Magnetic media having improved magnetic grain size distribution and intergranular segregation

Information

  • Patent Grant
  • 10783915
  • Patent Number
    10,783,915
  • Date Filed
    Thursday, October 26, 2017
    6 years ago
  • Date Issued
    Tuesday, September 22, 2020
    3 years ago
Abstract
A method and system provide a magnetic recording media usable in a magnetic storage device. The magnetic recording media includes a substrate, at least one intermediate layer and a magnetic recording stack for storing magnetic data. The intermediate layer(s) include a majority phase having a first diffusion constant and a secondary phase having a second diffusion constant greater than the first diffusion constant. The magnetic recording stack residing on the intermediate layer such that the at least one intermediate layer is between the substrate and the magnetic recording stack.
Description
BACKGROUND

Conventional magnetic recording disk drives include a slider attached to a suspension and a media such as a disk. The slider typically includes a magnetic read transducer (reader) and a magnetic write transducer (writer). The writer magnetically records data as bits along a tracks in the media. The reader reads data back from the media.


The trend in magnetic recording is to higher areal densities. For example, densities of up to 1 Tbit/in2 and higher are desired. To read, write and store data at such areal densities, the reader, writer, and media have evolved. For example, tunneling magnetoresistance (TMR) sensors may be used to read higher density media with sufficiently high signals. Perpendicular magnetic recording (PMR) writers and heat assisted magnetic recording (HAMR) writers, which utilize laser light to heat regions of the media to temperatures near and/or above the Curie temperature of the media, may be used to write to such high density media. Similarly, magnetic media have been developed to store data at higher areal densities.


Although such conventional magnetic recording disk drives function, there are drawbacks. For example, for high areal densities reduced noise, improved signal to noise ratio, and mechanisms to address other issues may be desired. Media that may be capable of providing these features are desired. Accordingly, what is needed is a system and method for improving the performance of a magnetic recording disk drive at higher areal densities.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 depicts a side view of a magnetic recording apparatus, such as a disk drive.



FIG. 2 depicts an exemplary embodiment of a magnetic recording media that may be usable in a magnetic recording apparatus.



FIGS. 3A and 3B are alloy diagrams depicting the phases of an alloy in another exemplary embodiment of an intermediate layer for a magnetic recording media.



FIG. 4 depicts another exemplary embodiment of a magnetic recording media that may be usable in a magnetic recording apparatus.



FIG. 5 depicts another exemplary embodiment of an intermediate layer for a magnetic recording media.



FIG. 6 depicts another exemplary embodiment of an intermediate layer for a magnetic recording media.



FIG. 7 depicts another exemplary embodiment of an intermediate layer for a magnetic recording media.



FIG. 8 depicts another exemplary embodiment of an intermediate layer for a magnetic recording media.



FIG. 9 depicts another exemplary embodiment of an intermediate layer for a magnetic recording media.



FIG. 10 is a flow chart depicting an exemplary embodiment of a method for providing magnetic recording media usable in a magnetic recording apparatus.



FIG. 11 depicts a flow chart of another exemplary embodiment of a method for fabricating a magnetic recording media usable in a disk drive.





DETAILED DESCRIPTION


FIG. 1 depicts a side view of an exemplary embodiment of a portion of a magnetic recording apparatus 100. In the embodiment shown, the apparatus 100 is a disk drive 100. For clarity, FIG. 1 is not to scale. For simplicity not all portions of the disk drive 100 are shown. In addition, although the disk drive 100 is depicted in the context of particular components other and/or different components may be used. For example, circuitry used to drive and control various portions of the disk drive 100 is not shown. The disk drive 100 may be a PMR disk drive, a HAMR disk drive or another type of disk drive. For simplicity, only single components 102, 110, 120 and 150 are shown. However, multiples of each components 102, 110, 120, and/or 150 and their sub-components, might be used.


The disk drive 100 includes a slider 110, a transducer 120 and media 150. Additional and/or different components may be included in the disk drive 100. For example, if the write transducer 120 is a HAMR writer, a laser might be included on or affixed to the slider 110. Although not shown, the slider 110, and thus the laser assembly 130 and transducer 120 are generally attached to a suspension (not shown).


The transducer 120 is fabricated on the slider 110 and includes an air-bearing surface (ABS) proximate to the media 150 during use. In general, the transducer 120 includes a write transducer and a read transducer. However, for clarity, only the write portion of the writer 120 is shown. The write transducer 120 includes a write pole 124 and coil(s) 126. The media 150 is configured to be usable at higher recording densities and, in some embodiments, to be used in the disk drive 100. In some embodiments, the media 150 is configured to store data with an areal density of at least 0.8 Tbit/in2. In some such embodiment, the media 150 may store data having an areal density of 1 Tbit/in2 or more.



FIG. 2 depicts an exemplary embodiment of the magnetic media 150 usable in a disk drive such as the disk drive 100. For clarity, FIG. 2 is not to scale. A substrate 152 on which the magnetic recording media 150 is fabricated is also shown. Referring to FIGS. 1-2, the magnetic recording media includes a magnetic recording stack 154 and at least one intermediate layer 160 between the magnetic recording stack 154 and the substrate. For simplicity not all portions of the magnetic recording media are shown. Other and/or additional layers may be present. For example, although not shown in FIG. 2, an overcoat layer is generally used. The overcoat layer would reside on the magnetic recording stack 154 and between the magnetic recording stack 154 and the slider 110. Other layer(s) may also reside between the layers 152 and 160. However, the relationships between the layers 152, 154 and 160 may be preserved. Stated differently, the multiple phase intermediate layer(s) 160 are between the substrate 152 and the magnetic recording stack.


The magnetic recording stack 154 stores magnetic data. The magnetic recording stack 154 is on the intermediate layer(s) 160 such that the intermediate layer(s) are between the substrate 152 and the magnetic recording stack 154. In some embodiments, the magnetic recording stack 154 includes multiple layers. For example, the magnetic recording stack 154 may include including exchange-control layers or exchange-break layers as well as magnetic layer(s) in which data are stored.


The intermediate layer(s) 160 include one or more layers. At least one of these layers is a multi-phase layer. The multi-phase layer is an alloy layer having multiple phases. The multiple phases include a majority phase and a secondary phase. Additional phases might be present. The majority phase has a first diffusion constant. The secondary phase has a second diffusion constant greater than the first diffusion constant. Thus, it is believed that the secondary phase segregates to the grain boundaries of the multi-phase layer. The majority phase has a first crystal structure, a first orientation, and a first composition. The secondary phase is a precipitate that segregates out of the majority. The secondary phase may have a second composition different from the first composition of the majority phase. The crystal structure and orientation of the secondary phase may be different from or the same as that of the majority phase. The first orientation and the first crystal structure of the majority phase are substantially unchanged by the secondary phase. For example, in the Ru layers described below, the majority phase of the layer may remain with a hexagonal close packed (HCP) crystal structure and the desired orientation despite the presence of the secondary phase. In some embodiments, this secondary phase is a eutectic phase.


