The invention relates porous polycrystalline magnetic material having struts between nodes of the material which produce large reversible strain in response to an actuating magnetic field.
Magnetic shape-memory alloys (MSMAs) have emerged into a new field of active materials enabling fast large-strain actuators. MSMA with twinned martensite tend to deform upon the application of a magnetic field. The magnetic-field-induced deformation can be reversible (magnetoelasticity) or irreversible (magnetoplasticity) after removal of the magnetic field. After first results had been obtained in 1996, magnetoplasticity has been studied intensively for off-stoichiometric Ni2MnGa Heusler alloys for which large magnetic-field-induced strains result from a large spontaneous strain in combination with a large magnetic anisotropy constant and high magnetic and martensitic transformation temperatures. The magnetoplastic effect is related to the magnetic-field-induced displacement of twin boundaries. On the microscopic scale, a twin boundary moves by the motion of twinning dislocations, a process which can be triggered by a magnetic force on the dislocation. In monocrystalline Ni2MnGa, the cooperative motion of twinning dislocations finally leads to a strain of up to 10%, depending on martensite structure, and crystal orientation and quality.
Large magnetic-field-induced strains have so far been measured for magnetic shape-memory alloy single crystals. Growth of single crystals is difficult (in terms of maintaining alloy purity) and slow, and thus expensive. When growing alloy single-crystals, segregation can often not be avoided and is particularly strong for Ni—Mn—Ga. Segregation is adding to the difficulty of growing reproducibly the single crystals with identical composition and crystal stricture, which depends strongly on composition. Segregation can be avoided through quenching which however leads to a polycrystalline microstructure. It is, thus, for various reasons desirable to obtain MSMAs in polycrystalline form. Several attempts have been made to demonstrate magnetic-field-induced deformation in polycrystalline MSMA. Magnetic-field-induced strains of 1.4×10−4 (0.014%) are considered “relatively large”. Efforts were undertaken to improve the strain by producing severely textured alloys. Based on magnetic results, it was assumed that magnetic-field-induced twin boundary motion takes place in thin ribbons. However, strain measurements for this work revealed a total strain of only 2×10−5 (0.002%).
Larger magnetic-field-induced strains (in the order of 0.01 or 1%) were reported for experiments where a magnetic field was applied during the martensitic phase transformation or when the sample was pre-stressed. These are valuable results and potentially important for certain applications. One of the main advantages of magnetoplasticity, however, is the independence of temperature and applied stress. Unlike the shape memory effect which makes use of temperature as an actuating parameter, magnetoplasticity takes place at constant temperature and therefore is fast.
No significant magnetic-field-induced deformation has been obtained so far for polycrystalline MSMA. The hindrance of magnetoplasticity in polycrystalline MSMAs is related to the micromechanism of magnetoplasticity, i.e. the motion of twinning dislocations (or disconnections) which is impeded by interfaces including twin boundaries and grain boundaries. Grain-boundary hardening is an efficient strengthening mechanism in metals and, therefore, suppresses also twin boundary motion in MSMAs. One strategy of the present inventors for improving magnetoplasticity has been to remove some of the grain boundaries and replace them by voids, for example, bulk alloys are replaced by alloy foams.
A constrict of magneto-mechanically active material including magnetic shape-memory alloys is proposed that enables large magnetic-field-induced strains without the requirement of single crystals. The construct comprises a polycrystalline composite of pores, struts and nodes. The struts connect nodes of the material in three dimensions to create a collection of pores, or cages. The pores may be open or closed, as in open-cell and closed cell foams, for example.
The struts may be monocrystalline or polycrystalline. If any strut is monocrystalline, a twin boundary must extend transversely across the entire strut. If any strut is polycrystalline, it must have a “bamboo” grain structure, which means that the grain boundaries traverse the entire width of the strut, and no grain boundary is parallel to the longitudinal axis of the strut. This way, there is no grain boundary interference to suppress twin boundary motion in any strut.
A strut may be long and thin, or it may also be as wide as it is long. In this latter case, the strut may be more accurately referred to as a “wall” between nodes. Grain structure and free surfaces of the struts enable a strong strain response of the struts to an actuating magnetic field.
