetic signals that are attenuated while the high pass filter 120 filters the low frequency magnetic signals.



FIG. 2 is a graphical diagram 200 depicting an example magnetic signal 202 that includes a test signal 204 without utilizing filtering. The magnetic signal 202 corresponds to the use of a DNV-sensor-based equipment deployed in a vehicle being driven in a rural area with a manageable magnetic noise floor. The equipment was used to read magnetic signals while the vehicle that a DNV sensor is deployed on was very noisy. This combined with the proximity to the equipment makes it difficult to recover the test signal 204 from the noise of the example magnetic signal 202. Given the noise of the magnetic signal 202, providing a filtering mechanism to remove and/or reduce magnetic signal noise may increase the signal-to-noise ratio (SNR) to provide better clarity when receiving a particular signal of interest, such as the test signal 204.



FIG. 3 depicts a diamond 302 of a DNV sensor 300 with a low pass filter 310 and showing a magnetic field 350 of the environment, a change 352 in the magnetic field of the environment, and an induced magnetic field 354 by the low pass filter to filter high frequency signals. In the arrangement shown, the diamond 302 operates as the core of a solenoid made up of a loop of conductive material 312 and a resistor 314 that acts as the low pass filter 310. The diamond 302 is exposed to an external magnetic field 350, B. When external magnetic field 350, B, is then changed by a change in the magnetic field 352, ΔB, such as based on external magnetic noise from the environment, then the change in magnetic field 352, ΔB, causes the solenoid to induce a current 316 in the conductive material 312 proportional and opposite to the rate of change of the magnetic field 352 according to the Lenz law (EMF=−NΔΦ/Δt), where ΔΦ is the change in magnetic flux, Δt is the incremental change in time, N is the number of turns of the conductive material 312 about the diamond 302, and EMF is the induced electro-magnetic force (EMF). The induced current 316 due to the generated EMF has a greater effect on high frequency magnetic signals, due to the derivative term ΔΦ/Δt, and the effect can be tuned by both the number of turns, N, in the conductive material 312 and the resistance provided by the resistor 314. In some implementations, a variable resistor 314 can be used to change the operating region of the low-pass filter 310. In some implementations, the variable resistor 314 may be a potentiometer. In some implementations, the variable resistor 314 may be coupled to a first end of a loop of the conductive material 312 and a second end of the loop of the conductive material 312 to form the low pass filter 310. In some implementations, the solenoid formed by the loop of conductive material 312 and the resistor 314 may include a capacitor to control the shape of the low pass filter 310.


In some implementations, a controller, such as shown in FIG. 9, may be coupled to the variable resistor 314 and/or to a component for adjusting the variable resistor 314. For instance, a digital potentiometer may be used as the variable resistor 314 and a controller may be configured to modify a resistance of the variable resistor 314. In some implementations, as described in greater detail herein, the controller may be configured to modify a resistance of the variable resistor 314 to selectively attenuate the low-pass filter 410. The selective attenuation may be responsive to a strength and/or orientation of a detected magnetic disturbance or magnetic signal.


In other implementations, the controller may be configured to modify an orientation of the DNV sensor 300. For instance, the DNV sensor 300 may be mounted to a structure to allow for modification of a rotational orientation of the DNV sensor 300 in one or more directions. For instance, the DNV sensor 300 may be mounted to a printed circuit board (PCB) or other suitable structure that can be mechanically or otherwise rotated in one or more directions. The modification of the orientation of the DNV sensor 300 may be responsive to an strength and/or orientation of a detected magnetic disturbance or magnetic signal.



FIG. 4 depicts a diamond 402 of a DNV sensor 400 with a first low pass filter 410 and a second low pass filter 420. In the arrangement shown, the diamond 402 operates as the core of a first solenoid of the first low pass filter 410 made up of a first loop of conductive material 412 and a first resistor 414 and as the core of a second solenoid of the second low pass filter 420 made up of a second loop of conductive material 422 and a second resistor 424. In some implementations the first loop and/or second loop can be made from several loops of conductive material. In the implementation shown, the first loop of conductive material 412 is positioned in a first plane relative to the diamond 402 and the second loop of conductive material 422 is positioned in a second plane relative to the diamond 402 such that the first and second planes are orthogonal. Thus, the first low pass filter 410 is a low pass filter for a first spatial orientation and the second low pass filter 420 is a low pass filter in a second spatial orientation. In some implementations, the first solenoid formed by the first loop of conductive material 412 and the first resistor 414 and/or the second solenoid formed by the second loop of conductive material 422 and the second resistor 424 may include a capacitor to control the shape of the low pass filter 410, 420.


If the first resistor 414 and second resistor 424 have the same resistance, then the attenuation from the low pass filters 410, 420 is strongest at the diagonal between the first low pass filter 410 and second low pass filter 420 due to the induced EMF. If the first resistor 414 has a greater resistance than the second resistor 424, then the attenuation from the low pass filters 410, 420 will be stronger nearer to the first plane within which the first low pass filter 410 is positioned than the second planed within which the second low pass filter 420 is positioned. In some implementations, the first resistor 414 and/or second resistor 424 can be variable resistors. In some implementations, the first variable resistor 414 and/or the second variable resistor 424 may be a potentiometer. In some implementations, the first resistor 414 may be coupled to a first end of the first loop of the conductive material 412 and a second end of the first loop of the conductive material 412 to form the first low pass filter 410. The second resistor 424 may be coupled to a first end (e.g., a third end) of the second loop of the conductive material 422 and a second end (e.g., a fourth end) of the second loop of the conductive material 422 to form the second low pass filter 420.


The first variable resistor 414 can be used to independently change the operating region of the first low-pass filter 410 and the second variable resistor 424 can be used to independently change the operating region of the second low-pass filter 420. The independent change of the operating region of the low pass filters 410, 420 can modify the spatial orientation of the maximum attenuation, thereby providing modifying the spatial orientation of the maximum attenuation due to the induced EMF. Thus, in some implementations, a controller, such as shown in FIG. 9, may be coupled to the first variable resistor 414 and/or to a component for adjusting the first variable resistor 414 and the second variable resistor 424 and/or a component for adjusting the second variable resistor 424 to modify the spatial orientation of the maximum attenuation relative to the diamond 402. For instance, a digital potentiometer may be used as the first variable resistor 414 and/or second variable resistor 424 and a controller may be configured to modify a resistance of the first variable resistor 414 and/or second variable resistor 424. In some implementations, as described in greater detail herein, the controller may be configured to modify a resistance of the first variable resistor 414 and/or second variable resistor 424 to selectively attenuate the first low-pass filter 410 and/or second low pass filter 420. The selective attenuation may be responsive to a strength and/or orientation of a detected magnetic disturbance or magnetic signal. In some implementations, a modification to the first variable resistor 414, such as a potentiometer, attenuates a set of high frequency magnetic signals for the first low pass filter 410 for the first spatial orientation. A modification to the second variable resistor 424, such as a potentiometer, attenuates a set of high frequency magnetic signals for the second low pass filter 420 for the second spatial orientation.


In some further implementations, the diamond 402 operates as the core of a third solenoid of a third low pass filter made up of a third loop of conductive material and a third resistor. In some implementations the third loop can be made from several loops of conductive material. The third loop of conductive material may be positioned in a third plane relative to the diamond 402 such that third plane is orthogonal to the first plane of the first low pass filter 410 and the second plane of the second low pass filter 420. Thus, the third low pass filter is a low pass filter for a third spatial orientation. The third resistor may be coupled to a first end (e.g., a fifth end) of the third loop of the conductive material and a second end (e.g., a sixth end) of the third loop of the conductive material to form the third low pass filter The third resistor may be a variable resistor, such as a potentiometer. In some implementations, a modification to the third variable resistor attenuates a set of high frequency magnetic signals for the third low pass filter for the third spatial orientation. The third low pass filter, third resistor, third loop, etc. may be further constructed and/or used in a similar manner to the first low pass filter 410, first resistor 414, first loop 412, etc. as described above except that the third low pass filter is positioned in the third spatial orientation. Thus, with the first low pass filter 410, second low pass filter 420, and third low pass filter, a variation of the resistances applied to each variable resistor can modify the spatial orientation of the maximum attenuation relative to the diamond 402.


In any of the DNV sensors 100, 300, 400 described herein, a diamagnetic material, such as diamagnetic material 122, may be utilized for a high pass filter, as will be described in greater detail herein.



FIG. 5 depicts a diamond 502 of a DNV sensor 500 relative to a diamagnetic material 510 and showing alignment of the poles 512 of the diamagnetic material 510 relative to the induced magnetic field 520. The diamagnetic material 510 is repelled by an external magnetic field, B, and the diamagnetic material 510 generates an induced magnetic field, B1, that aligns anti-parallel to an applied environmental magnetic field.



FIG. 6 depicts the behavior of a diamagnetic material for use in a high pass filter relative to an external or applied environmental magnetic field, B. The curve 600 depicts the variation of magnetism, M, of a diamagnetic material versus the external or applied environmental magnetic field, B. As shown in FIG. 6, the magnetism of the diamagnetic material is opposite to the applied magnetic field and includes a delay until a constant magnetic field for the diamagnetic material is achieved. The delay is due to the diamagnetic material, such as diamagnetic material 510, having regions, such as poles 512 that align anti-parallel to the external magnetic field and require some amount of time to realign opposite to the external magnetic field. These effects, however, may not be instantaneous and the diamagnetic material experiences a charging time similar to a charging time of a capacitor. Thus, high frequency magnetic signals spend less time in an orientation than slow modulating signals. This allows a high-frequency portion of a magnetic signal to pass through the diamagnetic material while a low-frequency portion of the magnetic signal is filtered. The magnetic permeability and the size of the diamagnetic material can vary the effect.


Referring back to FIG. 5, based on the selected diamagnetic material 510, the low frequency for magnetic signals that are filtered out can be changed. In some implementations, the diamagnetic material 510 may have a magnetic permeability of approximately 0.9. The diamagnetic material 510 may act as a DC blocker to filter out low frequency magnetic signals emitted from DC current or devices. In some implementations, the diamagnetic material 510 may be positioned at an end of the diamond 502. In some implementations, the diamagnetic material 510 may be positioned at an end of the diamond 502 based on the position of one or more current or expected DC currents or devices relative to the DNV sensor 500. In other implementations, the DNV sensor 500 may be rotated to align the diamagnetic material 510 relative to the current or expected DC currents or devices. In other implementations, multiple diamagnetic materials 510 may be positioned about the diamond 502. For instance, a pair of diamagnetic materials 510 may be positioned at opposing ends of the diamond 502 of the DNV sensor 500. Further still a diamagnetic cube of material may be formed about the DNV sensor 500. In still further implementations, the diamagnetic material 510 may be a liquid material and the diamond 502 of the DNV sensor 500 may be positioned within the liquid diamagnetic material 510 or otherwise surrounded by the diamagnetic material 510.



FIG. 7 depicts a method 700 for modifying a filtering frequency of a low pass filter for a DNV sensor based on a detected magnetic field. The method 700 includes providing a diamond nitrogen vacancy sensor (block 702). The DNV sensor may be any of the DNV sensors 100, 300, 400, 500. In some implementations, the DNV sensor may be similar to DNV sensor 300 and may include a diamond having a nitrogen vacancy and a low pass filter. The low pass filter may include a loop of conductive material positioned about the diamond and a variable resistor coupled to a first end of the loop and a second end of the loop. In other implementations, the DNV sensor may be similar to DNV sensor 400 and may include a diamond having a nitrogen vacancy, a first low pass filter in a first spatial orientation, and a second low pass filter in a second spatial orientation. The first low pass filter may include a first loop of conductive material positioned about a first portion of the diamond and a first variable resistor coupled to a first end of the first loop and a second end of the first loop. The second low pass filter may include a second loop of conductive material positioned about a second portion of the diamond and a second variable resistor coupled to a first end (e.g., a third end) of the second loop and a second end (e.g., a fourth end) of the second loop. The first loop of conductive material may positioned within a first plane, and the second loop of conductive material may be positioned in a second plane. In some implementations, the first plane and second plane are orthogonal. In some implementations, the first variable resistor and/or the second variable resistor is a potentiometer. In some further implementations, the DNV sensor may further include a third loop of conductive material positioned about a third portion of the diamond such that the third loop of conductive material is positioned in a third plane. The third plane may be orthogonal to the first plane and second plane. In still further implementations, either of the DNV sensors 300, 400 may include a diamagnetic material, such as diamagnetic material 510 described herein.