The multi-phase layers may be considered to be formed by a primary material, or constituent, and at least one additional material that alloy to form the majority and secondary phases described above. The primary material may be an element or an alloy. Additional material(s) may be added in order to form the multiphase layer. The additional material(s) have limited solubility in the primary material(s) and form the secondary (e.g. eutectic) phase with the primary material(s) over a particular concentration range.


Composition of the alloy(s) used in the multi-phase layers may understood with reference to FIGS. 3A and 3B. Referring to FIGS. 3A-3B, FIGS. 3A and 3B are alloy diagrams for two alloys that exhibit multi-phase behavior. FIG. 3A depicts an alloy diagram 180 for a first alloy, while FIG. 3B depicts and alloy diagram 180′ for a second alloy. The alloys include a primary material, or primary constituent. In the alloy diagrams 180, the atomic percentage of the primary constituent is along the horizontal axis and the temperature is along the vertical axis. As can be seen in the diagrams 180 and 180′, for an alloy formed purely of the primary constituent (100 atomic percent primary constituent), only the majority phase is present below the melting point. This region is labeled “Primary” in the diagrams 180 and 180′. Only the majority phase continues to be present for larger percentages of the primary constituent that are less than one hundred percent. As the fraction of the primary constituent is reduced, corresponding larger amounts of an additional material having limited solubility in the primary constituent are present. Thus, the secondary phase is becomes present (labeled 2.sup.nd in FIGS. 3A and 3B). For alloys in this concentration range, the secondary phase may precipitate out of the primary phase and segregate to the grain boundaries. For even lower concentrations of the primary constituent(s), the alloys may have other phases. Thus, the multi-phase layer(s) that are part of the intermediate layer 160 may be configured to have the additional material(s) in a concentration range that allows for the primary and secondary phases to be present. Using alloy diagrams analogous to those shown in FIGS. 3A-3B, material(s) that may be usable in the multi-phase layer may be selected.


For example, the multi-phase layer(s) in the intermediate layer(s) 160 may include an alloy that contains Ru. A multi-phase Ru-containing layer may include Ru and Co. In such a multi-phase RuCo layer, the Ru and Co may be alloyed with one or more other materials. There may be equal amount of Ru and Co. In other embodiments, there may be different concentrations of Ru and Co. However, both types of alloys are referred to herein as RuCo. In some embodiments, the additional material(s) added to RuCo to form the multi-phase layer may be selected from Mo, Nb, W, Al, Be, C, Dy, Gd, Ge, Ho, Lu, Nd, Pd, Sm, Tb, Y and Zr. The combination is an alloy that forms the majority and secondary phases described above for certain concentration ranges. The secondary phase formed in such RuCo layers is a eutectic phase. For example, if the multi-phase layer is a (RuCo)100-wXw layer, where X is a material and w is a concentration, then X:w may be as follows: Al:0-30, Be:0-25, C:0-20, Dy:0-20, Gd:0-20, Ge:0-25, Ho:0-20, Lu:0-20, Mo:0-35, Nb:0-20, Nd:0-20, Pd:0-30, Sm:0-20, Tb:0-20, W:0-50, Y:0-20, Zr:0-20. Note that although zero concentrations are indicated above for the second constituents, there must be some of the material present. For example, if Al used, the concentration of Al is greater than zero and not more than thirty atomic percent. Such alloys include a first phase and a secondary eutectic phase having the properties described above.


Similarly, the multi-phase Ru-containing layer may include one or more layers in which Ru is alloyed with another material. In some embodiments, the additional material(s) may be selected from Mo, Nb, W, Al, Be, C, Dy, Gd, Ge, Ho, Lu, Nd, Pd, Sm, Tb, Y and Zr. The combination is a Ru alloy that forms the majority and secondary phases described above for certain concentration ranges. In some embodiments, the secondary phase formed is a eutectic phase. For example, the multi-phase Ru containing layer may be a Ru—Mo alloy that includes not more than thirty-five atomic percent Mo. In other embodiments, the Ru-containing layer may be a Ru—Nb alloy that includes not more than twenty atomic percent Nb. In still other embodiments, the multi-phase Ru-containing layer may be a Ru—W alloy that includes not more than fifty percent of W if the Ru-containing layer includes W. If Al, Be, C, Dy, Gd, Ho, Lu, Sm, Tb, Y, Zr are used, then the multi-phase alloy includes Ru and both greater than zero and not more than twenty atomic percent of Al, Be, C, Dy, Gd, Ho, Lu, Sm, Tb, Y, Zr. If Ge is used, then the multi-phase alloy includes Ru and both greater than zero and not more than twenty-five atomic percent of Ge. If Pd is used, then the multi-phase alloy includes Ru and both greater than zero and not more than thirty atomic percent of Pd.


Further, multiple Ru layers may be included. One or more of these Ru layers may be multi-phase alloys. In some embodiments, two Ru layers that are sputtered at different pressures may be included. For example, a first Ru alloy layer may be sputtered at a first pressure and a second Ru layer may be sputtered at a second pressure. The second pressure is greater than the first pressure. For example, the first layer may be a Ru alloy layer that is sputtered at less than twenty mTorr. In some such embodiments, the pressure is on the order of seven mTorr. The second layer may be a Ru alloy layer that is sputtered at greater than 60 mTorr and not more than 120 mTorr. For example, the pressure may be ninety mTorr. The intermediate layer(s) 160 may include multiple Ru alloy layers and a Ru—Co containing layer. Some combination of these Ru-containing layers may be a multi-phase layer.


The magnetic media 150 may have improved performance. The magnetic media 150 includes intermediate layer(s) 160 that has at least one multi-phase layer. In this multi-phase layer, the grain size and distribution may be controlled by the segregation of secondary (e.g. eutectic) phase to the grain boundaries. In other words, the grain size (measure of the diameter/length of the grain) may be smaller and the variation in grain size may be smaller. This reduction in grain size and distribution may be passed on to the magnetic recording stack 154. As a result, the coercive squareness, nucleation field, coercivity and thermal stability of the magnetic recording stack 154 may be improved. Noise may thus be reduced and signal-to-noise ratio enhanced. Thus, performance of the magnetic recording media 150 at higher densities may be improved.



FIG. 4 depicts an exemplary embodiment of the magnetic media 150′ usable in a disk drive such as the disk drive 100. For clarity, FIG. 4 is not to scale. The magnetic media 150′ is analogous to the magnetic media 150 depicted in FIGS. 1-2. Thus, analogous components have similar labels. The magnetic media 150′ includes a substrate 152, intermediate layer(s) and magnetic recording stack 154 are analogous to the substrate 152, intermediate layer(s) and magnetic recording stack 154 depicted in FIG. 2. In the embodiment shown, the substrate 152 may be AlMg. For simplicity not all portions of the magnetic recording media are shown. Other and/or additional layers may be present.