The material of the present invention is preferably produced with a space holder technique known as replication. According to this preferred technique, dissolvable ceramics and salts including NaAlO2 are infiltrated into a molten alloy to create spaces of ceramic/salt within the alloy which are dissolved out after the alloy has cooled to solid, leaving pores in the alloy. However, it is also contemplated by the inventors that other techniques for creating void spaces in the solid magnetic material may be used. For example, straight or jumbled bundles of fibers of the magnetic material may be fixed by sintering to create the requisite porosity. Also for example, chips or particulate bits of the magnetic material may be fixed by sintering to create the requisite porosity. Other conventional techniques may also be used.
Ni2MnGa replicated foams with open-cell porous structure were processed by the replication technique where a metallic melt is cast into a bed of space-holder materials that is leached out after solidification of the melt, resulting in open porosity replicating the structure of the space-holder. This method allows the creation of foams with fully-dense struts without macroscopic distortions. This method necessitates the selection of a space-holder with higher melting point than the alloy, very low reactivity with the melt and good removal ability. This technique has been used for low-melting alloys such as aluminum (typically using NaCl with a 801° C. melting point as space-holder) and has been recently demonstrated for foams created with higher melting alloys based on zirconium (using BaF2 as space-holder) or nickel (using NaAlO2). In the present work, the processing follows the general procedures described in Boonyongmaneerat Y, Chmielus M, Dunard D C, Müllner P, Physical Review Letters 2007: 99: 247201—incorporated herein by reference.
A Ni50.6Mn28Ga21.4 (numbers indicate atomic percent) polycrystalline ingot was produced by vacuum casting of the elements Ni, Mn, and Ga. The material exhibits solidus and liquidus temperatures of ˜110° C. and ˜1130° C., respectively. For the space-holder, NaAlO2 powders with a size range of 355-500 μm were used, which were produced by cold pressing NaAlO2 supplied by Alfa Aesar (Ward Hill, Mass.), sintering at 1500° C. for 1 hour in air, crushing and sieving. These sieved NaAlO2 powders were then poured in a cylindrical alumina crucible with inner diameter 9.5 mm and sintered in air at 1500° C. for 3 hours to achieve a modest degree of bonding between the particles. Subsequently, an alumina spacer disc and the Ni2MnGa ingot were inserted into the crucible containing the sintered NaAlO2 particles.
The crucible was heated to 1200° C. with a heating rate of 7° C./min, and maintained at this temperature for 15 minutes under high vacuum to insure full melting of the alloy. The melt was then infiltrated into the NaAlO2 preform by applying a 80 kPa (800 mbar) pressure of 99.999% pure argon. After 3 minutes of infiltration, the system was furnace cooled under argon pressure. The total mass of preform (space holder material) and alloy was measured before and after infiltration. The weight loss was less than 0.4%. This corresponds to a maximum deviation of the final concentration compared to the ingot concentration of 0.4 atomic percent for each element. The as-cast specimen was removed from the crucible, cut into small discs with height and diameter of 3 mm and 9 mm, respectively, so that the infiltrated space-holder particles were fully exposed to the surfaces. Two specimens (A and B) were then submerged into an ultrasonically-agitated 10% HCl solution bath for 17 and 41 hours, respectively, to dissolve the space-holder.
The density of the two foams A and B was determined by helium pycnometry. Additional specimens were mounted and polished, and their microstructures were examined under optical microscopes. To observe twin relief and grain structures, the specimens were (i) heat-treated at 150° C. followed by cooling to room temperature and (ii) etched with nitric acid solution.
Four samples were prepared with the shape of a parallelepiped. The sizes were approximately 6×3×2 mm3. The samples were subjected to a stepwise heat treatment (1000° C./1 h, 725° C./2 h, 700° C./10 h, 500° C./20 h) to homogenize at 1000° C. and to form the L21 order at temperatures between 725 and 500° C. For optical characterization, the samples were polished and etched in a solution of 30 vol.-% nitric acid (65% concentrated) in 70 vol.-% methanol.
Cyclic magneto-mechanical experiments were performed using a test set-up with a rotating magnetic field. Experimental details are given in Müllner P, Chernenko Va., Kostorz G, J Appl Phys 2004:95:1531—incorporated herein by reference. The sample was glued with its smallest face to a sample holder. A magnetic field of 0.97 T was rotated with up to 12,000 turns per minute. The rotation axis was perpendicular to the magnetic field direction. The sample was mounted to the sample holder such that the shortest edge of the sample was parallel to the rotation axis and the plane within which the magnetic field rotated was parallel to the largest face of the sample. The length of the longest edge of the sample was recorded as a function of field direction. For one full field rotation, magnetic shape-memory alloys expand and contract twice. One full turn of the magnetic field constitutes two magneto-mechanical cycles. The precision of the strain measurement on a 6 mm long sample is 2×10−5 which corresponds to a relative error of 2% for a strain of 10−3. The precision of the displacement includes noise and bending due to magnetic torque.