The method 700 further includes detecting an interfering magnetic signal (block 704). Detecting of the interfering magnetic signal may include detecting the interfering magnetic signal with the DNV sensor. In some implementations, the detection of the interfering magnetic signal is performed with a controller, such as shown in FIG. 9, in electric communication with the DNV sensor. In other implementations, detecting the interfering magnetic signal may be with another component in electric communication with the controller. The detecting of the interfering magnetic signal may simply include detecting an orientation of magnetic signals above a predetermined high frequency.


The method 700 further includes modifying a value for one or more of the first variable resistor or the second variable resistor based on the detected magnetic signal (block 706). The modification of the value for the first variable resistor and/or the second variable resistor may be performed by the controller. In some implementations, the controller may include instructions to modify a digital potentiometer for the first variable resistor and/or second variable resistor. In other implementations, the controller may modify another component to modify a value for the resistance of the first variable resistor and/or second variable resistor. Modifying the resistance value for the first variable resistor and/or second variable resistor to a zero or substantially zero resistance value may result in attenuating substantially all high frequency magnetic signals.


In some implementations, one or more low pass filters may be tuned based on attenuating substantially all high frequency magnetic signals and adjusting the resistance value of the variable resistor until a test signal is detected or setting the resistance value of the variable resistor to a minimum attenuation and increasing the attenuation until a predetermined frequency value for filtering is achieved.



FIG. 8 is another method 800 for modifying an orientation of a DNV sensor with a low pass filter based on a detected magnetic field. The method 800 includes providing a diamond nitrogen vacancy sensor (block 802). The DNV sensor may be any of the DNV sensors 100, 300, 400, 500. In some implementations, the DNV sensor may be similar to DNV sensor 300 and may include a diamond having a nitrogen vacancy and a low pass filter. The low pass filter may include a loop of conductive material positioned about the diamond and a variable resistor coupled to a first end of the loop and a second end of the loop. In other implementations, the DNV sensor may be similar to DNV sensor 400 and may include a diamond having a nitrogen vacancy, a first low pass filter in a first spatial orientation, and a second low pass filter in a second spatial orientation. The first low pass filter may include a first loop of conductive material positioned about a first portion of the diamond and a first variable resistor coupled to a first end of the first loop and a second end of the first loop. The second low pass filter may include a second loop of conductive material positioned about a second portion of the diamond and a second variable resistor coupled to a first end (e.g., a third end) of the second loop and a second end (e.g., a fourth end) of the second loop. The first loop of conductive material may positioned within a first plane, and the second loop of conductive material may be positioned in a second plane. In some implementations, the first plane and second plane are orthogonal. In some implementations, the first variable resistor and/or the second variable resistor is a potentiometer. In some further implementations, the DNV sensor may further include a third loop of conductive material positioned about a third portion of the diamond such that the third loop of conductive material is positioned in a third plane. The third plane may be orthogonal to the first plane and second plane. In still further implementations, either of the DNV sensors 300, 400 may include a diamagnetic material, such as diamagnetic material 510 described herein.


The method 800 further includes detecting a magnetic signal (block 804). Detecting of the magnetic signal may include detecting the magnetic signal with the DNV sensor. In some implementations, the detection of the magnetic signal is performed with a controller in electric communication with the DNV sensor. In other implementations, detecting the magnetic signal may be with another component in electric communication with the controller. The detecting of the magnetic signal may simply include detecting an orientation of magnetic signals above a predetermined high frequency.


The method 800 further includes modifying an orientation of the loop of the DNV sensor based on the detected magnetic signal (block 806). The modification of the orientation of the loop of the DNV sensor may be performed by the controller. Modification of the orientation of the loop of the DNV sensor may include modifying an orientation of the DNV sensor itself and/or may modify the orientation of the loop independent of the orientation of the diamond of the DNV sensor. In some implementations, the controller may include instructions to modify an orientation of the DNV sensor and/or loop and DNV sensor through mechanical components, such as a servo, an actuator, etc.



FIG. 9 is a diagram illustrating an example of a system 900 for implementing some aspects of the subject technology, such as the controller. The system 900 includes a processing system 902, which may include one or more processors or one or more processing systems. A processor can be one or more processors. The processing system 902 may include a general-purpose processor or a specific-purpose processor for executing instructions and may further include a machine-readable medium 919, such as a volatile or non-volatile memory, for storing data and/or instructions for software programs. The instructions, which may be stored in a machine-readable medium 910 and/or 919, may be executed by the processing system 902 to control and manage access to the various networks, as well as provide other communication and processing functions. The instructions may also include instructions executed by the processing system 902 for various user interface devices, such as a display 912 and a keypad 914. The processing system 902 may include an input port 922 and an output port 924. Each of the input port 922 and the output port 924 may include one or more ports. The input port 922 and the output port 924 may be the same port (e.g., a bi-directional port) or may be different ports.


The processing system 902 may be implemented using software, hardware, or a combination of both. By way of example, the processing system 902 may be implemented with one or more processors. A processor may be a general-purpose microprocessor, a microcontroller, a Digital Signal Processor (DSP), an Application Specific Integrated Circuit (ASIC), a Field Programmable Gate Array (FPGA), a Programmable Logic Device (PLD), a controller, a state machine, gated logic, discrete hardware components, or any other suitable device that can perform calculations or other manipulations of information.


A machine-readable medium can be one or more machine-readable media, including no-transitory or tangible machine-readable media. Software shall be construed broadly to mean instructions, data, or any combination thereof, whether referred to as software, firmware, middleware, microcode, hardware description language, or otherwise. Instructions may include code (e.g., in source code format, binary code format, executable code format, or any other suitable format of code).


Machine-readable media (e.g., 919) may include storage integrated into a processing system such as might be the case with an ASIC. Machine-readable media (e.g., 910) may also include storage external to a processing system, such as a Random Access Memory (RAM), a flash memory, a Read Only Memory (ROM), a Programmable Read-Only Memory (PROM), an Erasable PROM (EPROM), registers, a hard disk, a removable disk, a CD-ROM, a DVD, or any other suitable storage device. Those skilled in the art will recognize how best to implement the described functionality for the processing system 902. According to one aspect of the disclosure, a machine-readable medium is a computer-readable medium encoded or stored with instructions and is a computing element, which defines structural and functional interrelationships between the instructions and the rest of the system, which permit the instructions' functionality to be realized. Instructions may be executable, for example, by the processing system 902 or one or more processors. Instructions can be, for example, a computer program including code for performing methods of the subject technology.


A network interface 916 may be any type of interface to a network (e.g., an Internet network interface), and may reside between any of the components shown in FIG. 9 and coupled to the processor via the bus 904.


A device interface 918 may be any type of interface to a device and may reside between any of the components shown in FIG. 9. A device interface 918 may, for example, be an interface to an external device (e.g., USB device) that plugs into a port (e.g., USB port) of the system 900.


The foregoing description is provided to enable a person skilled in the art to practice the various configurations described herein. While the subject technology has been particularly described with reference to the various figures and configurations, it should be understood that these are for illustration purposes only and should not be taken as limiting the scope of the subject technology.


One or more of the above-described features and applications may be implemented as software processes that are specified as a set of instructions recorded on a computer readable storage medium (alternatively referred to as computer-readable media, machine-readable media, or machine-readable storage media). When these instructions are executed by one or more processing unit(s) (e.g., one or more processors, cores of processors, or other processing units), they cause the processing unit(s) to perform the actions indicated in the instructions. In one or more implementations, the computer readable media does not include carrier waves and electronic signals passing wirelessly or over wired connections, or any other ephemeral signals. For example, the computer readable media may be entirely restricted to tangible, physical objects that store information in a form that is readable by a computer. In one or more implementations, the computer readable media is non-transitory computer readable media, computer readable storage media, or non-transitory computer readable storage media.


In one or more implementations, a computer program product (also known as a program, software, software application, script, or code) can be written in any form of programming language, including compiled or interpreted languages, declarative or procedural languages, and it can be deployed in any form, including as a stand-alone program or as a module, component, subroutine, object, or other unit suitable for use in a computing environment. A computer program may, but need not, correspond to a file in a file system. A program can be stored in a portion of a file that holds other programs or data (e.g., one or more scripts stored in a markup language document), in a single file dedicated to the program in question, or in multiple coordinated files (e.g., files that store one or more modules, sub programs, or portions of code). A computer program can be deployed to be executed on one computer or on multiple computers that are located at one site or distributed across multiple sites and interconnected by a communication network.


While the above discussion primarily refers to microprocessor or multi-core processors that execute software, one or more implementations are performed by one or more integrated circuits, such as application specific integrated circuits (ASICs) or field programmable gate arrays (FPGAs). In one or more implementations, such integrated circuits execute instructions that are stored on the circuit itself.


In some aspects, the subject technology is directed to magnetic band-pass filters for signals in magnetic communications and anomaly detection using diamond nitrogen-vacancy (DNV). In some aspects, the subject technology may be used in various markets, including for example and without limitation, advanced sensors and magnetic communication systems markets.


The description of the subject technology is provided to enable any person skilled in the art to practice the various embodiments described herein. While the subject technology has been particularly described with reference to the various figures and embodiments, it should be understood that these are for illustration purposes only and should not be taken as limiting the scope of the subject technology.


There may be many other ways to implement the subject technology. Various functions and elements described herein may be partitioned differently from those shown without departing from the scope of the subject technology. Various modifications to these embodiments may be readily apparent to those skilled in the art, and generic principles defined herein may be applied to other embodiments. Thus, many changes and modifications may be made to the subject technology, by one having ordinary skill in the art, without departing from the scope of the subject technology.


A reference to an element in the singular is not intended to mean “one and only one” unless specifically stated, but rather “one or more.” The term “some” refers to one or more. Underlined and/or italicized headings and subheadings are used for convenience only, do not limit the subject technology, and are not referred to in connection with the interpretation of the description of the subject technology. All structural and functional equivalents to the elements of the various embodiments described throughout this disclosure that are known or later come to be known to those of ordinary skill in the art are expressly incorporated herein by reference and intended to be encompassed by the subject technology. Moreover, nothing disclosed herein is intended to be dedicated to the public regardless of whether such disclosure is explicitly recited in the above description.