In addition to the substrate 152, intermediate layer(s) 160 and magnetic recording stack 154, optional adhesion layer(s) 155, antiferromagnetically coupled soft underlayer 156, orientation control layer 158 and overcoat layer 159 are shown. The overcoat layer 159 is on the magnetic recording stack 154 and between the magnetic recording stack 154 and the slider 110. The optional adhesion layer(s) 155 may include Cr, CrTa, and/or CrTi layers. Although not shown, Ta based seed layer(s), Ni—W, Ni—W—Al, and/or Ni—W—Al—Fe based seed layer(s) (not explicitly shown in FIG. 4) may also be included. The magnetic recording stack 154 is analogous to the magnetic recording stack 154 of FIG. 2 and stores magnetic data. The intermediate layer(s) 160 include one or more layers, at least one of which is a multi-phase layer. The multi-phase layer is an alloy layer having a majority phase and a secondary phase. The secondary phase has a diffusion constant higher than that of the majority phase. Thus, it is believed that the secondary phase segregates to the grain boundaries of the multi-phase layer. The majority phase has a crystal structure, an orientation, and a composition. The secondary phase is a precipitate that segregates out of the majority. The secondary phase may have a composition different from that of the majority phase. The crystal structure and orientation of the secondary phase may be different from or the same as that of the majority phase. The orientation and the crystal structure of the majority phase are substantially unchanged by the presence of the secondary phase.


The magnetic media 150′ may have improved performance for similar reasons as the magnetic media 150. The intermediate layer(s) 160 have at least one multi-phase layer for which the grain size and distribution may be controlled by the segregation of secondary (e.g. eutectic) phase to the grain boundaries. Thus, the grain size may be smaller and the variation in grain size may be reduced. This reduction in grain size and distribution may be passed on to the magnetic recording stack 154. As a result, noise may thus be reduced and signal-to-noise ratio enhanced. Thus, performance of the magnetic recording media 150′ at higher densities may be improved.



FIG. 5 depicts an exemplary embodiment of the intermediate layer(s) 160′ that may be usable in a magnetic media such as the media 150 and/or 150′. The intermediate layer(s) 160′ are analogous to the intermediate layer(s) 160. For clarity, FIG. 5 is not to scale. The intermediate layer(s) 160′ includes two Ru alloy layers 162 and 164. The layer 162 is a low pressure Ru layer. The layer 164 is a high pressure Ru layer that is also a multi-phase layer. The layer 162 is termed a low pressure layer because the layer 162 is formed at a lower pressure than the layer 164. For example, the low pressure layer 162 may be sputtered at less than twenty mTorr. In some such embodiments, the pressure is on the order of seven mTorr. The high pressure multi-phase Ru alloy layer 164 is on the low pressure Ru layer 162. Thus, layer 164 may adjoin the magnetic recording stack 154 and is between the magnetic recording stack 154 and the layer 162. The multi-phase high pressure Ru layer 164 is sputtered at greater than 60 mTorr and not more than 120 mTorr. For example, the pressure may be ninety mTorr.


The high pressure Ru alloy layer 164 is a multi-phase layer. Thus, the high pressure Ru alloy layer 164 includes a majority phase and a secondary phase. The characteristics of the majority and secondary phases are as discussed above. The secondary phase has a diffusion constant greater than the majority phase's diffusion constant. Thus, it is believed that the secondary phase precipitates out of the majority and segregates to the grain boundaries of the layer 164. The majority phase has a first crystal structure, a first orientation, and a first composition. The secondary phase may have a second composition different from the first composition of the majority phase. The crystal structure and orientation of the secondary phase may be different from or the same as that of the majority phase. The first orientation and the first crystal structure of the majority phase are substantially unchanged by the secondary phase. For example, the majority phase of the layer 164 may remain with a hexagonal close packed (HCP) crystal structure and the desired orientation despite the presence of the secondary phase. In some embodiments, this secondary phase is a eutectic phase.


In some embodiments, the layer 164 is formed by alloying Ru with additional materials. The additional material(s) added to Ru to form the multi-phase layer may be selected from Mo, Nb, W, Al, Be, C, Dy, Gd, Ge, Ho, Lu, Nd, Pd, Sm, Tb, Y and Zr. The combination is an alloy that forms the majority and secondary phases described above for certain concentration ranges. For example, if the multi-phase layer is a (Ru)100-wXw layer, where X is a material and w is a concentration, then X:w may be as follows: Al:0-30, Be:0-25, C:0-20, Dy:0-20, Gd:0-20, Ge:0-25, Ho:0-20, Lu:0-20, Mo:0-35, Nb:0-20, Nd:0-20, Pd:0-30, Sm:0-20, Tb:0-20, W:0-50, Y:0-20, Zr:0-20. Note that in the concentrations above, a concentration of zero for the additional material indicates the presence of greater than zero atomic percent of the material. Such alloys include a first phase and a secondary eutectic phase having the properties described above.


The intermediate layer 160′ may aid in improving the performance of the magnetic media 150 and/or 150′. The grain size and distribution may be controlled by the segregation of secondary (e.g. eutectic) phase to the grain boundaries in the layer 164. Thus, the grain size may be smaller and the variation in grain size may be reduced. This reduction in grain size and distribution may be passed on to the magnetic recording stack 154. As a result, noise may thus be reduced and signal-to-noise ratio enhanced. Thus, performance of the magnetic recording media 150/150′ at higher densities may be improved by the layer 160′.



FIG. 6 depicts an exemplary embodiment of the intermediate layer(s) 160″ that may be usable in a magnetic media such as the media 150 and/or 150′. For clarity, FIG. 6 is not to scale. The intermediate layer(s) 160″ are analogous to the intermediate layer(s) 160 and/or 160′. The intermediate layer(s) 160′ includes two Ru alloy layers 162′ and 164′. The layer 162′ is a low pressure Ru layer analogous to the layer 162. The layer 164′ is a high pressure Ru layer that is analogous to the layer 164. The layer 162′ is termed a low pressure layer because the layer 162′ is formed at a lower pressure than the layer 164′. The pressures used for the layers 162′ and 164′ are analogous to those used for the layers 162 and 164, respectively.


In the intermediate layer(s) 160″, the high pressure layer 164′ is a Ru layer while the low pressure layer 162′ is a multi-phase layer. Thus, the low pressure Ru alloy layer 162′ includes a majority phase and a secondary phase. The characteristics of the majority and secondary phases are as discussed above. The secondary phase has a diffusion constant greater than the majority phase's diffusion constant. Thus, it is believed that the secondary phase precipitates out of the majority and segregates to the grain boundaries of the low pressure layer 162′. The majority phase has a first crystal structure, a first orientation, and a first composition. The secondary phase may have a second composition different from the first composition of the majority phase. The crystal structure and orientation of the secondary phase may be different from or the same as that of the majority phase. The first orientation and the first crystal structure of the majority phase are substantially unchanged by the secondary phase. For example, the majority phase of the layer 162′ may remain with a hexagonal close packed (HCP) crystal structure and the desired orientation despite the presence of the secondary phase. In some embodiments, this secondary phase is a eutectic phase.