Molten Ni2MnGa appeared to adequately wet both alumina crucible and NaAlO2 particles without the presence of any adverse reaction, resulting in good infiltration of the alloy into the preform. As shown in
With the measured density of the Ni2MnGa—NaAlO2 composite of 5.7 g/cm3 and the NaAlO2 packing fraction of 36%, it is determined that the volume fraction of the metal and pore in the composite are 58% and 6%, respectively. Such low porosity value indicates that Ni2MnGa almost fully-infiltrated into the preform. The NaAlO2 space-holder can be leached with 10% HCl solution fairly well, even though a thin, dark corrosive layer developed on the metal surfaces. Table 1 summarizes the final volume fractions of the materials in specimen sets A and B.
In set A where specimens were submerged in the acidic solution for a shorter time, the dissolution of the preform was not fully completed, leaving 9% of NaAlO2 residue within the structure. Nevertheless, it is observed that porosity of 55% is already much higher than anticipated based on the spaceholder density (42%), and this is because Ni2MnGa was concurrently dissolved in the acid, albeit at relatively slow rate compared to the ceramic. For specimens of set B, leaching of the space-holder is nearly complete and metal dissolution was also quite extensive, resulting in a porosity of 76%.
a and 2b show the microstructure of specimens A and B.
The microstructure of the specimen B at room temperature after the heat treatment at 150° C. is presented in
The twin structure appears more clearly as typical surface relief in an atomic force microscopy image (
A comparison of the results of magneto-mechanical experiments of samples A1, A2, B1, and B2 is shown in
If nodes and struts were connected in a simple serial chain, the total strain would follow a rule of mixture, i.e. the struts would deform to the fullest and the nodes would not change their shape. Foams form three dimensional networks of struts which impose more constraints than present in a simple serial chain. The rule of mixture, therefore, provides an upper limit for MFIS. Assuming foam with a regular cubic structure, strut diameter d and cell size L=fd, porosity p, volume fraction e of struts (compared to total solid volume) and the geometry parameter f are related through
While all nodes are effective in suppressing deformation, only the component of the struts parallel to the direction along which the strain is detected effectively contribute to the experimental strain. When assuming that the strain is measured along one of the cube directions of the cubic model foam, one third of the struts contribute to deformation. The fraction {tilde over (e)} of solid material which contributes to deformation then is
For single crystal experiments, strain is measured in <100> direction while the magnetic field is rotated in the {001} plane. With this geometry, the theoretical limit εmax is achievable. For polycrystalline foam, grains are oriented arbitrarily. Irrespective of orientation, any grain will be subjected to the magnetic-field-induced rearrangement of twin-variants. However, the strain depends on crystal orientation. For rotation in the {001} plane, the strain in a direction inclined by φ to the <100> direction can be approximated as εmax cos φ. Assuming also a cosine dependence of the strain on the inclination θ of the {001} plane with respect to the plane of rotation, the average strain of individual grains is
Equations (1) and (2) can be numerically evaluated and multiplied with the average strain given in equation (3) to yield the expectation value of the strain as a function of porosity.
Relation (3) is displayed in
The experimental results are indicated with an open diamond for the sample with lower porosity (55% porosity, 0.002% MFIS, ε/εmax=0.0002) and a solid square for the sample with higher porosity (76% porosity, 0.11% MFIS, ε/εmax=0.011). While the trend of increasing strain with increasing porosity is following the model, there is a clear numerical discrepancy between experiment and model. The model predicts a strain roughly thirty times the experimental finding for the sample with 76% porosity.