Claims
  • 1. A diamond nitrogen-vacancy (DNV) sensor comprising: a diamond having one or more nitrogen vacancies;a loop of conductive material positioned adjacent to a portion of the diamond; anda resistor coupled to a first end of the loop and a second end of the loop, the loop and resistor forming a low pass filter for the DNV sensor.
  • 2. The DNV sensor of claim 1, wherein the loop comprises a plurality of loops.
  • 3. The DNV sensor of claim 1, wherein the resistor is a variable resistor.
  • 4. The DNV sensor of claim 1, wherein the resistor is a potentiometer.
  • 5. The DNV sensor of claim 4, wherein a modification to the potentiometer selectively attenuates a set of high frequency magnetic signals.
  • 6. A system comprising: a vacancy sensor including: a vacancy material having a vacancy,a loop of conductive material positioned adjacent to a portion of the vacancy material, anda variable resistor coupled to a first end of the loop and a second end of the loop, the loop and variable resistor forming a low pass filter for the vacancy sensor; anda controller configured to modify the variable resistor.
  • 7. The system of claim 6, wherein the controller modifies the variable resistor to selectively attenuate the low pass filter.
  • 8. The system of claim 6, wherein the controller modifies the variable resistor to selectively attenuate the low pass filter based on an orientation of a detected magnetic signal.
  • 9. A system comprising: a vacancy sensor including: a vacancy material having a vacancy,a loop of conductive material positioned adjacent to a portion of the vacancy material, anda variable resistor coupled to a first end of the loop and a second end of the loop, the loop and variable resistor forming a low pass filter for the vacancy sensor; anda controller configured to modify an orientation of the vacancy sensor.
  • 10. The system of claim 9, wherein the controller modifies the orientation of the vacancy sensor, wherein the vacancy sensor is a diamond nitrogen vacancy sensor, based on an orientation of a detected magnetic signal.
US Referenced Citations (367)
Number Name Date Kind
2746027 Murray May 1956 A
3359812 Everitt Dec 1967 A
3389333 Wolff et al. Jun 1968 A
3490032 Zurflueh Jan 1970 A
3514723 Cutler May 1970 A
3518531 Huggett Jun 1970 A
3745452 Osburn et al. Jul 1973 A
3899758 Maier et al. Aug 1975 A
4025873 Chilluffo May 1977 A
4078247 Albrecht Mar 1978 A
4084215 Willenbrock Apr 1978 A
4322769 Cooper Mar 1982 A
4329173 Culling May 1982 A
4359673 Bross et al. Nov 1982 A
4368430 Dale et al. Jan 1983 A
4410926 Hafner et al. Oct 1983 A
4437533 Bierkarre et al. Mar 1984 A
4514083 Fukuoka Apr 1985 A
4588993 Babij et al. May 1986 A
4636612 Cullen Jan 1987 A
4638324 Hannan Jan 1987 A
4675522 Arunkumar Jun 1987 A
4768962 Kupfer et al. Sep 1988 A
4818990 Fernandes Apr 1989 A
4820986 Mansfield et al. Apr 1989 A
4945305 Blood Jul 1990 A
4958328 Stubblefield Sep 1990 A
4982158 Nakata et al. Jan 1991 A
5019721 Martens et al. May 1991 A
5038103 Scarzello et al. Aug 1991 A
5113136 Hayashi et al. May 1992 A
5134369 Lo et al. Jul 1992 A
5189368 Chase Feb 1993 A
5200855 Meredith et al. Apr 1993 A
5245347 Bonta et al. Sep 1993 A
5252912 Merritt et al. Oct 1993 A
5301096 Klontz et al. Apr 1994 A
5384109 Klaveness et al. Jan 1995 A
5396802 Moss Mar 1995 A
5420549 Prestage May 1995 A
5425179 Nickel et al. Jun 1995 A
5427915 Ribi et al. Jun 1995 A
5548279 Gaines Aug 1996 A
5568516 Strohallen et al. Oct 1996 A
5586069 Dockser Dec 1996 A
5597762 Popovici et al. Jan 1997 A
5638472 Van Delden Jun 1997 A
5694375 Woodall Dec 1997 A
5719497 Veeser et al. Feb 1998 A
5731996 Gilbert Mar 1998 A
5764061 Asakawa et al. Jun 1998 A
5818352 McClure Oct 1998 A
5846708 Hollis et al. Dec 1998 A
5888925 Smith et al. Mar 1999 A
5907420 Chraplyvy et al. May 1999 A
5907907 Ohtomo et al. Jun 1999 A
5915061 Vanoli Jun 1999 A
6042249 Spangenberg Mar 2000 A
6057684 Murakami et al. May 2000 A
6124862 Boyken et al. Sep 2000 A
6130753 Hopkins et al. Oct 2000 A
6144204 Sementchenko Nov 2000 A
6195231 Sedlmayr et al. Feb 2001 B1
6215303 Weinstock et al. Apr 2001 B1
6360173 Fullerton Mar 2002 B1
6398155 Hepner et al. Jun 2002 B1
6433944 Nagao et al. Aug 2002 B1
6472651 Ukai Oct 2002 B1
6472869 Upschulte et al. Oct 2002 B1
6504365 Kitamura Jan 2003 B2
6542242 Yost et al. Apr 2003 B1
6621578 Mizoguchi Sep 2003 B1
6636146 Wehoski Oct 2003 B1
6686696 Mearini et al. Feb 2004 B2
6690162 Schopohl et al. Feb 2004 B1
6765487 Holmes et al. Jul 2004 B1
6788722 Kennedy et al. Sep 2004 B1
6809829 Takata et al. Oct 2004 B1
7118657 Golovchenko et al. Oct 2006 B2
7221164 Barringer May 2007 B1
7277161 Claus Oct 2007 B2
7305869 Berman et al. Dec 2007 B1
7307416 Islam et al. Dec 2007 B2
RE40343 Anderson May 2008 E
7400142 Greelish Jul 2008 B2
7413011 Chee et al. Aug 2008 B1
7427525 Santori et al. Sep 2008 B2
7448548 Compton Nov 2008 B1
7471805 Goldberg Dec 2008 B2
7474090 Islam et al. Jan 2009 B2
7543780 Marshall et al. Jun 2009 B1
7546000 Spillane et al. Jun 2009 B2
7570050 Sugiura Aug 2009 B2
7608820 Berman et al. Oct 2009 B1
7705599 Strack et al. Apr 2010 B2
7805030 Bratkovski et al. Sep 2010 B2
7868702 Ohnishi Jan 2011 B2
7889484 Choi Feb 2011 B2
7916489 Okuya Mar 2011 B2
7983812 Potter Jul 2011 B2
8022693 Meyersweissflog Sep 2011 B2
8120351 Rettig et al. Feb 2012 B2
8120355 Stetson Feb 2012 B1
8138756 Barclay Mar 2012 B2
8193808 Fu et al. Jun 2012 B2
8294306 Kumar et al. Oct 2012 B2
8310251 Orazem Nov 2012 B2
8311767 Stetson Nov 2012 B1
8334690 Kitching et al. Dec 2012 B2
8415640 Babinec et al. Apr 2013 B2
8471137 Adair et al. Jun 2013 B2
8480653 Birchard et al. Jul 2013 B2
8525516 Le Prado et al. Sep 2013 B2
8547090 Lukin et al. Oct 2013 B2
8574536 Boudou et al. Nov 2013 B2
8575929 Wiegert Nov 2013 B1
8686377 Twitchen et al. Apr 2014 B2
8758509 Twitchen et al. Jun 2014 B2
8803513 Hosek et al. Aug 2014 B2
8854839 Cheng et al. Oct 2014 B2
8885301 Heidmann Nov 2014 B1
8913900 Lukin et al. Dec 2014 B2
8933594 Kurs Jan 2015 B2
8947080 Lukin et al. Feb 2015 B2
8963488 Campanella et al. Feb 2015 B2
9103873 Martens et al. Aug 2015 B1
9157859 Walsworth et al. Oct 2015 B2
9245551 El Hallak et al. Jan 2016 B2
9249526 Twitchen et al. Feb 2016 B2
9291508 Biedermann et al. Mar 2016 B1
9369182 Kurs et al. Jun 2016 B2
9442205 Geiser et al. Sep 2016 B2
9541610 Kaup et al. Jan 2017 B2
9551763 Hahn Jan 2017 B1
9557391 Egan et al. Jan 2017 B2
9570793 Borodulin Feb 2017 B2
9590601 Krause et al. Mar 2017 B2
9614589 Russo Apr 2017 B1
9645223 Megdal et al. May 2017 B2
9680338 Malpas et al. Jun 2017 B2
9689679 Budker et al. Jun 2017 B2
9720055 Hahn et al. Aug 2017 B1
9778329 Heidmann Oct 2017 B2
20020144093 Inoue et al. Oct 2002 A1
20020167306 Zalunardo et al. Nov 2002 A1
20030058346 Bechtel et al. Mar 2003 A1
20030076229 Blanpain et al. Apr 2003 A1
20030098455 Amin et al. May 2003 A1
20030235136 Akselrod et al. Dec 2003 A1
20040013180 Giannakis et al. Jan 2004 A1
20040022179 Giannakis et al. Feb 2004 A1
20040042150 Swinbanks et al. Mar 2004 A1
20040081033 Arieli et al. Apr 2004 A1
20040109328 Dahl et al. Jun 2004 A1
20040247145 Luo et al. Dec 2004 A1
20050031840 Swift et al. Feb 2005 A1
20050068249 Frederick du Toit et al. Mar 2005 A1
20050099177 Greelish May 2005 A1
20050112594 Grossman May 2005 A1
20050126905 Golovchenko et al. Jun 2005 A1
20050130601 Palermo et al. Jun 2005 A1
20050134257 Etherington et al. Jun 2005 A1
20050138330 Owens et al. Jun 2005 A1
20050146327 Jakab Jul 2005 A1
20060012385 Tsao et al. Jan 2006 A1
20060054789 Miyamoto et al. Mar 2006 A1
20060055584 Waite et al. Mar 2006 A1
20060062084 Drew Mar 2006 A1
20060071709 Maloberti et al. Apr 2006 A1
20060247847 Carter et al. Nov 2006 A1
20060255801 Ikeda Nov 2006 A1
20060291771 Braunisch et al. Dec 2006 A1
20070004371 Okanobu Jan 2007 A1
20070247147 Xiang et al. Oct 2007 A1
20070273877 Kawano et al. Nov 2007 A1
20080016677 Creighton, IV Jan 2008 A1
20080048640 Hull et al. Feb 2008 A1
20080078233 Larson et al. Apr 2008 A1
20080089367 Srinivasan et al. Apr 2008 A1
20080204004 Anderson Aug 2008 A1
20080217516 Suzuki et al. Sep 2008 A1
20080239265 Den Boef Oct 2008 A1
20080253264 Nagatomi et al. Oct 2008 A1
20080266050 Crouse et al. Oct 2008 A1
20080299904 Yi et al. Dec 2008 A1
20090015262 Strack et al. Jan 2009 A1
20090042592 Cho et al. Feb 2009 A1
20090058697 Aas et al. Mar 2009 A1
20090060790 Okaguchi et al. Mar 2009 A1
20090079417 Mort et al. Mar 2009 A1
20090079426 Anderson Mar 2009 A1
20090132100 Shibata May 2009 A1
20090157331 Van Netten Jun 2009 A1
20090161264 Meyersweissflog Jun 2009 A1
20090195244 Mouget et al. Aug 2009 A1
20090222208 Speck Sep 2009 A1
20090277702 Kanada et al. Nov 2009 A1
20090310650 Chester et al. Dec 2009 A1
20100004802 Bodin et al. Jan 2010 A1
20100015438 Williams et al. Jan 2010 A1
20100015918 Liu et al. Jan 2010 A1
20100045269 LaFranchise et al. Feb 2010 A1
20100071904 Burns et al. Mar 2010 A1
20100102809 May Apr 2010 A1
20100134922 Yamada et al. Jun 2010 A1
20100157305 Henderson Jun 2010 A1
20100188081 Lammegger Jul 2010 A1
20100237149 Olmstead Sep 2010 A1
20100271016 Barclay et al. Oct 2010 A1
20100277121 Hall et al. Nov 2010 A1
20100308813 Lukin et al. Dec 2010 A1
20100315079 Lukin et al. Dec 2010 A1
20100326042 McLean et al. Dec 2010 A1
20110034393 Justen et al. Feb 2011 A1
20110059704 Norimatsu et al. Mar 2011 A1
20110062957 Fu et al. Mar 2011 A1
20110063957 Isshiki et al. Mar 2011 A1
20110066379 Mes Mar 2011 A1
20110120890 MacPherson et al. May 2011 A1
20110127999 Lott et al. Jun 2011 A1
20110165862 Yu et al. Jul 2011 A1
20110176563 Friel et al. Jul 2011 A1
20110243267 Won et al. Oct 2011 A1
20110270078 Wagenaar et al. Nov 2011 A1
20110315988 Yu et al. Dec 2011 A1
20120016538 Waite et al. Jan 2012 A1
20120019242 Hollenberg et al. Jan 2012 A1
20120037803 Strickland Feb 2012 A1
20120044014 Stratakos et al. Feb 2012 A1
20120051996 Scarsbrook et al. Mar 2012 A1
20120063505 Okamura et al. Mar 2012 A1
20120087449 Ling et al. Apr 2012 A1
20120089299 Breed Apr 2012 A1
20120140219 Cleary Jun 2012 A1
20120181020 Barron et al. Jul 2012 A1
20120194068 Cheng et al. Aug 2012 A1
20120203086 Rorabaugh et al. Aug 2012 A1
20120232838 Kemppi et al. Sep 2012 A1
20120235633 Kesler et al. Sep 2012 A1
20120235634 Hall et al. Sep 2012 A1
20120245885 Kimishima Sep 2012 A1
20120257683 Schwager et al. Oct 2012 A1
20120281843 Christensen et al. Nov 2012 A1
20120326793 Gan Dec 2012 A1
20130043863 Ausserlechner et al. Feb 2013 A1
20130093424 Blank et al. Apr 2013 A1
20130127518 Nakao May 2013 A1
20130179074 Haverinen Jul 2013 A1
20130215712 Geiser et al. Aug 2013 A1
20130223805 Ouyang et al. Aug 2013 A1
20130265042 Kawabata et al. Oct 2013 A1
20130265782 Barrena et al. Oct 2013 A1
20130270991 Twitchen et al. Oct 2013 A1
20130279319 Matozaki et al. Oct 2013 A1
20140012505 Smith et al. Jan 2014 A1
20140037932 Twitchen et al. Feb 2014 A1
20140044208 Woodsum Feb 2014 A1
20140061510 Twitchen et al. Mar 2014 A1
20140070622 Keeling et al. Mar 2014 A1
20140072008 Faraon et al. Mar 2014 A1
20140077231 Twitchen et al. Mar 2014 A1
20140081592 Bellusci et al. Mar 2014 A1