In some embodiments, the layer 162′ is formed by alloying Ru with additional materials. The additional material(s) added to Ru to form the multi-phase layer may be selected from Mo, Nb, W, Al, Be, C, Dy, Gd, Ge, Ho, Lu, Nd, Pd, Sm, Tb, Y and Zr. The combination is an alloy that forms the majority and secondary phases described above for certain concentration ranges. For example, if the multi-phase layer is a (Ru)100-wXw layer, where X is a material and w is a concentration, then X:w may be as follows: Al:0-30, Be:0-25, C:0-20, Dy:0-20, Gd:0-20, Ge:0-25, Ho:0-20, Lu:0-20, Mo:0-35, Nb:0-20, Nd:0-20, Pd:0-30, Sm:0-20, Tb:0-20, W:0-50, Y:0-20, Zr:0-20. A concentration of 0 atomic percent for the additional material corresponds to a concentration of greater than zero atomic percent. Such alloys include a first phase and a secondary eutectic phase having the properties described above.


The intermediate layer 160″ may aid in improving the performance of the magnetic media 150 and/or 150′. The grain size and distribution may be controlled by the segregation of secondary (e.g. eutectic) phase to the grain boundaries in the layer 162′. Thus, the grain size may be smaller and the variation in grain size may be reduced. This reduction in grain size and distribution may be passed on to the magnetic recording stack 154. As a result, noise may thus be reduced and signal-to-noise ratio enhanced. Thus, performance of the magnetic recording media 150/150′ at higher densities may be improved by the layer 160″.



FIG. 7 depicts an exemplary embodiment of the intermediate layer(s) 160′″ that may be usable in a magnetic media such as the media 150 and/or 150′. For clarity, FIG. 7 is not to scale. The intermediate layer(s) 160′″ are analogous to the intermediate layer(s) 160, 160′ and/or 160″. The intermediate layer(s) 160′ includes two Ru alloy layers 162′ and 164. The layer 162′ is a low pressure Ru layer analogous to the layer 162/162′. The layer 164 is a high pressure Ru layer that is analogous to the layer 164′. The layer 162′ is termed a low pressure layer because the layer 162′ is formed at a lower pressure than the layer 164′. The pressures used for the layers 162′ and 164′ are analogous to those used for the layers 162 and 164, respectively.


The layers 162′ and 164 are both multi-phase alloy layers. Thus, each of the layers 162′ and 164 includes a majority phase and a secondary phase. The characteristics of the majority and secondary phases are as discussed above. The secondary phase has a diffusion constant greater than the majority phase's diffusion constant. Thus, it is believed that the secondary phase precipitates out of the majority and segregates to the grain boundaries of the layers 162′ and 164. The majority phase has a first crystal structure, a first orientation, and a first composition. The secondary phase may have a second composition different from the first composition of the majority phase. The crystal structure and orientation of the secondary phase may be different from or the same as that of the majority phase. The first orientation and the first crystal structure of the majority phase are substantially unchanged by the secondary phase. For example, the majority phase of the layers 162′ and 164 may remain with a hexagonal close packed (HCP) crystal structure and the desired orientation despite the presence of the secondary phase. In some embodiments, this secondary phase is a eutectic phase.


In some embodiments, the layers 162′ and 164 are each formed by alloying Ru with additional materials. The additional material(s) added to Ru to form the multi-phase layer may be selected from Mo, Nb, W, Al, Be, C, Dy, Gd, Ge, Ho, Lu, Nd, Pd, Sm, Tb, Y and Zr. The combination is an alloy that forms the majority and secondary phases described above for certain concentration ranges. For example, if the multi-phase layer is a (Ru)100-wXw layer, where X is a material and w is a concentration, then X:w may be as follows: Al:0-30, Be:0-25, C:0-20, Dy:0-20, Gd:0-20, Ge:0-25, Ho:0-20, Lu:0-20, Mo:0-35, Nb:0-20, Nd:0-20, Pd:0-30, Sm:0-20, Tb:0-20, W:0-50, Y:0-20, Zr:0-20. Note that a 0 atomic percent in the previous sentence indicates a concentration of greater than zero atomic percent for the additional material(s). Such alloys include a first phase and a secondary eutectic phase having the properties described above. Note that the compositions of the layers 162′ and 164 may be the same or different. For example, layers 162′ and 164 may be both Ru—Mo layers. In another embodiment, the layer 162′ may be a Ru—W layer while the layer 164 is a Ru—Mo layer.


The intermediate layer 160′″ may aid in improving the performance of the magnetic media 150 and/or 150′. The grain size and distribution may be controlled by the segregation of secondary (e.g. eutectic) phase to the grain boundaries in the layers 162′ and 164. Thus, the grain size may be smaller and the variation in grain size may be reduced. This reduction in grain size and distribution may be passed on to the magnetic recording stack 154. As a result, noise may thus be reduced and signal-to-noise ratio enhanced. Thus, performance of the magnetic recording media 150/150′ at higher densities may be improved by the layer 160′″.



FIG. 8 depicts an exemplary embodiment of the intermediate layer(s) 170 that may be usable in a magnetic media such as the media 150 and/or 150′. For clarity, FIG. 8 is not to scale. The intermediate layer(s) 170 are analogous to the intermediate layer(s) 160, 160′, 160″ and/or 160′″. The intermediate layer(s) 170 includes a RuCo layer 172 and two Ru-containing layers 174 and 176. In some embodiments, the RuCo layer 172 is at least two nanometers thick and not more than twelve nanometers thick. In some such embodiments, the RuCo layer 172 is at least five nanometers thick and not more than eight nanometers thick. The RuCo layer 172 is an alloy. The layers 174 and 176 include Ru. At least one of the layers 174 and 176 is a multi-phase layer. Thus, the layers 174 and 176 are labeled as “optionally two phase Ru-alloy layer” because one or both of the layers 174 and 176 may have two phases. In some embodiments, only the layer 174 has two phases and would thus be analogous to the layers 162′. In other embodiments, only the layer 176 has two phases. In such embodiments, the layer 176 is analogous to the layer 164. In other embodiments, both layers 174 and 165 have two phases and may thus be analogous to the layers 162′ and 164, respectively. The layer 174 is a low pressure Ru layer analogous to the layer 162 or 162′. In some embodiments, the low pressure Ru layer 174 may be at least one nanometer thick and not more than ten nanometers thick. The low pressure Ru layer 174 may be at least two nanometers thick and not more than six nanometers thick. The structure and composition of the layer 174 is analogous to the layer 162 or 162′. The layer 176 is a high pressure Ru layer that is analogous to the layer 164 or 164′. In some embodiments, the high pressure Ru layer 176 is at least four nanometers thick and not more than twelve nanometers thick. In some such embodiments, the high pressure Ru layer 176 is at least six nanometers thick and not more than ten nanometers thick. The structure and composition of the layer 176 is analogous to the layer 164 or 164′. In one embodiment, the intermediate layer(s) 170 include a RuCo alloy layer 172, a low pressure Ru layer 174 analogous to the layer 162, and a high pressure multi-phase layer 176 analogous to the layer 164. In another embodiment, the intermediate layer(s) 170 include a RuCo alloy layer 172, a low pressure multi-phase Ru layer 174 analogous to the layer 162′, and a high pressure layer 176 analogous to the layer 164′. In another embodiment, the intermediate layer(s) 170 include a RuCo alloy layer 172, a low pressure multi-phase Ru layer 174 analogous to the layer 162′, and a high pressure multi-phase layer 176 analogous to the layer 164. Thus, one or both of the layers 174 and 176 includes a majority phase and a secondary phase. The characteristics of the majority and secondary phases are as discussed above.