The model assumes that the strain is proportional to the fraction of struts parallel to the direction of strain measurement. This is a good approximation for foam with all struts connected ‘in series’. In such a case, there is no mutual interaction between struts. In reality, however, struts form a network. Some of the struts are linked ‘in parallel’. For very large porosity (p≈1 and f>>1, i.e. when thin struts are spaced at large distance), there is little sterical hindrance and the effect of texture is still well described with a rule of mixture. For smaller porosity, however, sterical hindrance will reduce the strain significantly. For porosity 55% and 76%, the value of f is 2.4 and 3.1. Thus, the cell diameter is about three times the strut thickness, which is in good agreement with
<ε>steric=p<ε> (4)
Eq. 4 is displayed in
The model assumes perfect pores, i.e. pores which are completely empty and the surfaces of struts are clean. However, some pores of sample A are partially or completely filled with space-holder material. Struts which are connected with space-holder material are constraint similar to nodes and grains in polycrystals. Thus, these struts do not deform upon the application of a magnetic field and lead to a reduction of f and an increase of sterical hindrance. Sterical hindrance and residues of space-holder may be sufficient to significantly reduce the magnetic-field-induced deformation. Both sterical hindrance and residues may be reduced e.g. by increasing the etching time or choosing a different processing route. Therefore, it is likely that much larger MFIS will be achieved through optimizing of process parameters. For randomly textured polycrystalline foam, roughly 50% of the theoretical limit may be reached which amounts to an absolute strain of 5% in Ni—Mn—Ga with 14M (orthorhombic) structure.
The instant invention is unique regarding the combination of actuator properties. Magnetic shape-memory alloy foams combine large stroke, fast response, and light weight. Other materials might be faster but exhibit a much smaller strain (e.g. piezo ceramics) or they might exhibit larger strain but are much slower (e.g. hydraulics and thermally actuated shape-memory alloys including Nitinol). Some examples for uses of the foams according to the present invention are:
(i) Drug delivery systems where the drug is captured in the pores of the MSMA foam. The drug delivery system may be directed to a specific site using a low magnetic field. The drug may be released e.g. through (possible repeated) application of a stronger magnetic field which might be pulsed.
(ii) Micro-pump where the shape change of the pores is used to generate a variation of gas pressure.
(iii) Micro-valve for gas or liquid. The valve may be controlled through a variable magnetic field.
(iv) Active micro-damping device. The vibrations of a small system may be actively damped using the MSMA foam as a transducer element in combination with a suitable sensor and controller.
(v) Large-stroke, low force, small-weight, fast-response actuator for aeronautic and space applications. Due to the absence of gravity, actuators do not need to work against large loads. However, space applications require low weight and large stroke. Magnetic shape-memory alloys produce the largest stroke among all transducer materials and are in the form of foam particularly useful for space applications.
The only material type with similar properties regarding strain and speed known to the instant inventors is bulk single crystalline MSMA. Bulk single crystals, however, are much heavier than MSMA polycrystalline foam. Furthermore, bulk single crystals require delicate, slow, and expensive processing. Processing of MSMA polycrystalline foam is faster, cheaper, and more flexible regarding processing parameters.
Although this invention has been described above with reference to particular means, materials and embodiments, it is to be understood that the invention is not limited to these disclosed particulars, but extends instead to all equivalents within the broad scope of the following claims.
This application claims priority of Provisional Application Ser. No. 60/969,018, filed Aug. 30, 2007, and entitled “Magnetic Shape-Memory Structures and Foam with Large Magnetic-Field-Induced Deformation,” which is hereby incorporated by reference.
This invention was made with government support under Grant Number DMR-0502551 awarded by the National Science Foundation. The government has certain rights in the invention.
Number | Name | Date | Kind |
---|---|---|---|
5958154 | O'Handley et al. | Sep 1999 | A |
6034887 | Gupta et al. | Mar 2000 | A |
6307241 | Awschalom et al. | Oct 2001 | B1 |
7020015 | Hong et al. | Mar 2006 | B1 |
20060003185 | Parkin | Jan 2006 | A1 |
20060130758 | Lohokare et al. | Jun 2006 | A1 |
20060222904 | Hsia et al. | Oct 2006 | A1 |
20080143195 | Hampikian et al. | Jun 2008 | A1 |
20080225575 | Mullner et al. | Sep 2008 | A1 |
20090092817 | Mullner et al. | Apr 2009 | A1 |
Number | Date | Country |
---|---|---|
2006-070286 | Mar 2006 | JP |
WO-2008049124 | Apr 2008 | WO |
WO-2008061166 | May 2008 | WO |
WO-2009029953 | Mar 2009 | WO |
Number | Date | Country | |
---|---|---|---|
20090092817 A1 | Apr 2009 | US |
Number | Date | Country | |
---|---|---|---|
60969018 | Aug 2007 | US |