20140104008 Gan Apr 2014 A1
20140126334 Megdal et al. May 2014 A1
20140139322 Wang et al. May 2014 A1
20140154792 Moynihan et al. Jun 2014 A1
20140159652 Hall et al. Jun 2014 A1
20140166904 Walsworth et al. Jun 2014 A1
20140167759 Pines et al. Jun 2014 A1
20140168174 Idzik et al. Jun 2014 A1
20140180627 Naguib et al. Jun 2014 A1
20140191139 Englund Jul 2014 A1
20140191752 Walsworth et al. Jul 2014 A1
20140198463 Klein Jul 2014 A1
20140210473 Campbell et al. Jul 2014 A1
20140215985 Pollklas Aug 2014 A1
20140225606 Endo et al. Aug 2014 A1
20140247094 Englund et al. Sep 2014 A1
20140265555 Hall et al. Sep 2014 A1
20140272119 Kushalappa et al. Sep 2014 A1
20140273826 Want et al. Sep 2014 A1
20140291490 Hanson et al. Oct 2014 A1
20140297067 Malay Oct 2014 A1
20140306707 Walsworth et al. Oct 2014 A1
20140327439 Cappellaro et al. Nov 2014 A1
20140335339 Dhillon et al. Nov 2014 A1
20140340085 Cappellaro et al. Nov 2014 A1
20140368191 Goroshevskiy et al. Dec 2014 A1
20150001422 Englund et al. Jan 2015 A1
20150009746 Kucsko et al. Jan 2015 A1
20150018018 Shen et al. Jan 2015 A1
20150022404 Chen et al. Jan 2015 A1
20150048822 Walsworth et al. Feb 2015 A1
20150054355 Ben-Shalom et al. Feb 2015 A1
20150061590 Widmer et al. Mar 2015 A1
20150090033 Budker et al. Apr 2015 A1
20150128431 Kuo May 2015 A1
20150137793 Englund et al. May 2015 A1
20150153151 Kochanski Jun 2015 A1
20150192532 Clevenson Jul 2015 A1
20150192596 Englund et al. Jul 2015 A1
20150225052 Cordell Aug 2015 A1
20150235661 Heidmann Aug 2015 A1
20150253355 Grinolds et al. Sep 2015 A1
20150268373 Meyer Sep 2015 A1
20150269957 El Hallak et al. Sep 2015 A1
20150276897 Leussler et al. Oct 2015 A1
20150299894 Markham et al. Oct 2015 A1
20150303333 Yu et al. Oct 2015 A1
20150314870 Davies Nov 2015 A1
20150326030 Malpas et al. Nov 2015 A1
20150326410 Krause et al. Nov 2015 A1
20150374250 Hatano et al. Dec 2015 A1
20150377865 Acosta et al. Dec 2015 A1
20150377987 Menon et al. Dec 2015 A1
20160031339 Geo Feb 2016 A1
20160036529 Griffith et al. Feb 2016 A1
20160052789 Gaathon et al. Feb 2016 A1
20160071532 Heidmann Mar 2016 A9
20160077167 Heidmann Mar 2016 A1
20160097702 Zhao et al. Apr 2016 A1
20160113507 Reza et al. Apr 2016 A1
20160139048 Heidmann May 2016 A1
20160146904 Stetson et al. May 2016 A1
20160161429 Englund et al. Jun 2016 A1
20160214714 Sekelsky Jul 2016 A1
20160216304 Sekelsky Jul 2016 A1
20160216340 Egan et al. Jul 2016 A1
20160216341 Boesch et al. Jul 2016 A1
20160221441 Hall et al. Aug 2016 A1
20160223621 Kaup et al. Aug 2016 A1
20160231394 Manickam et al. Aug 2016 A1
20160266220 Sushkov et al. Sep 2016 A1
20160282427 Heidmann Sep 2016 A1
20160291191 Fukushima et al. Oct 2016 A1
20160313408 Hatano et al. Oct 2016 A1
20160348277 Markham et al. Dec 2016 A1
20160356863 Boesch et al. Dec 2016 A1
20170010214 Osawa et al. Jan 2017 A1
20170010334 Krause et al. Jan 2017 A1
20170010338 Bayat et al. Jan 2017 A1
20170010594 Kottapalli et al. Jan 2017 A1
20170023487 Boesch Jan 2017 A1
20170038314 Suyama et al. Feb 2017 A1
20170068012 Fisk Mar 2017 A1
20170074660 Gann et al. Mar 2017 A1
20170075020 Gann et al. Mar 2017 A1
20170104426 Mills Apr 2017 A1
20170138735 Cappellaro et al. May 2017 A1
20170199156 Villani et al. Jul 2017 A1
20170205526 Meyer Jul 2017 A1
20170207823 Russo et al. Jul 2017 A1
20170211947 Fisk Jul 2017 A1
20170212046 Cammerata Jul 2017 A1
20170212177 Coar et al. Jul 2017 A1
20170212178 Hahn et al. Jul 2017 A1
20170212179 Hahn et al. Jul 2017 A1
20170212180 Hahn et al. Jul 2017 A1
20170212181 Coar et al. Jul 2017 A1
20170212182 Hahn et al. Jul 2017 A1
20170212183 Egan et al. Jul 2017 A1
20170212184 Coar et al. Jul 2017 A1
20170212185 Hahn et al. Jul 2017 A1
20170212186 Hahn et al. Jul 2017 A1
20170212187 Hahn et al. Jul 2017 A1
20170212190 Reynolds et al. Jul 2017 A1
20170212258 Fisk Jul 2017 A1
Foreign Referenced Citations (102)
Number Date Country
105738845 Jul 2016 CN
69608006 Feb 2001 DE
19600241 Aug 2002 DE
10228536 Jan 2003 DE
0 161 940 Dec 1990 EP
0 718 642 Jun 1996 EP
0 726 458 Aug 1996 EP
1 505 627 Feb 2005 EP
1 685 597 Aug 2006 EP
1 990 313 Nov 2008 EP
2 163 392 Mar 2010 EP
2 495 166 Sep 2012 EP
2 587 232 May 2013 EP
2 705 179 Mar 2014 EP
2 707 523 Mar 2014 EP
2 745 360 Jun 2014 EP
2 769 417 Aug 2014 EP
2 790 031 Oct 2014 EP
2 837 930 Feb 2015 EP
2 907 792 Aug 2015 EP
2 433 737 Jul 2007 GB
2423366 Aug 2008 GB
2 482 596 Feb 2012 GB
2 483 767 Mar 2012 GB
2 486 794 Jun 2012 GB
2 490 589 Nov 2012 GB
2 491 936 Dec 2012 GB
2 493 236 Jan 2013 GB
2 495 632 Apr 2013 GB
2 497 660 Jun 2013 GB
2 510 053 Jul 2014 GB
2 515 226 Dec 2014 GB
2 522 309 Jul 2015 GB
2 526 639 Dec 2015 GB
3782147 Jun 2006 JP
4800896 Oct 2011 JP
2012-103171 May 2012 JP
2012-110489 Jun 2012 JP
2012-121748 Jun 2012 JP
2013-028497 Feb 2013 JP
5476206 Apr 2014 JP
5522606 Jun 2014 JP
5536056 Jul 2014 JP
5601183 Oct 2014 JP
2014-215985 Nov 2014 JP
2014-216596 Nov 2014 JP
2015-518562 Jul 2015 JP
5764059 Aug 2015 JP
2015-167176 Sep 2015 JP
2015-529328 Oct 2015 JP
5828036 Dec 2015 JP
5831947 Dec 2015 JP
WO-8704028 Jul 1987 WO
WO-8804032 Jun 1988 WO
WO-9533972 Dec 1995 WO
WO-2011046403 Apr 2011 WO
WO-2011153339 Dec 2011 WO
WO-2012016977 Feb 2012 WO
WO-2012084750 Jun 2012 WO
WO-2013059404 Apr 2013 WO
WO-2013066446 May 2013 WO
WO-2013066448 May 2013 WO
WO-2013093136 Jun 2013 WO
WO-2013188732 Dec 2013 WO
WO-2013190329 Dec 2013 WO
WO-2014011286 Jan 2014 WO
WO-2014099110 Jun 2014 WO
WO-2014135544 Sep 2014 WO
WO-2014135547 Sep 2014 WO
WO-2014166883 Oct 2014 WO
WO-2014210486 Dec 2014 WO
WO-2015015172 Feb 2015 WO
WO-2015142945 Sep 2015 WO
WO-2015157110 Oct 2015 WO
WO-2015157290 Oct 2015 WO
WO-2015158383 Oct 2015 WO
WO-2015193156 Dec 2015 WO
WO-2016075226 May 2016 WO
WO-2016118756 Jul 2016 WO
WO-2016118791 Jul 2016 WO
WO-2016122965 Aug 2016 WO
WO-2016122966 Aug 2016 WO
WO-2016126435 Aug 2016 WO
WO-2016126436 Aug 2016 WO
WO-2016190909 Dec 2016 WO
WO-2017007513 Jan 2017 WO
WO-2017007514 Jan 2017 WO
WO-2017014807 Jan 2017 WO
WO-2017039747 Mar 2017 WO
WO-2017095454 Jun 2017 WO
WO-2017127079 Jul 2017 WO
WO-2017127080 Jul 2017 WO
WO-2017127081 Jul 2017 WO
WO-2017127085 Jul 2017 WO
WO-2017127090 Jul 2017 WO
WO-2017127091 Jul 2017 WO
WO-2017127093 Jul 2017 WO
WO-2017127094 Jul 2017 WO
WO-2017127095 Jul 2017 WO
WO-2017127096 Jul 2017 WO
WO-2017127097 Jul 2017 WO
WO-2017127098 Jul 2017 WO
Non-Patent Literature Citations (380)
Entry
“‘Diamond Sensors, Detectors, and Quantum Devices’ in Patent Application Approval Process,” Chemicals & Chemistry (Feb. 28, 2014).
“Findings from University of Stuttgart in physics reported,” Physics Week (Jul. 7, 2009).
“New Findings on Nitrogen from Ecole Normale Superieure Summarized (Magnetic imaging with an ensemble of nitrogen vacancy-centers in diamond),” Physics Week (Jul. 21, 2015).
“Patent Issued for Diamond Sensors, Detectors, and Quantum Devices (U.S. Pat. No. 9,249,526),” Journal of Engineering (Feb. 15, 2016).
“Researchers Submit Patent Application, ‘Diamond Sensors, Detectors, and Quantum Devices’, for Approval,” Chemicals & Chemistry (Apr. 11, 2014).
Acosta, “Optical Magnetometry with Nitrogen-Vacancy Centers in Diamond,” University of California Berkeley, 2011.
Acosta, et al., “Diamonds with a high density of nitrogen-vacancy centers for magnetometry applications,” Physical Review B, Sep. 2009.
Acosta, et al., “Nitrogen-vacancy centers: physics and applications,” MRS Bulletin, 2013.
Aiello, et al., “Composite-pulse magnetometry with a solid-state quantum sensor,” Nature Communications, Jan. 2013.
Alam, “Solid-state C-13 magic angle spinning NMR spectroscopy characterization of particle size structural variations in synthetic nanodiamonds,” Materials Chemistry and Physics, Jun. 2004.
Albrecht, et al., “Coupling of nitrogen vacancy centres in nanodiamonds by means of phonons,” New Journal of Physics, Aug. 2013.
Anthony, et al., “Jahn-Teller Splitting and Zeeman Effect of Acceptors in Diamond,” 20th International Conference on Defects in Semiconductors, Jul. 1999.
Appel, et al., “Nanoscale microwave imaging with a single electron spin in diamond,” New Journal of Physics, Nov. 2015.
Arai, et al., “Fourier magnetic imaging with nanoscale resolution and compressed sensing speed-up using electronic spins in diamond,” Nature Nanotechnology, Oct. 2015.
Aslam, et al., “Single spin optically detected magnetic resonance with 60-90 GHz (E-band) microwave resonators,” Review of Scientific Instruments, Jun. 2015.
Awschalom, et al., “Diamond age of spintronics,” Scientific American, Oct. 2007.
Babamoradi, et al., “Correlation between entanglement and spin density in nitrogen-vacancy center of diamond,” European Physical Journal D, Dec. 2011.
Babunts, et al., “Diagnostics of NV defect structure orientation in diamond using optically detected magnetic resonance with a modulated magnetic field,” Technical Physics Letters, Jun. 2015.
Babunts, et al., “Temperature-scanned magnetic resonance and the evidence of two-way transfer of a nitrogen nuclear spin hyperfine interaction in coupled NV-N pairs in diamond,” JETP Letters, Jun. 2012.
Bagguley, et al., “Zeeman effect of acceptor states in semiconducting diamond,” Journal of the Physical Society of Japan, 1966.
Balasubramanian, et al., “Nanoscale imaging magnetometry with diamond spins under ambient conditions,” Nature, Oct. 2008.
Balmer, et al., “Chemical Vapour deposition synthetic diamond: materials technology and applications,” J. of Physics, 2009.
Baranov, et al., “Enormously High Concentrations of Fluorescent Nitrogen-Vacancy Centers Fabricated by Sintering of Detonation Nanodiamonds,” Small, Jun. 2011.
Barfuss, et al., “Strong mechanical driving of a single electron spin,” Nature Physics, Oct. 2015.
Bennett, et al., “CVD Diamond for High Power Laser Applications,” Proceedings of SPIE, Jan. 2013.
Berman & Chernobrod, “Single-spin microscope with sub-nanoscale resolution based on optically detected magnetic resonance,” Proceedings of SPIE, May 2010.
Berman, et al. “Measurement of single electron and nuclear spin states based on optically detected magnetic resonance,” J. Physics: Conf. Series 38: 167-170 (2006).
Blakley, et al., “Room-temperature magnetic gradiometry with fiber-coupled nitrogen-vacancy centers in diamond,” Optics Letters, Aug. 2015.
Bourgeois, et al., “Photoelectric detection of electron spin resonance of nitrogen-vacancy centres in diamond,” Nature Communications, Oct. 2015.
Budker & Kimball, “Optical Magnetometry,” Cambridge Press, 2013.
Budker & Romalis, “Optical Magnetometry,” Nature Physics, 2007.
Casanova, et al., “Effect of magnetic field on phosphorus centre in diamond,” Physica Status Solidi A, Jul. 2001.
Castelletto, et al., “Frontiers in diffraction unlimited optical methods for spin manipulation, magnetic field sensing and imaging using diamond nitrogen vacancy defects,” Nanophotonics, 2012.
Chapman, et al., “Anomalous saturation effects due to optical spin depolarization in nitrogen-vacancy centers in diamond nanocrystals,” Physical Review B, Jul. 2012.
Chen, et al., “Vector magnetic field sensing by a single nitrogen vacancy center in diamond,” EPL, Mar. 2013.