The intermediate layer 170 may aid in improving the performance of the magnetic media 150 and/or 150′. The grain size and distribution may be controlled by the segregation of secondary (e.g. eutectic) phase to the grain boundaries in the layers 174 and/or 176. Thus, the grain size may be smaller and the variation in grain size may be reduced. This reduction in grain size and distribution may be passed on to the magnetic recording stack 154. As a result, noise may thus be reduced and signal-to-noise ratio enhanced. Thus, performance of the magnetic recording media 150/150′ at higher densities may be improved by the layer 170.



FIG. 9 depicts an exemplary embodiment of the intermediate layer(s) 170′ that may be usable in a magnetic media such as the media 150 and/or 150′. For clarity, FIG. 9 is not to scale. The intermediate layer(s) 170′ are analogous to the intermediate layer(s) 160, 160′, 160″ and/or 160″. The intermediate layer(s) 170′ includes a multi-phase RuCo layer 172′ and two Ru-containing layers 174 and 176. The layers 174 and 176 include Ru. At least one of the layers 174 and 176 is a multi-phase layer. Thus, the layers 174 and 176 are labeled as “optionally two phase Ru-alloy layer” because one or both of the layers 174 and 176 may have two phases. In some embodiments, only the layer 174 has two phases and would thus be analogous to the layers 162′. In other embodiments, only the layer 176 has two phases. In such embodiments, the layer 176 is analogous to the layer 164. In other embodiments, both layers 174 and 165 have two phases and may thus be analogous to the layers 162′ and 164, respectively. The layer 174 is a low pressure Ru layer analogous to the layer 162 or 162′. The structure and composition of the layer 174 is analogous to the layer 162 or 162′. The layer 176 is a high pressure Ru layer that is analogous to the layer 164 or 164′. The structure and composition of the layer 176 is analogous to the layer 164 or 164′. In some embodiments, the low pressure Ru layer 174 may be at least one nanometer thick and not more than ten nanometers thick. The low pressure Ru layer 174 may be at least two nanometers thick and not more than six nanometers thick. In some embodiments, the high pressure Ru layer 176 is at least four nanometers thick and not more than twelve nanometers thick. The high pressure Ru layer 176 may be at least six nanometers thick and not more than ten nanometers thick.


The RuCo layer 172′ includes RuCo alloyed with at least a second material. In some embodiments, the RuCo layer 172′ is at least two nanometers thick and not more than twelve nanometers thick. In some embodiments, the RuCo layer 172′ is at least five nanometers thick and not more than eight nanometers thick. Thus, the RuCo layer 172′ includes a majority phase and a secondary phase. The characteristics of the majority and secondary phases are as discussed above. In some embodiments, the additional material(s) added to RuCo to form the multi-phase layer may be selected from Mo, Nb, W, Al, Be, C, Dy, Gd, Ge, Ho, Lu, Nd, Pd, Sm, Tb, Y and Zr. The combination is an alloy that forms the majority and secondary phases described above for certain concentration ranges. The secondary phase formed in such RuCo layers is a eutectic phase. For example, if the multi-phase layer is a (RuCo)100-wXw layer, where X is a material and w is a concentration, then X:w may be as follows: Al:0-30, Be:0-25, C:0-20, Dy:0-20, Gd:0-20, Ge:0-25, Ho:0-20, Lu:0-20, Mo:0-35, Nb:0-20, Nd:0-20, Pd:0-30, Sm:0-20, Tb:0-20, W:0-50, Y:0-20, Zr:0-20. Note that although zero concentrations are indicated above for the second constituents, there must be some of the material present. Such an alloys include a first, majority phase and a secondary eutectic phase having the properties described above.


In one embodiment, the intermediate layer(s) 170′ include a multi-phase RuCo alloy layer 172′, a low pressure Ru layer 174 analogous to the layer 162, and a high pressure multi-phase layer 176 analogous to the layer 164. In another embodiment, the intermediate layer(s) 170′ include a multi-phase RuCo alloy layer 172′, a low pressure multi-phase Ru layer 174 analogous to the layer 162′, and a high pressure layer 176 analogous to the layer 164′. In another embodiment, the intermediate layer(s) 170′ include a multi-phase RuCo alloy layer 172′, a low pressure multi-phase Ru layer 174 analogous to the layer 162′, and a high pressure multi-phase layer 176 analogous to the layer 164. Thus, the RuCo layer 172′ and one or both of the layers 174 and 176 includes a majority phase and a secondary phase. The characteristics of the majority and secondary phases are as discussed above.


The intermediate layer 170′ may aid in improving the performance of the magnetic media 150 and/or 150′. The grain size and distribution may be controlled by the segregation of secondary (e.g. eutectic) phase to the grain boundaries in the layers 172′ and one or both of the layers 174 and 176. Thus, the grain size may be smaller and the variation in grain size may be reduced. This reduction in grain size and distribution may be passed on to the magnetic recording stack 154. As a result, noise may thus be reduced and signal-to-noise ratio enhanced. Thus, performance of the magnetic recording media 150/150′ at higher densities may be improved by the layer 170′.



FIG. 10 depicts an exemplary embodiment of a method 200 for providing a magnetic recording media such as the media 150. For simplicity, some steps may be omitted, interleaved, and/or combined. The method 200 is also described in the context of providing a magnetic recording disk drive 100 and media 150 depicted in FIGS. 1-2. However, the method 200 may be used to fabricate multiple magnetic recording disks at substantially the same time. The method 200 may also be used to fabricate other magnetic recording media. The method 200 is also described in the context of particular layers. A particular layer may include multiple materials and/or multiple sub-layers. The method 200 also may start after formation of other portions of the magnetic recording media.


Referring to FIGS. 1-2 and 4, the intermediate layer 160 is provided on the substrate, via step 202. Step 202 may include depositing providing one or more multi-phase layers. For example, the layer 160′, 160″, 160′″, 160″, 170 and/or 170′ may be provided in step 202. This may include sputtering, plating, chemical vapor depositing, or otherwise depositing the materials to form the multi-phase layer. Step 202 may also include formation of single phase layers. For example, the layer 160′ which has one multi-phase layer 162 and one single phase layer 164 may be fabricated using step 202.


The magnetic recording stack 154 is provided on the intermediate layer(s) 160, via step 204. Step 204 may include depositing multiple layers such as exchange coupling or exchange breaking layer(s). Fabrication of the media 150/150′ may then be completed.


Using the method 200, the magnetic disk drive 100 and magnetic recording media 150/150′ may be provided. Thus, the benefits of the magnetic recording media 150/150′ and magnetic recording transducer 120 may be achieved.



FIG. 11 depicts an exemplary embodiment of a method 210 for providing a magnetic recording media such as the media 150′. For simplicity, some steps may be omitted, interleaved, and/or combined. The method 210 is also described in the context of providing a disk drive 100 and media 150′ depicted in FIGS. 1 and 4. However, the method 210 may be used to fabricate multiple magnetic recording heads at substantially the same time. The method 210 may also be used to fabricate other magnetic recording media. The method 210 is also described in the context of particular layers. A particular layer may include multiple materials and/or multiple sub-layers. The method 210 also may start after formation of other portions of the magnetic recording media 150′.