Chernobrod, et al., “Improving the sensitivity of frequency modulation spectroscopy using nanomechanical cantilevers,” Applied Physics Letters, 2004.
Chernobrod, et al., “Spin Microscope Based on Optically Detected Magnetic Resoncance,” Journal of Applied Physics, 2005.
Childress, et al., “Coherent dynamics of coupled electron and nuclear spin qubits in diamond,” Science, 2006.
Chipaux, et al., “Magnetic imaging with an ensemble of nitrogen vacancy-centers in diamond,” European Physical Journal D, Jul. 2015.
Chipaux, et al., “Nitrogen vacancies (NV) centers in diamond for magnetic sensors and quantum sensing,” Proceedings of SPIE, Jan. 2015.
Chipaux, et al., “Wide bandwidth instantaneous radio frequency spectrum analyzer based on nitrogen vacancy centers in diamond,” Applied Physics Letters, Dec. 2015.
Clevenson, et al., “Broadband magnetometry and temperature sensing with a light-trapping diamond waveguide,” Nature Physics, May 2015.
Cooper, et al., “Time-resolved magnetic sensing with electronic spins in diamond,” Nature Communications, Jan. 2014.
Creedon, et al., “Strong coupling between P1 diamond impurity centers and a three-dimensional lumped photonic microwave cavity,” Physical Review B, Apr. 2015.
Davies, “Current problems in diamond: towards a quantitative understanding,” Physica B—Condensed Matter, Dec. 1999.
De Lange, et al., “Single-Spin Magnetometry with Multipulse Sensing Sequences,” Physical Review Letters, Feb. 2011.
Degen, “Scanning magnetic field microscope with a diamond single-spin sensor ,” Applied Physics Letters, 2008.
Delacroix, et al., “Design, manufacturing, and performance analysis of mid-infrared achromatic half-wave plates with diamond subwavelength gratings,” Applied Optics, 2012.
Denatale, et al., “Fabrication and characterization of diamond moth eye antireflective surfaces on Ge,” J. of Applied Physics, 1982.
Dobrovitski, et al., “Quantum Control over Single Spins in Diamond,” Annual Review of Condensed Matter Physics vol. 4, 2013.
Doherty, et al., “The nitrogen-vacancy colour centre in diamond,” Physics Reports, Jul. 2013.
Doherty, et al., “Theory of the ground-state spin of the NV-center in diamond,” Physical Review B, May 2012.
Doi, et al., “Pure negatively charged state of the NV center in n-type diamond,” Physical Review B, Feb. 2016.
Drake, et al., “Influence of magnetic field alignment and defect concentration on nitrogen-vacancy polarization in diamond,” New Journal of Physics, Jan. 2016.
Dreau, et al., “Avoiding power broadening in optically detected magnetic resonance of single NV defects for enhanced dc magnetic field sensitivity,” Physical Review B, Nov. 2011.
Dreau, et al., “High-resolution spectroscopy of single NV defects coupled with nearby C-13 nuclear spins in diamond,” Physical Review B, Apr. 2012.
Dumeige, et al., “Magnetometry with nitrogen-vacancy ensembles in diamond based on infrared absorption in a doubly resonant optical cavity,” Physical Review B, Apr. 2013.
Epstein, et al., “Anisotropic interactions of a single spin and dark-spin spectroscopy in diamond,” Center for Spintronics and Quantum Computation, 2005.
Fedotov, et al., “High-resolution magnetic field imaging with a nitrogen-vacancy diamond sensor integrated with a photonic-crystal fiber,” Optics Letters, Feb. 2016.
Fedotov, et al., “Photonic-crystal-fiber-coupled photoluminescence interrogation of nitrogen vacancies in diamond nanoparticles,” Laser Physics Letters, Feb. 2012.
Feng & Wei, “A steady-state spectral method to fit microwave absorptions of NV centers in diamonds: application to sensitive magnetic field sensing,” Measurement Science & Technology, Oct. 2014.
Freitas, et al., “Solid-State Nuclear Magnetic Resonance (NMR) Methods Applied to the Study of Carbon Materials,” Chemistry and Physics of Carbon, vol. 31, 2012.
Geiselmann, et al., “Fast optical modulation of the fluorescence from a single nitrogen-vacancy centre,” Nature Physics, Dec. 2013.
Gombert & Blasi, “The Moth-Eye Effect—From Fundamentals to Commercial Exploitation,” Functional Properties of Bio-Inspired Surfaces, Nov. 2009.
Gong, et al., “Generation of Nitrogen-Vacancy Center Pairs in Bulk Diamond by Molecular Nitrogen Implantation,” Chinese Physics Letters, Feb. 2016.
Gould, et al., “An imaging magnetometer for bio-sensing based on nitrogen-vacancy centers in diamond,” Proceedings of the SPIE—Progress in Biomedical Optics and Imaging, 2014.
Gould, et al., “Room-temperature detection of a single 19 nm super-paramagnetic nanoparticle with an imaging magnetometer,” Applied Physics Letters, Aug. 2014.
Gruber, et al., “Scanning confocal optical microscopy and magnetic resonance on single defect centers,” Science, Jun. 1997.
Haeberle, et al., “Nanoscale nuclear magnetic imaging with chemical contrast,” Nature Nanotechnology, Feb. 2015.
Haihua, et al., “Design of wideband anti-reflective sub wavelength nanostructures,” Infrared and Laser Engineering, 2011.
Hall, et al., “Sensing of Fluctuating Nanoscale Magnetic Fields Using Nitrogen-Vacancy Centers in Diamond,” Physical Review Letters, Nov. 2009.
Hanson, et al., “Coherent Dynamics of a single spin interacting with an adjustable spin bath,” Sci. Am. Ass'n for the Advancement of Science, 2008.
Hanson, et al., “Polarization and Readout of Coupled Single Spins in Diamond,” Physical Review Letters, 2006.
Hanson, et al., “Room-temperature manipulation and decoherence of a single spin in diamond,” Physical Review, 2006.
Hanzawa, et al., “Zeeman effect on the zero-phonon line of the NV center in synthetic diamond,” Physica B, Feb. 1993.
Hegyi & Yablonovitch, “Molecular imaging by optically detected electron spin resonance of nitrogen-vacancies in nanodiamonds,” Nano Letters, Mar. 2013.
Hegyi & Yablonovitch, “Nanodiamond molecular imaging with enhanced contrast and expanded field of view,” Journal of Biomedical Optics, Jan. 2014.
Hilser, et al., “All-optical control of the spin state in the NV-center in diamond,” Physical Review B, Sep. 2012.
Hobbs, “Study of the Environmental and Optical Durability of AR Microstructures in Sapphire, ALON, and Diamond,” Proceedings of SPIE, 2009.
Huebener, et al., “ODMR of NV centers in nano-diamonds covered with N@C60,” Physica Status Solidi B, Oct. 2008.
Huxter, et al., “Vibrational and electronic dynamics of nitrogen-vacancy centres in diamond revealed by two-dimensional ultrafast spectroscopy,” Nature Physics, Nov. 2013.
Ivady, et al., “Pressure and temperature dependence of the zero-field splitting in the ground state of NV centers in diamond: A first-principles study,” Physical Review B, Dec. 2014.
Jarmola, et al., “Temperature- and Magnetic-Field-Dependent Longitudinal Spin Relaxation in Nitrogen-Vacancy Ensembles in Diamond,” Physical Review Letters, May 2012.
Jensen, et al., “Light narrowing of magnetic resonances in ensembles of nitrogen-vacancy centers in diamond,” Physical Review, Jan. 2013.
Kailath, “Linear Systems,” Prentice Hall, 1979.
Karlsson, et al., “Diamond micro-optics: microlenses and antireflection structures surfaces for the infrared spectral region,” Optics Express, 2003.
Khan & Hemmer, “Noise limitation in nano-scale imaging,” Proceedings of SPIE, Dec. 2005.
Kim, et al., “Electron spin resonance shift and linewidth broadening of nitrogen-vacancy centers in diamond as a function of electron irradiation dose,” Applied Physics Letters, Aug. 2012.
Kim, et al., “Magnetospectroscopy of acceptors in ‘blue’ diamonds,” Physica B, Aug. 2001.
Kim, et al., “Zeeman effect of electronic Raman lines of accepters in elemental semiconductors: Boron in blue diamond,” Physical Review B, Sep. 2000.
King, et al., “Optical polarization of 13C nuclei in diamond through nitrogen vacancy centers,” Physical Review B, Feb. 2010.
Kok, et al., “Materials Science: Qubits in the pink,” Nature, 2006.
Konenko, et al., “Formation of antireflective surface structures on diamond films by laser patterning,” Applied Physics A, 1999.
Kraus, et al., “Magnetic field and temperature sensing with atomic-scale spin defects in silicon carbide,” Scientific Reports, Jul. 2014.
Lai, et al., “Influence of a static magnetic field on the photoluminescence of an ensemble of nitrogen-vacancy color centers in a diamond single-crystal,” Applied Physics Letters, Sep. 2009.
Lai, et al., “Optically detected magnetic resonance of a single Nitrogen-Vacancy electronic spin in diamond nanocrystals,” CLEO/EQEC, 2009.
Laraoui, et al., “Nitrogen-vacancy-assisted magnetometry of paramagnetic centers in an individual diamond nanocrystal,” Nano Letters, Jul. 2012.
Lazariev, et al., “A nitrogen-vacancy spin based molecular structure microscope using multiplexed projection reconstruction,” Scientific Reports, Sep. 2015.
Lee, et al., “Vector magnetometry based on S=3/2 electronic spins,” Physical Review B, Sep. 2015.
Lesik, et al., “Preferential orientation of NV defects in CVD diamond films grown on (113)-oriented substrates,” Diamond and Related Materials, Jun. 2015.
Levchenko, et al., “Inhomogeneous broadening of optically detected magnetic resonance of the ensembles of nitrogen-vacancy centers in diamond by interstitial carbon atoms,” Applied Physics Letters, Mar. 2015.
Liu, et al., “Electron spin studies of nitrogen vacancy centers in nanodiamonds,” Acta Physica Sinica, Aug. 2013.
Liu, et al., “Fiber-integrated diamond-based magnetometer,” Applied Physics Letters, Sep. 2013.
Maclaurin, et al., “Nanoscale magnetometry through quantum control of nitrogen-vacancy centres in rotationally diffusing nanodiamonds,” New Journal of Physics, Jan. 2013.
Macs, et al., “Diamond as a magnetic field calibration probe,” Journal of Physics D: Applied Physics, Apr. 2004.
Maletinsky, et al., “A robust scanning diamond sensor for nanoscale imaging with single nitrogen-vacancy centres,” Nature Nanotechnology, May 2012.
Mamin, et al., “Multipulse Double-Quantum Magnetometry with Near-Surface Nitrogen-Vacancy Centers,” Physical Review Letters, Jul. 2014.
Mamin, et al., “Nanoscale Nuclear Magnetic Resonance with a Nitrogen-Vacancy Spin Sensor,” Science, Feb. 2013.
Manson, et al., “GR transitions in diamond: magnetic field measurements,” Journal of Physics C, Nov. 1980.
Massachusetts Institute of Technology; “Wide-Field Imaging Using Nitrogen Vacancies” in Patent Application Approval Process, Physics Week (2015).
Matsuda, et al., “Development of a plastic diamond anvil cell for high pressure magneto-photoluminescence in pulsed high magnetic fields,” International Journal of Modern Physics B, Nov. 2004.
Maze et al., “Nanoscale magnetic sensing with an individual electronic spin in diamond,” Nature Physics (2008).
Maze, et al., “Nanoscale magnetic sensing using spin qubits in diamond,” Nature Physics, 2009.
Meijer, et al., “Generation of single color centers by focused nitrogen implantation,” Applied Physics Letters, Dec. 2005.
Millot, et al., “High-field Zeeman and paschen-back effects at high pressure in oriented ruby,” Physical Review B, Oct. 2008.
Moriyama, et al., “Importance of electron-electron interactions and Zeeman splitting in single-wall carbon nanotube quantum dots,” Physica E, Feb. 2005.