Referring to FIGS. 1, 4 and 11, the adhesion layer(s) 155 and antiferromagnetically coupled soft underlayer 156 are optionally provided on the substrate 152 via steps 212 and 214, respectively. The optional orientation control layer 158 is deposited, via step 216. The RuCo layer 172/172′ may be provided in step 218. Step 218 may include providing a multi-phase RuCo layer. Alternatively, a single phase RuCo layer may be formed in step 218. A low pressure Ru layer is deposited in step 220. Step 220 may include forming a single phase or a multi-phase layer. Step 220 includes a low pressure sputter deposition of the material(s) for the layer 174/174′. A high pressure Ru layer is deposited in step 222. Step 222 may include forming a single phase or a multi-phase layer. Step 222 includes a high pressure sputter deposition of the material(s) for the layer 176/176′.


The magnetic recording layer 154 may be deposited, via step 224. Step 222 may include depositing multiple magnetic layers. Fabrication of the magnetic recording media 150/150′ may then be completed. For example, the overcoat layer 159 may also be provided after step 222.


Using the method 210, the magnetic disk drive 100 and magnetic recording media 150/150′ may be provided. Thus, the benefits of the magnetic recording media 150′ and disk drive 100 may be achieved.

Claims
  • 1. A magnetic recording media usable in a magnetic storage device, the magnetic recording media comprising: a substrate;a RuCo layer on the substrate;a first intermediate layer on the RuCo layer and a second intermediate layer on the first intermediate layer, at least one of the first intermediate layer and the second intermediate layer having a majority phase and a secondary phase at a grain boundary thereof, wherein the first intermediate layer further includes an alloy of Ru and at least a first one of Mo, Nb, W, Al, Be, C, Dy, Gd, Ge, Ho, Lu, Nd, Pd, Sm, Tb, Y or Zr at a concentration greater than zero and the second intermediate layer includes an alloy of Ru and at least a second one of Mo, Nb, W, Al, Be, C, Dy, Gd, Ge, Ho, Lu, Nd, Pd, Sm, Tb, Y or Zr at a concentration greater than zero; anda magnetic recording stack configured to store magnetic data, the magnetic recording stack residing on the second intermediate layer such that the first and second intermediate layers are between the substrate and the magnetic recording stack.
  • 2. The magnetic recording media of claim 1, wherein the secondary phase is a eutectic phase.
  • 3. The magnetic recording media of claim 1, wherein the majority phase comprises a first crystal structure, a first orientation, and a first composition, the secondary phase being a precipitate comprising a second composition different from the first composition, the first orientation and the first crystal structure being substantially unchanged by the secondary phase.
  • 4. The magnetic recording media of claim 3, wherein the first crystal structure is a hexagonal closed packed structure.
  • 5. The magnetic recording media of claim 1, wherein the at least one of the first intermediate layer and the second intermediate layer is an Ru—Mo alloy that includes not more than thirty-five atomic percent Mo.
  • 6. The magnetic recording media of claim 1, wherein at least one of the first intermediate layer and the second intermediate layer additionally includes Co.
  • 7. The magnetic recording media of claim 6, wherein the at least one of the first intermediate layer and the second intermediate layer includes (RuCo)100-wXw, with 100-w and w representing concentrations greater than zero of RuCo and a material X, wherein w is at most 35%, and X is one of Mo, Nb, W, Al, Be, C, Dy, Gd, Ge, Ho, Lu, Nd, Pd, Sm, Tb, Y or Zr.
  • 8. The magnetic recording media of claim 1, wherein both the first intermediate layer and the second intermediate layer are multi-phase alloy layers.
  • 9. The magnetic recording media of claim 8, wherein the first one of Mo, Nb, W, Al, Be, C, Dy, Gd, Ge, Ho, Lu, Nd, Pd, Sm, Tb, Y or Zr is W and the second one of Mo, Nb, W, Al, Be, C, Dy, Gd, Ge, Ho, Lu, Nd, Pd, Sm, Tb, Y or Zr is Mo.
  • 10. The magnetic recording media of claim 1, further comprising an orientation control layer disposed between the first and second intermediate layers and the substrate.
  • 11. The magnetic recording media of claim 1, wherein at least one of the first intermediate layer and the second intermediate layer includes W at a concentration greater than zero.
  • 12. A magnetic recording media usable in a magnetic storage device, the magnetic recording media comprising: a substrate;a soft underlayer on the substrate;a RuCo layer on the soft underlayer;a first intermediate layer on the RuCo layer, the first intermediate layer including Ru and at least a first additional element including at least one of Mo, Nb, W, Al, Be, C, Dy, Gd, Ge, Ho, Lu, Nd, Pd, Sm, Tb, Y or Zr in a first concentration that is greater than zero such that the first intermediate layer has a first primary phase and a first secondary phase;a second intermediate layer on the first intermediate layer, the second intermediate layer including Ru and at least a second additional element including at least one of Mo, Nb, W, Al, Be, C, Dy, Gd, Ge, Ho, Lu, Nd, Pd, Sm, Tb, Y or Zr in a second concentration that is greater than zero such that the second intermediate layer has a second primary phase and a second secondary phase, wherein compositions of the first and second intermediate layers are different; anda magnetic recording stack configured to store magnetic data, the magnetic recording stack residing on the second intermediate layer.
  • 13. The magnetic recording media of claim 12, wherein the first intermediate layer includes an alloy of Ru and one of Mo, Nb, or W.
  • 14. The magnetic recording media of claim 12, wherein at least one of the first and second intermediate layers additionally includes Co.
  • 15. The magnetic recording media of claim 14, wherein both the first and second intermediate layer additionally include Co.
  • 16. The magnetic recording media of claim 12, wherein at least one of the first intermediate layer and the second intermediate layer includes not more than thirty atomic percent Mo if the first additional material or the second additional material is Mo, wherein the at least one of the first intermediate layer and the second intermediate layer includes not more than twenty atomic percent Nb if the first additional material or the second additional material is Nb, and wherein the at least one of the first intermediate layer and the second intermediate layer includes not more than fifty percent of W if the first additional material or the second additional material is W.
  • 17. A magnetic recording media usable in a magnetic storage device, the magnetic recording media comprising: a first intermediate layer having a first composition including an alloy of Ru and at least a first additional element including at least one of Mo, Nb, W, Al, Be, C, Dy, Gd, Ge, Ho, Lu, Nd, Pd, Sm, Tb, Y or Zr in a first concentration that is greater than zero;a second intermediate layer on the first intermediate layer, the second intermediate layer having a second composition including an alloy of Ru and at least a second additional element including at least one of Mo, Nb, W, Al, Be, C, Dy, Gd, Ge, Ho, Lu, Nd, Pd, Sm, Tb, Y or Zr in a second concentration that is greater than zero, the second composition different to the first composition, wherein at least one of the first intermediate layer and the second intermediate layer has two phases;a RuCo layer underlying the first intermediate layer; anda magnetic recording stack configured to store magnetic data, the magnetic recording stack residing on the second intermediate layer.
  • 18. The magnetic recording media of claim 17 wherein the at least one of the first intermediate layer and the second intermediate layer is an Ru—Mo alloy that includes not more than thirty-five atomic percent Mo.
  • 19. The magnetic recording media of claim 17 further comprising: a substrate;a soft underlayer on the substrate; andan orientation control layer on the soft underlayer, the orientation control layer directly underlying the RuCo layer.
  • 20. The magnetic recording media of claim 17 wherein the RuCo layer includes at least one of Mo, Nb, W, Al, Be, C, Dy, Gd, Ge, Ho, Lu, Nd, Pd, Sm, Tb, Y and Zr.
CROSS-REFERENCE TO RELATED PATENT APPLICATIONS

This application is a continuation of U.S. patent application Ser. No. 14/556,993, filed Dec. 1, 2014, published as U.S. 2016/0155460 on Jun. 2, 2016 and issued as U.S. Pat. No. 9,818,442 on Nov. 14, 2017, entitled “MAGNETIC MEDIA HAVING IMPROVED MAGNETIC GRAIN SIZE DISTRIBUTION AND INTERGRANULAR SEGREGATION,” which is hereby incorporated by reference in its entirety.

US Referenced Citations (335)
Number Name Date Kind
6013161 Chen et al. Jan 2000 A
6063248 Bourez et al. May 2000 A
6068891 O'Dell et al. May 2000 A
6086730 Liu et al. Jul 2000 A
6099981 Nishimori Aug 2000 A
6103404 Ross et al. Aug 2000 A
6117499 Wong et al. Sep 2000 A
6136403 Prabhakara et al. Oct 2000 A
6143375 Ross et al. Nov 2000 A
6145849 Bae et al. Nov 2000 A
6146737 Malhotra et al. Nov 2000 A
6149696 Jia Nov 2000 A
6150015 Bertero et al. Nov 2000 A
6156404 Ross et al. Dec 2000 A
6159076 Sun et al. Dec 2000 A
6164118 Suzuki et al. Dec 2000 A
6200441 Gornicki et al. Mar 2001 B1
6204995 Hokkyo et al. Mar 2001 B1
6206765 Sanders et al. Mar 2001 B1
6210819 Lal et al. Apr 2001 B1
6216709 Fung et al. Apr 2001 B1
6221119 Homola Apr 2001 B1
6248395 Homola et al. Jun 2001 B1
6261681 Suekane et al. Jul 2001 B1
6270885 Hokkyo et al. Aug 2001 B1
6274063 Li et al. Aug 2001 B1
6283838 Blake et al. Sep 2001 B1
6287429 Moroishi et al. Sep 2001 B1
6290573 Suzuki Sep 2001 B1
6299947 Suzuki et al. Oct 2001 B1
6303217 Malhotra et al. Oct 2001 B1
6309765 Suekane et al. Oct 2001 B1
6358636 Yang et al. Mar 2002 B1
6362452 Suzuki et al. Mar 2002 B1
6363599 Bajorek Apr 2002 B1
6365012 Sato et al. Apr 2002 B1
6381090 Suzuki et al. Apr 2002 B1
6381092 Suzuki Apr 2002 B1
6387483 Hokkyo et al. May 2002 B1
6391213 Homola May 2002 B1
6395349 Salamon May 2002 B1
6403919 Salamon Jun 2002 B1
6408677 Suzuki Jun 2002 B1
6426157 Hokkyo et al. Jul 2002 B1
6429984 Alex Aug 2002 B1
6468670 Ikeda Oct 2002 B1
6482330 Bajorek Nov 2002 B1
6482505 Bertero et al. Nov 2002 B1
6500567 Bertero et al. Dec 2002 B1
6528124 Nguyen Mar 2003 B1
6548821 Treves et al. Apr 2003 B1
6552871 Suzuki et al. Apr 2003 B2
6565719 Lairson et al. May 2003 B1
6566674 Treves et al. May 2003 B1
6571806 Rosano et al. Jun 2003 B2
6628466 Alex Sep 2003 B2
6664503 Hsieh et al. Dec 2003 B1
6670055 Tomiyasu et al. Dec 2003 B2
6682807 Lairson et al. Jan 2004 B2
6683754 Suzuki et al. Jan 2004 B2
6730420 Bertero et al. May 2004 B1
6743528 Suekane et al. Jun 2004 B2
6759138 Tomiyasu et al. Jul 2004 B2
6778353 Harper Aug 2004 B1
6795274 Hsieh et al. Sep 2004 B1
6855232 Jairson et al. Feb 2005 B2
6857937 Bajorek Feb 2005 B2
6893748 Bertero et al. May 2005 B2
6899959 Bertero et al. May 2005 B2
6916558 Umezawa et al. Jul 2005 B2
6939120 Harper Sep 2005 B1
6946191 Morikawa et al. Sep 2005 B2
6967798 Homola et al. Nov 2005 B2
6972135 Homola Dec 2005 B2
7004827 Suzuki et al. Feb 2006 B1
7006323 Suzuki Feb 2006 B1
7016154 Nishihira Mar 2006 B2
7019924 McNeil et al. Mar 2006 B2
7045215 Shimokawa May 2006 B2
7070870 Bertero et al. Jul 2006 B2
7090934 Hokkyo et al. Aug 2006 B2
7099112 Harper Aug 2006 B1
7105241 Shimokawa et al. Sep 2006 B2
7119990 Bajorek et al. Oct 2006 B2
7147790 Wachenschwanz et al. Dec 2006 B2
7161753 Wachenschwanz et al. Jan 2007 B2
7166319 Ishiyama Jan 2007 B2
7166374 Suekane et al. Jan 2007 B2
7169487 Kawai et al. Jan 2007 B2
7174775 Ishiyama Feb 2007 B2
7179549 Malhotra et al. Feb 2007 B2
7184139 Treves et al. Feb 2007 B2
7196860 Alex Mar 2007 B2
7199977 Suzuki et al. Apr 2007 B2
7208236 Morikawa et al. Apr 2007 B2
7220500 Tomiyasu et al. May 2007 B1
7229266 Harper Jun 2007 B2
7239970 Treves et al. Jul 2007 B2
7252897 Shimokawa et al. Aug 2007 B2
7277254 Shimokawa et al. Oct 2007 B2
7281920 Homola et al. Oct 2007 B2
7292329 Treves et al. Nov 2007 B2
7301726 Suzuki Nov 2007 B1
7302148 Treves et al. Nov 2007 B2
7305119 Treves et al. Dec 2007 B2
7314404 Singh et al. Jan 2008 B2
7320584 Harper et al. Jan 2008 B1
7329114 Harper et al. Feb 2008 B2
7375362 Treves et al. May 2008 B2
7420886 Tomiyasu et al. Sep 2008 B2
7425719 Treves et al. Sep 2008 B2
7471484 Wachenschwanz et al. Dec 2008 B2
7498062 Calcaterra et al. Mar 2009 B2
7531485 Hara et al. May 2009 B2
7537846 Ishiyama et al. May 2009 B2
7549209 Wachenschwanz et al. Jun 2009 B2
7569490 Staud Aug 2009 B2
7597792 Homola et al. Oct 2009 B2
7597973 Ishiyama Oct 2009 B2
7608193 Wachenschwanz et al. Oct 2009 B2