Mrozek, et al., “Circularly polarized microwaves for magnetic resonance study in the GHz range: Application to nitrogen-vacancy in diamonds,” Applied Physics Letters, Jul. 2015.
Nagl, et al., “Improving surface and defect center chemistry of fluorescent nanodiamonds for imaging purposes—a review,” Analytical and Bioanalaytical Chemistry, Oct. 2015.
Neumann, et al., “Excited-state spectroscopy of single NV defects in diamond using optically detected magnetic resonance,” New Journal of Physics, Jan. 2009.
Nizovtsev & Kilin, “Optically Detected Magnetic Resonance Spectra of the 14NV-13C Spin Systems in Diamond: Analytical Theory and Experiment,” Doklady of the National Academy of Sciences of Belarus, 2013.
Nizovtsev, et al., “Modeling fluorescence of single nitrogen-vacancy defect centers in diamond,” Physica B—Condensed Matter, Dec. 2001.
Nizovtsev, et al., “Theoretical study of hyperfine interactions and optically detected magnetic resonance spectra by simulation of the C-291(NV)H—(172) diamond cluster hosting nitrogen-vacancy center,” New Journal of Physics, Aug. 2014.
Nowodzinski, et al., “Nitrogen-Vacancy centers in diamond for current imaging at the redistributive layer level of Integrated Circuits,” Microelectronics Reliability, Aug. 2015.
Nusran, et al., “Optimizing phase-estimation algorithms for diamond spin magnetometry,” Physical Review B, Jul. 2014.
Ohashi, et al., “Negatively Charged Nitrogen-Vacancy Centers in a 5 nm Thin C-12 Diamond Film,” Nano Letters, Oct. 2013.
Plakhotnik, et al., “Super-Paramagnetic Particles Chemically Bound to Luminescent Diamond : Single Nanocrystals Probed with Optically Detected Magnetic Resonance,” Journal of Physical Chemistry C, Aug. 2015.
Rabeau, et al., “Implantation of labelled single nitrogen vacancy centers in diamond using N-15,” Applied Physics Letters, Jan. 2006.
Ranjbar, et al., “Many-electron states of nitrogen-vacancy centers in diamond and spin density calculations,” Physical Review B, Oct. 2011.
Reynhardt, “Spin-lattice relaxation of spin-1/2 nuclei in solids containing diluted paramagnetic impurity centers. I. Zeeman polarization of nuclear spin system,” Concepts in Magnetic Resonance Part A, Sep. 2003.
Rogers, et al., “Singlet levels of the NV(−) centre in diamond,” New Journal of Physics, Jan. 2015.
Rondin, et al., “Magnetometry with nitrogen-vacancy defects in diamond,” Reports on Progress in Physics, May 2014.
Rondin, et al., “Nanoscale magnetic field mapping with a single spin scanning probe magnetometer,” Applied Physics Letters, Apr. 2012.
Sarkar, et al., “Magnetic properties of graphite oxide and reduced graphene oxide,” Physica E, 2014.
Scheuer, et al., “Accelerated 2D magnetic resonance spectroscopy of single spins using matrix completion,” Scientific Reports, Dec. 2015.
Schirhagl, et al., “Nitrogen-vacancy centers in diamond: Nanoscale sensors for physics and biology,” Annual Review of Physical Chemistry, Jan. 2014.
Schoenfeld & Harneit, “Real time magnetic field sensing and imaging using a single spin in diamond,” Physical Review Letters, Jan. 2011.
Sedov, et al., “Si-doped nano- and microcrystalline diamond films with controlled bright photoluminescence of silicon-vacancy color centers,” Diamond and Related Materials, Jun. 2015.
Shames, et al., “Magnetic resonance tracking of fluorescent nanodiamond fabrication,” Journal of Physics D: Applied Physics, Apr. 2015.
Simanovskaia, et al., “Sidebands in optically detected magnetic resonance signals of nitrogen vacancy centers in diamond,” Physical Review B, Jun. 2013.
Sotoma, et al., “Effective production of fluorescent nanodiamonds containing negatively-charged nitrogen-vacancy centers by ion irradiation,” Diamond and Related Materials, Oct. 2014.
Steiner, et al., “Universal enhancement of the optical readout fidelity of single electron spins at nitrogen-vacancy centers in diamond,” Physical Review B, Jan. 2010.
Steinert et al., “High-sensitivity magnetic imaging using an array of spins in diamond,” Rev. Sci. Inst. (2010).
Steinert, et al., “High sensitivity magnetic imaging using an array of spins in diamond,” Review of Scientific Instruments, Apr. 2010.
Stepanov, et al., “High-frequency and high-field optically detected magnetic resonance of nitrogen-vacancy centers in diamond,” Applied Physics Letters, Feb. 2015.
Sternschulte, et al., “Uniaxial stress and Zeeman splitting of the 1.681 eV optical center in a homoepitaxial CVD diamond film,” Diamond and Related Materials, Sep. 1995.
Storteboom, et al., “Lifetime investigation of single nitrogen vacancy centres in nanodiamonds,” Optics Express, May 2015.
Tahara, et al., “Quantifying selective alignment of ensemble nitrogen-vacancy centers in (111) diamond,” Applied Physics Letters, Nov. 2015.
Taylor, et al., “High-sensitivity diamond magnetometer with nanoscale resolution,” Nature Physics, Oct. 2008.
Terblanche, et al., “13C spin-lattice relaxation in natural diamond: Zeeman relaxation at 4.7 T and 300 K due to fixed paramagnetic nitrogen defects,” Solid State Nuclear Magnetic Resonance, Aug. 2001.
Terblanche, et al., “13C spin-lattice relaxation in natural diamond: Zeeman relaxation in fields of 500 to 5000 G at 300 K due to fixed paramagnetic nitrogen defects,” Solid State Nuclear Magnetic Resonance, May 2001.
Tetienne, et al., “Magnetic-field-dependent photodynamics of single NV defects in diamond: an application to qualitative all-optical magnetic imaging,” New Journal of Physics, Oct. 2012.
Tong, et al., “A hybrid-system approach for W state and cluster state generation,” Optics Communication 310: 166-172 (2014).
Uhlen, et al., “New Diamond Nanofabrication process for hard x-ray zone plates,” J. of Vacuum Science & Tech. B, 2011.
Vershovskii & Dmitriev, “Combined excitation of an optically detected magnetic resonance in nitrogen-vacancy centers in diamond for precision measurement of the components of a magnetic field vector,” Technical Physics Letters, Nov. 2015.
Vershovskii & Dmitriev, “Micro-scale three-component quantum magnetometer based on nitrogen-vacancy color centers in diamond crystal,” Technical Physics Letters, Apr. 2015.
Wang, et al., “Optimizing ultrasensitive single electron magnetometer based on nitrogen-vacancy center in diamond,” Chinese Science Bulletin, Aug. 2013.
Webber, et al., “Ab initio thermodynamics calculation of the relative concentration of NV- and NV0 defects in diamond,” Physical Review B, Jan. 2012.
Wolf, et al., “Subpicotesla Diamond Magnetometry,” Physical Review X, Oct. 2015.
Wolfe, et al., “Off-resonant manipulation of spins in diamond via precessing magnetization of a proximal ferromagnet,” Physical Review B, May 2014.
Xue & Liu, “Producing GHZ state of nitrogen-vacancy centers in cavity QED,” Journal of Modern Optics, Mar. 2013.
Yang & Gu, “Novel calibration techniques for high pulsed-magnetic fields using luminescence caused by photo,” (with English machine translation), Journal of Huazhong University of Science and Technology, Jun. 2007.
Yavkin, et al., “Defects in Nanodiamonds: Application of High-Frequency cw and Pulse EPR, ODMR,” Applied Magnetic Resonance, Oct. 2014.
Yu, et al., “Bright fluorescent nanodiamonds: no photobleaching and low cytotoxicity,” J. Am. Chem. Soc., 2005.
Zhang, et al., “Laser-polarization-dependent and magnetically controlled optical bistability in diamond nitrogen-vacancy centers,” Physics Letters A, Nov. 2013.
Zhang, et al., “Laser-polarization-dependent spontaneous emission of the zero phonon line from single nitrogen-vacancy center in diamond,” Chinese Physics B, Apr. 2014.
Zhang, et al., “Scalable quantum information transfer between nitrogen-vacancy-center ensembles,” Annals of Physics, Apr. 2015.
Zhao, et al., “Atomic-scale magnetometry of distant nuclear spin clusters via nitrogen-vacancy spin in diamond,” Nature Nanotechnology, Apr. 2011.
Bucher et al, “High Resolution Magnetic Resonance Spectroscopy Using Solid-State Spins”, May 25, 2017, downloaded from https://arxiv.org/ (arXiv.org > quant-ph > arXiv:1705.08887) on May 25, 2017, pp. 1-24.
International Search Report and Written Opinion of the International Searching Authority dated Jun. 1, 2017, from related PCT application PCT/US17/21811, 9 pages.
International Search Report and Written Opinion of the International Searching Authority dated Jun. 1, 2017, in related PCT application PCT/US17/22279, 20 pages.
International Search Report and Written Opinion of the International Searching Authority dated Jun. 15, 2017, from related PCT application PCT/US2017/024175, 10 pages.
International Search Report and Written Opinion of the International Searching Authority dated Jun. 9, 2017, from related patent application PCT/US2017/024181, 13 pages.
International Search Report and Written Opinion of the International Searching Authority dated Jun. 9, 2017, from related PCT application PCT/US2017/024179, 9 pages.
International Search Report and Written Opinion of the International Searching Authority dated Jul. 14, 2017, from related PCT application PCT/US2017/022118, 13 pages.
International Search Report and Written Opinion of the International Searching Authority dated Jul. 17, 2017, from related PCT application PCT/US2017/024177, 11 pages.
International Search Report and Written Opinion of the International Searching Authority dated Jul. 18, 2017, from related PCT application PCT/US2017/024167, 11 pages.
International Search Report and Written Opinion of the International Searching Authority dated Jul. 18, 2017, from related PCT application PCT/US2017/024173, 13 pages.
International Search Report and Written Opinion of the International Searching Authority dated Jul. 19, 2017, from related PCT application PCT/US2017/024171, 12 pages.
International Search Report and Written Opinion of the International Searching Authority dated Jun. 15, 2017, from related PCT application PCT/US2017/024182, 21 pages.
International Search Report and Written Opinion of the International Searching Authority dated Jun. 22, 2017, in related PCT application PCT/US2017/024180, 10 pages.
International Search Report and Written Opinion of the International Searching Authority dated Jun. 5, 2017, from related PCT application PCT/US2017/024169, 11 pages.
International Search Report and Written Opinion of the International Searching Authority dated Jun. 5, 2017, from related PCT application PCT/US2017/024174, 8 pages.
International Search Report and Written Opinion of the International Searching Authority dated Jun. 5, 2017, in related PCT application PCT/US2017/024168, 7 pages.
International Search Report and Written Opinion of the International Searching Authority dated Jun. 6, 2017, from related PCT application PCT/2017/024165, 9 pages.
International Search Report and Written Opinion of the International Searching Authority dated Jun. 6, 2017, from related PCT application PCT/US2017/024172, 9 pages.
Michaelovich et al., “Polarization Dependencies of the Nitrogen-Vacancy Center.” Undergraduate Project Report, Ben-Gurion University, Aug. 2015, pp. 1-9.
Notice of Allowance dated Jun. 8, 2017, from related U.S. Appl. No. 15/351,862, 7 pages.
Sheinker et al., “Localization in 3-D Using Beacons of Low Frequency Magnetic Field.” IEEE Transactions on Instrumentation and Measurement 62(12): 3194-3201 (Dec. 2013), 8 pages.
U.S. Notice of Allowance dated Aug. 11, 2017 from related U.S. Appl. No. 15/003,558, 5 pages.
U.S. Notice of Allowance dated Jul. 18, 2017 from related U.S. Appl. No. 15/003,634, 6 pages.
U.S. Notice of Allowance dated Jul. 24, 2017 from related U.S. Appl. No. 15/003,088, 12 pages.
U.S. Notice of Allowance dated Jun. 20, 2017, from related U.S. Appl. No. 15/204,675, 9 pages.
U.S. Notice of Allowance dated Jun. 28, 2017 from related U.S. Appl. No. 15/003,256, 10 pages.
U.S. Office Action dated Aug. 15, 2017 from related U.S. Appl. No. 15/003,281, 12 pages.
U.S. Office Action dated Jul. 27, 2017 from related U.S. Appl. No. 15/003,577, 15 pages.
U.S. Office Action dated Jun. 1, 2017, from related U.S. Appl. No. 15/003,797, 29 pages.
U.S. Office Action dated Jun. 1, 2017, from related U.S. Appl. No. 15/179,957, 29 pages.
U.S. Office Action dated Jun. 12, 2017, from related U.S. Appl. No. 15/003,256, 9 pages.
U.S. Office Action dated Jun. 12, 2017, from related U.S. Appl. No. 15/003,336, 14 pages.
U.S. Office Action dated Jun. 16, 2017, from related U.S. Appl. No. 15/003,678, 15 pages.
U.S. Office Action dated Jun. 2, 2017, from related U.S. Appl. No. 15/476,636, 10 pages.
Wroble, “Performance Analysis of Magnetic Indoor Local Positioning System.” Western Michigan University Master's Theses, Paper 609 (Jun. 2015), 42 pages.
U.S. Notice of Allowance dated Oct. 19, 2017, from related U.S. Appl. No. 15/179,957, 5 pages.
U.S. Notice of Allowance dated Oct. 23, 2017, from related U.S. Appl. No. 15/003,797, 6 pages.
U.S. Office Action dated Nov. 24, 2017, from related U.S. Appl. No. 15/003,145, 14 pages.
U.S. Office Action dated Nov. 27, 2017, from related U.S. Appl. No. 15/468,386, 28 pages.
International Search Report and Written Opinion from related PCT application PCT/US2017/035315 dated Aug. 24, 2017, 7 pages.
Ramsey, et al., “Phase Shifts in the Molecular Beam Method of Separated Oscillating Fields”, Physical Review, vol. 84, No. 3, Nov. 1, 1951, pp. 506-507.
U.S. Notice of Allowance on U.S. Appl. No. 14/676,740 dated Sep. 1, 2017, 7 pages.
U.S. Notice of Allowance on U.S. Appl. No. 15/003,206 dated Sep. 18, 2017, 11 pages.
U.S. Notice of Allowance on U.S. Appl. No. 15/003,281 dated Sep. 26, 2017, 7 pages.
U.S. Notice of Allowance on U.S. Appl. No. 15/476,636 dated Sep. 14, 2017, 10 pages.
U.S. Office Action on U.S. Appl. No. 15/003,292 dated Sep. 8, 2017, 8 pages.
Brenneis, et al. “Ultrafast electronic readout of diamond nitrogen-vacancy centres coupled to graphene.” Nature nanotechnology 10.2 (2015): 135-139.
Chavez, et al. “Detecting Arctic oil spills with NMR: a feasibility study.” Near Surface Geophysics 13.4 (Feb. 2015): 409-416.
Dale, et al. “Medical applications of diamond magnetometry: commercial viability.” arXiv preprint arXiv:1705.01994 (May 8, 2017), pp. 1-7.
Fologea, et al. “Detecting single stranded DNA with a solid state nanopore.” Nano Letters 5.10 (Aug. 15, 2005): 1905-1909.
Gaebel, et al. “Room-temperature coherent coupling of single spins in diamond.” Nature Physics 2.6 (May 28, 2006): 408-413.
Heerema, et al. “Graphene nanodevices for DNA sequencing.” Nature nanotechnology 11.2 (Feb. 3, 2016): 127-136.
International Search Report and Written Opinion of the International Searching Authority dated Apr. 4, 2017 from related PCT application PCT/US16/68366, 9 pages.
International Search Report and Written Opinion of the International Searching Authority dated Mar. 13, 2017 from related PCT application PCT/US2016/68320, 10 pages.
International Search Report and Written Opinion of the International Searching Authority dated Mar. 27, 2017 from related PCT application PCT/US16/68344, 6 pages.
International Search Report and Written Opinion of the International Searching Authority dated Mar. 31, 2017 from related PCT application PCT/US2016/066566, 11 pages.
International Search Report and Written Opinion of the International Searching Authority dated May 10, 2017 from related PCT application PCT/US17/19411, 8 pages.
International Search Report and Written Opinion of the International Searching Authority dated May 18, 2017, from related PCT application PCT/US2017/021593, 10 pages.
International Search Report and Written Opinion of the International Searching Authority dated May 19, 2017, from related PCT application PCT/US17/18099, 16 pages.
International Search Report and Written Opinion of the International Searching Authority dated May 3, 2017 from related PCT application PCT/US2017/018701, 8 pages.
International Search Report and Written Opinion of the International Searching Authority dated May 4, 2017 from related PCT application PCT/US2017/018709, 8 pages.
International Search Report and Written Opinion of the International Searching Authority dated May 8, 2017 from related PCT application PCT/US2017/17321, 17 pages.
Keyser “Enhancing nanopore sensing with DNA nanotechnology.” Nature nanotechnology 11.2 (Feb. 2016): 106-108.
Lindsay “The promises and challenges of solid-state sequencing.” Nature nanotechnology 11.2 (Feb. 2016): 109-111.
Matlashov, et al. “SQUIDs for magnetic resonance imaging at ultra-low magnetic field.” PIERS online 5.5 (2009): 466-470.
Matlashov, et al. “SQUIDs vs. induction coils for ultra-low field nuclear magnetic resonance: experimental and simulation comparison.” IEEE Transactions on Applied Superconductivity 21.3 (Jan. 1, 2012): 465-468.
Moessle, et al. “SQUID-detected magnetic resonance imaging in microtesla fields.” Annu. Rev. Biomed. Eng. 9 (May 23, 2008): 389-413.
Pelliccione, et al., Two-dimensional nanoscale imaging of gadolinium spins via scanning probe relaxometry with a single spin in diamond, Phys. Rev. Applied 2.5, (Sep. 8, 2014): 054014 pp. 1-17.
Qiu et al., “Low-field NMR Measurement Procedure when SQUID Detection is Used,” IEEE/CSC & ESAS European Superconductivity News Forum, No. 5, Jul. 2008.
Qiu, et al. “SQUID-detected NMR in Earth's magnetic field.” Journal of Physics: Conference Series. vol. 97. No. 1. IOP Publishing, Mar. 2008, pp. 1-7.
Steinert et al., “Magnetic spin imaging under ambient conditions with sub-cellular resolution.” Nature Comms 4:1607 (Mar. 19, 2013).
Sushkov, et al. “All-optical sensing of a single-molecule electron spin.” Nano letters 14.11 (Nov. 7, 2013): 6443-6448.
Tetienne, et al. “Spin relaxometry of single nitrogen-vacancy defects in diamond nanocrystals for magnetic noise sensing.” Physical Review B 87.23 (Apr. 3, 2013): 235436-1-235436-5.
U.S. Notice of Allowance dated Mar. 15, 2017, from related U.S. Appl. No. 15/351,862, 6 pages.
U.S. Notice of Allowance dated May 26, 2017 from related U.S. Appl. No. 15/218,821, 7 pages.
U.S. Office Action dated Apr. 17, 2017, from related U.S. Appl. No. 15/003,558, 12 pages.
U.S. Office Action dated Mar. 1, 2017, from related U.S. Appl. No. 15/003,634, 7 pages.
U.S. Office Action dated Mar. 16, 2017, from related U.S. Appl. No. 15/218,821, 7 pages.
U.S. Office Action dated May 22, 2017, from related U.S. Appl. No. 15/003,206, 12 pages.
Wells, et al. “Assessing graphene nanopores for sequencing DNA.” Nano letters 12.8 (Jul. 10, 2012): 4117-4123.
Wysocki et al., “Modified Walsh-Hadamard sequences for DS CDMA wireless systems.” Int. J. Adaptive Control and Signal Processing 16(8): 589-602 (Oct. 2002; first published online Sep. 23, 2002), 25 pages.
GB Office Action dated Jan. 10, 2017, in related national stage application GB1618202.4.
U.S. Appl. No. 14/659,498, filed Mar. 16, 2015.
U.S. Appl. No. 14/676,740, filed Apr. 1, 2015.
U.S. Appl. No. 15/003,678, filed Jan. 21, 2016.
U.S. Appl. No. 14/680,877, filed Apr. 7, 2015.
U.S. Appl. No. 15/003,281, filed Jan. 21, 2016.
U.S. Appl. No. 15/003,292, filed Jan. 21, 2016.
U.S. Appl. No. 15/003,298, filed Jan. 21, 2016.
U.S. Appl. No. 15/003,309, filed Jan. 21, 2016.
U.S. Appl. No. 15/003,176, filed Jan. 21, 2016.
U.S. Appl. No. 15/003,145, filed Jan. 21, 2016.
U.S. Appl. No. 15/003,336, filed Jan. 21, 2016.
U.S. Appl. No. 15/003,558, filed Jan. 21, 2016.
U.S. Appl. No. 15/003,519, filed Jan. 21, 2016.
U.S. Appl. No. 15/003,677, filed Jan. 21, 2016.
U.S. Appl. No. 15/003,256, filed Jan. 21, 2016.
U.S. Appl. No. 15/003,577, filed Jan. 21, 2016.
U.S. Appl. No. 15/003,704, filed Jan. 21, 2016.
U.S. Appl. No. 15/003,718, filed Jan. 21, 2016.
U.S. Appl. No. 15/003,062, filed Jan. 21, 2016.
U.S. Appl. No. 15/003,652, filed Jan. 21, 2016.
U.S. Appl. No. 15/003,634, filed Jan. 21, 2016.
U.S. Appl. No. 15/003,670, filed Jan. 21, 2016.
U.S. Appl. No. 15/003,088, filed Jan. 21, 2016.
U.S. Appl. No. 15/003,797, filed Jan. 21, 2016.
U.S. Appl. No. 15/003,590, filed Jan. 21, 2016.
U.S. Appl. No. 15/003,206, filed Jan. 21, 2016.
U.S. Appl. No. 15/003,193, filed Jan. 21, 2016.
U.S. Appl. No. 15/003,617, filed Jan. 21, 2016.
U.S. Appl. No. 15/003,396, filed Jan. 21, 2016.
U.S. Appl. No. 15/003,177, filed Jan. 21, 2016.
U.S. Appl. No. 15/003,209, filed Jan. 21, 2016.
U.S. Appl. No. 15/179,957, filed Jun. 10, 2016.
U.S. Appl. No. 15/207,457, filed Jul. 11, 2016.
U.S. Appl. No. 15/218,821, filed Jul. 25, 2016.
U.S. Appl. No. 15/204,675, filed Jul. 7, 2016.
U.S. Appl. No. 15/350,303, filed Nov. 14, 2016.
U.S. Appl. No. 15/351,862, filed Jul. 7, 2016.
U.S. Appl. No. 15/372,201, filed Dec. 7, 2016.
U.S. Appl. No. 15/376,244, filed Dec. 12, 2016.
U.S. Appl. No. 15/380,691, filed Dec. 15, 2016.
U.S. Appl. No. 15/382,045, filed Dec. 16, 2016.
U.S. Appl. No. 15/380,419, filed Dec. 15, 2016.
U.S. Appl. No. 15/419,832, filed Jan. 30, 2017.
U.S. Appl. No. 15/400,794, filed Jan. 6, 2017.
U.S. Appl. No. 15/443,422, filed Jan. 27, 2017.
U.S. Appl. No. 15/440,194, filed Feb. 23, 2017.
U.S. Appl. No. 15/437,222, filed Feb. 20, 2017.
U.S. Appl. No. 15/437,038, filed Feb. 20, 2017.
International Search Report and Written Opinion of the International Searching Authority in PCT/US2016/014390 dated Feb. 15, 2017.
Notice of Allowance dated Dec. 13, 2016, from related U.S. Appl. No. 14/680,877.
Notice of Allowance dated Dec. 22, 2016, from related U.S. Appl. No. 14/659,498.
U.S. Notice of Allowance dated Feb. 14, 2017, from related U.S. Appl. No. 15/003,677, 8 pages.
U.S. Office Action dated Feb. 10, 2017, from related U.S. Appl. No. 14/676,740, 38 pages.
U.S. Office Action dated Feb. 10, 2017, from related U.S. Appl. No. 15/003,088, 32 pages.
U.S. Office Action dated Feb. 16, 2017, from related U.S. Appl. No. 15/204,675, 15 pages.
Fallah et al., “Multi-sensor approach in vessel magnetic wake imaging,” Wave Motion 51(1): 60-76 (Jan. 2014), retrieved from http://www.sciencedirect.com/science/article/pii/S0165212513001133 (Aug. 21, 2016), 17 pages.
International Preliminary Report on Patentability dated Oct. 20, 2016 from related PCT application PCT/US2015/024723, 7 pages.
International Search Report and Written Opinion of the International Searching Authority dated Sep. 13, 2016 from related PCT application PCT/US16/14377, 11 pages.
Notice of Allowance dated Aug. 17, 2016, from related U.S. Appl. No. 15/003,718, 8 pages.
Notice of Allowance dated Sep. 8, 2016, from related U.S. Appl. No. 15/003,298, 10 pages.
Soykal et al., “Quantum metrology with a single spin-3/2 defect in silicon carbide,” Mesoscale and Nanoscale Physics (May 24, 2016), retrieved from https://arxiv.org/abs/1605.07628 (Sep. 22, 2016), 9 pages.
Teale, “Magnetometry with Ensembles of Nitrogen Vacancy Centers in Bulk Diamond,” Master's Thesis, Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science (Sep. 2015), 57 pages.
U.S. Office Action dated Aug. 24, 2016 from related U.S. Appl. No. 14/676,740, 19 pages.
U.S. Office Action dated Oct. 14, 2016 from related U.S. Appl. No. 15/003,677, 13 pages.
U.S. Office Action dated Oct. 19, 2016 from related U.S. Appl. No. 15/218,821, 6 pages.
U.S. Office Action dated Nov. 2, 2016 from related U.S. Appl. No. 15/003,256, 19 pages.
U.S. Office Action dated Nov. 3, 2016 from related U.S. Appl. No. 15/204,675, 9 pages.
Widmann et al., “Coherent control of single spins in silicon carbide at room temperature,” Nature Materials, 14: 164-168 (Feb. 2015) (available online Dec. 1, 2014), 5 pages.
Acosta et al., “Broadband magnetometry by infrared-absorption detection of nitrogen-vacancy ensembles in diamond,” Appl. Phys. Letters 97: 174104 (Oct. 29, 2010), 4 pages.
Barry et al., “Optical magnetic detection of single-neuron action potentials using quantum defects in diamond,” as submitted to Quantum Physics on Feb. 2, 2016, 23 pages.
Constable, “Geomagnetic Spectrum, Temporal.” In Encyclopedia of Geomagnetism and Paleomagnetism, pp. 353-355, Springer: Dordrecht, Netherlands (2007).
International Search Report and Written Opinion of the International Searching Authority dated Apr. 1, 2016 from related PCT application PCT/US2016/014384, 12 pages.
International Search Report and Written Opinion of the International Searching Authority dated Apr. 11, 2016 from related PCT application PCT/US2016/014376, 12 pages.
International Search Report and Written Opinion of the International Searching Authority dated Apr. 11, 2016 from related PCT application PCT/US2016/014388, 14 pages.
International Search Report and Written Opinion of the International Searching Authority dated Apr. 11, 2016 from related PCT application PCT/US2016/014395, 15 pages.
International Search Report and Written Opinion of the International Searching Authority dated Jul. 6, 2015, from related PCT application PCT/US2015/021093, 9 pages.
International Search Report and Written Opinion of the International Searching Authority dated Jul. 8, 2015, from related PCT application PCT/US2015/024265, 11 pages.
International Search Report and Written Opinion of the International Searching Authority dated Jul. 12, 2016, from related PCT application PCT/US2016/014287, 14 pages.
International Search Report and Written Opinion of the International Searching Authority dated Jul. 16, 2015, from related PCT application PCT/US2015/24723, 8 pages.
International Search Report and Written Opinion of the International Searching Authority dated Jun. 10, 2016 from related PCT application PCT/US2016/014290, 11 pages.
International Search Report and Written Opinion of the International Searching Authority dated Jun. 2, 2016, from related PCT application PCT/US2016/014386, 14 pages.
International Search Report and Written Opinion of the International Searching Authority dated Jun. 2, 2016, from related PCT application PCT/US2016/014387, 13 pages.
International Search Report and Written Opinion of the International Searching Authority dated Jun. 6, 2016, from related PCT application PCT/US2016/014291, 13 pages.
International Search Report and Written Opinion of the International Searching Authority dated Jun. 9, 2016 from related PCT application PCT/US2016/014333, 16 pages.
International Search Report and Written Opinion of the International Searching Authority dated Mar. 24, 2016 from related PCT application PCT/US2016/014336, 17 pages.
International Search Report and Written Opinion of the International Searching Authority dated Mar. 24, 2016 from related PCT application PCT/US2016/014297, 15 pages.
International Search Report and Written Opinion of the International Searching Authority dated Mar. 24, 2016 from related PCT application PCT/US2016/014392, 8 pages.
International Search Report and Written Opinion of the International Searching Authority dated Mar. 24, 2016 from related PCT application PCT/US2016/014403, 10 pages.
International Search Report and Written Opinion of the International Searching Authority dated Mar. 25, 2016, from related PCT application PCT/US2016/014363, 8 pages.
International Search Report and Written Opinion of the International Searching Authority dated Mar. 25, 2016, from related PCT application PCT/US2016/014389, 19 pages.
International Search Report and Written Opinion of the International Searching Authority dated Mar. 28, 2016, from related PCT application PCT/US2016/014380, 9 pages.
International Search Report and Written Opinion of the International Searching Authority dated Mar. 28, 2016, from related PCT application PCT/US2016/014394, 17 pages.
International Search Report and Written Opinion of the International Searching Authority dated Mar. 29, 2016 from related PCT application PCT/US2016/014325, 11 pages.
International Search Report and Written Opinion of the International Searching Authority dated Mar. 29, 2016 from related PCT application PCT/US2016/014330, 8 pages.
International Search Report and Written Opinion of the International Searching Authority dated Mar. 29, 2016, from related PCT application PCT/US2016/014328, 7 pages.
International Search Report and Written Opinion of the International Searching Authority dated Mar. 29, 2016, from related PCT application PCT/US2016/014385, 11 pages.
International Search Report and Written Opinion of the International Searching Authority dated Mar. 30, 2016 from related PCT application PCT/US2016/014298, 14 pages.
International Search Report and Written Opinion of the International Searching Authority dated Mar. 31, 2016 from related PCT application PCT/US2016/014375, 11 pages.
International Search Report and Written Opinion of the International Searching Authority dated Mar. 31, 2016 from related PCT application PCT/US2016/014396, 11 pages.
International Search Report and Written Opinion of the International Searching Authority dated May 26, 2016, 2016 from related PCT application PCT/US2016/014331, 15 pages.
Le Sage et al., “Efficient photon detection from color centers in a diamond optical waveguide,” Phys. Rev. B 85: 121202(R), pp. 121202-1-121202-4, (Mar. 23, 2012).
MacQuarie et al., “Mechanical spin control of nitrogen-vacancy centers in diamond,” Retrieved from http://www.arxiv.org/pdf/1306.6356.pdf, pp. 1-8, (Jun. 2013).
Nobauer et al., “Smooth optimal quantum control for robust solid state spin magnetometry,” Retrieved from http://www.arxiv.org/abs/1412.5051, pp. 1-12, (Dec. 2014).
Polatomic. “AN/ASQ-233A Digital Magnetic Anomaly Detecting Set.” Retrieved May 9, 2016, from http://polatomic.com/images/DMAD_Data_Sheet_09-2009.pdf (2009), 1 page.
Poole, “What is GMSK Modulation—Gaussian Minimum Shift Keying.” Radio-Electronics, retrieved from https://web.archive.org/web/20150403045840/http://www.radio-electronics.com/info/rf-technology-design/pm-phase-modulation/what-is-gmsk-gaussian-minimum-shift-keyingtutorial.php (Apr. 3, 2015), 4 pages.
Shao et al., “Diamond Color Center Based FM Microwave Demodulator,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (online) (Optical Society of America), paper JTh2A.136, 2 pages. (Jun. 5-10, 2016).
U.S. Notice of Allowance dated Apr. 20, 2016, from related U.S. Appl. No. 15/003,718, 9 pages.
U.S. Notice of Allowance dated Mar. 29, 2016, from related U.S. Appl. No. 15/003,590, 11 pages.
U.S. Office Action dated Jul. 29, 2016 from related U.S. Appl. No. 14/680,877, 8 pages.
U.S. Office Action dated May 13, 2016, from related U.S. Appl. No. 14/676,740, 15 pages.
U.S. Office Action dated May 6, 2016, from related U.S. Appl. No. 14/659,498, 20 pages.
Wahlstrom et al., “Modeling Magnetic Fields Using Gaussian Processes,” 2013 IEEE International Conference on Acoustics, Speech, and Signal Processing, pp. 3522-3526 (May 26-31, 2013).
Bui et al., “Noninvasive Fault Monitoring of Electrical Machines by Solving the Steady-State Magnetic Inverse Problem,” in IEEE Transactions on Magnetics, vol. 44, No. 6, pp. 1050-1053, Jun. 24, 2008.
Chadebec et al., “Rotor fault detection of electrical machines by low frequency magnetic stray field analysis,” 2005 5th IEEE International Symposium on Diagnostics for Electric Machines, Power Electronics and Drives, Vienna, 2005, submitted Mar. 22, 2006, pp. 1-6.
Froidurot et al., “Magnetic discretion of naval propulsion machines,” in IEEE Transactions on Magnetics, vol. 38, No. 2, pp. 1185-1188, Mar. 2002.
IEEE Std 802.11 TM-2012 Wireless Lan Medium Access Control (MAC) and Physical Layer (PHY) Specifications, 1 page.
Kwon et al., “Analysis of the far field of permanent-magnet motors and effects of geometric asymmetries and unbalance in magnet design,” in IEEE Transactions on Magnetics, vol. 40, No. 2, pp. 435-442, Mar. 2004.
Maertz et al., “Vector magnetic field microscopy using nitrogen vacancy centers in diamond”, Applied Physics Letters 96, No. 9, Mar. 1, 2010, pp. 092504-1-092504-3.
US Notice of Allowance dated Feb. 2, 2018, from related U.S. Appl. No. 15/003,292, 8 pages.
US Office Action dated Feb. 1, 2018, from related U.S. Appl. No. 15/003,577, 16 pages.
US Office Action dated Feb. 5, 2018, from related U.S. Appl. No. 15/450,504, 12 pages.
US Office Action dated Jan. 25, 2018, from related U.S. Appl. No. 15/672,953, 28 pages.
US Office Action dated Jan. 26, 2018, from related U.S. Appl. No. 15/003,678, 14 pages.
US Office Action dated Mar. 27, 2018, from related U.S. Appl. No. 15/468,386, 21 pages.
US Office Action dated Mar. 28, 2018, from related U.S. Appl. No. 15/003,177, 12 pages.
US Office Action dated Mar. 5, 2018, from related U.S. Appl. No. 14/866,730, 14 pages.
US Office Action dated Mar. 8, 2018, from related U.S. Appl. No. 15/380,691, 12 pages.
US Office Action dated Mar. 8, 2018, from related U.S. Appl. No. 15/479,256, 30 pages.
Wegerich, “Similarity based modeling of time synchronous averaged vibration signals for machinery health monitoring,” 2004 IEEE Aerospace Conference Proceedings (IEEE Cat. No. 04TH8720), 2004, pp. 3654-3662 vol. 6.
Wikipedia, “Continuous phase modulation”, downloaded from https://web.archive.org/web/20151017015236/https://en.wikipedia.org/wiki/Continuous_phase_modulation on May 10, 2017, 3 pages.
Wikipedia, “Minimum-shift keying”, downloaded from https://web.archive.org/web/20151017175828/https://en.wikipedia.org/wiki/Minimum-shift_keying on May 10, 2017, 2 pages.
Related Publications (1)
Number Date Country
20170123015 A1 May 2017 US
Provisional Applications (1)
Number Date Country
62250874 Nov 2015 US