7632087 Homola Dec 2009 B2
7656615 Wachenschwanz et al. Feb 2010 B2
7682546 Harper Mar 2010 B2
7684152 Suzuki et al. Mar 2010 B2
7686606 Harper et al. Mar 2010 B2
7686991 Harper Mar 2010 B2
7695833 Ishiyama Apr 2010 B2
7722968 Ishiyama May 2010 B2
7733605 Suzuki et al. Jun 2010 B2
7736768 Ishiyama Jun 2010 B2
7755861 Li et al. Jul 2010 B1
7758732 Calcaterra et al. Jul 2010 B1
7833639 Sonobe et al. Nov 2010 B2
7833641 Tomiyasu et al. Nov 2010 B2
7910159 Jung Mar 2011 B2
7911736 Bajorek Mar 2011 B2
7924519 Lambert Apr 2011 B2
7944165 O'Dell May 2011 B1
7944643 Jiang et al. May 2011 B1
7955723 Umezawa et al. Jun 2011 B2
7983003 Sonobe et al. Jul 2011 B2
7993497 Moroishi et al. Aug 2011 B2
7993765 Kim et al. Aug 2011 B2
7998912 Chen et al. Aug 2011 B2
8002901 Chen et al. Aug 2011 B1
8003237 Sonobe et al. Aug 2011 B2
8012920 Shimokawa Sep 2011 B2
8038863 Homola Oct 2011 B2
8057926 Ayama et al. Nov 2011 B2
8062778 Suzuki et al. Nov 2011 B2
8064156 Suzuki et al. Nov 2011 B1
8076013 Sonobe et al. Dec 2011 B2
8089829 Akagi et al. Jan 2012 B2
8092931 Ishiyama et al. Jan 2012 B2
8100685 Harper et al. Jan 2012 B1
8101054 Chen et al. Jan 2012 B2
8125723 Nichols et al. Feb 2012 B1
8125724 Nichols et al. Feb 2012 B1
8137517 Bourez Mar 2012 B1
8142916 Umezawa et al. Mar 2012 B2
8163093 Chen et al. Apr 2012 B1
8171949 Lund et al. May 2012 B1
8173282 Sun et al. May 2012 B1
8178480 Hamakubo et al. May 2012 B2
8206789 Suzuki Jun 2012 B2
8218260 Iamratanakul et al. Jul 2012 B2
8247095 Champion et al. Aug 2012 B2
8257783 Suzuki et al. Sep 2012 B2
8298609 Liew et al. Oct 2012 B1
8298689 Sonobe et al. Oct 2012 B2
8309239 Umezawa et al. Nov 2012 B2
8316668 Chan Nov 2012 B1
8331056 O'Dell Dec 2012 B2
8354618 Chen et al. Jan 2013 B1
8367228 Sonobe et al. Feb 2013 B2
8383209 Ayama Feb 2013 B2
8390956 Tonooka et al. Mar 2013 B2
8394243 Jung et al. Mar 2013 B1
8397751 Chan et al. Mar 2013 B1
8399809 Bourez Mar 2013 B1
8402638 Treves et al. Mar 2013 B1
8404056 Chen et al. Mar 2013 B1
8404369 Ruffini et al. Mar 2013 B2
8404370 Sato et al. Mar 2013 B2
8406918 Tan et al. Mar 2013 B2
8414966 Yasumori et al. Apr 2013 B2
8425975 Ishiyama Apr 2013 B2
8431257 Kim et al. Apr 2013 B2
8431258 Onoue et al. Apr 2013 B2
8453315 Kajiwara et al. Jun 2013 B2
8488276 Jung et al. Jul 2013 B1
8491800 Dorsey Jul 2013 B1
8492009 Homola et al. Jul 2013 B1
8492011 Itoh et al. Jul 2013 B2
8496466 Treves et al. Jul 2013 B1
8517364 Crumley et al. Aug 2013 B1
8517657 Chen et al. Aug 2013 B2
8524052 Tan et al. Sep 2013 B1
8530065 Chernyshov et al. Sep 2013 B1
8546000 Umezawa Oct 2013 B2
8551253 Na'Im et al. Oct 2013 B2
8551627 Shimada et al. Oct 2013 B2
8556566 Suzuki et al. Oct 2013 B1
8559131 Masuda et al. Oct 2013 B2
8562748 Chen et al. Oct 2013 B1
8565050 Bertero et al. Oct 2013 B1
8570844 Yuan et al. Oct 2013 B1
8580410 Onoue Nov 2013 B2
8584687 Chen et al. Nov 2013 B1
8591709 Lim et al. Nov 2013 B1
8592060 Tamai et al. Nov 2013 B2
8592061 Onoue et al. Nov 2013 B2
8596287 Chen et al. Dec 2013 B1
8597723 Jung et al. Dec 2013 B1
8603649 Onoue Dec 2013 B2
8603650 Sonobe et al. Dec 2013 B2
8605388 Yasumori et al. Dec 2013 B2
8605555 Chernyshov et al. Dec 2013 B1
8608147 Yap et al. Dec 2013 B1
8609263 Chernyshov et al. Dec 2013 B1
8619381 Moser et al. Dec 2013 B2
8623528 Umezawa et al. Jan 2014 B2
8623529 Suzuki Jan 2014 B2
8634155 Yasumori et al. Jan 2014 B2
8658003 Bourez Feb 2014 B1
8658292 Mallary et al. Feb 2014 B1
8665541 Saito Mar 2014 B2
8668953 Buechel-Rimmel Mar 2014 B1
8674327 Poon et al. Mar 2014 B1
8685214 Moh et al. Apr 2014 B1
8685547 Bian et al. Apr 2014 B2
8696404 Sun et al. Apr 2014 B2
8696874 Wang et al. Apr 2014 B2
8711499 Desai et al. Apr 2014 B1
8743666 Bertero et al. Jun 2014 B1
8758912 Srinivasan et al. Jun 2014 B2
8787124 Chernyshov et al. Jul 2014 B1
8787130 Yuan et al. Jul 2014 B1
8791391 Bourez Jul 2014 B2
8795765 Koike et al. Aug 2014 B2
8795790 Sonobe et al. Aug 2014 B2
8795857 Ayama et al. Aug 2014 B2
8800322 Chan et al. Aug 2014 B1
8811129 Yuan et al. Aug 2014 B1
8817410 Moser et al. Aug 2014 B1
9685184 Srinivasan et al. Jun 2017 B1
9818442 Srinivasan Nov 2017 B2
20020060883 Suzuki May 2002 A1
20030022024 Wachenschwanz Jan 2003 A1
20030219630 Moriwaki et al. Nov 2003 A1
20040022387 Weikle Feb 2004 A1
20040047758 Olson et al. Mar 2004 A1
20040132301 Harper et al. Jul 2004 A1
20040202793 Harper et al. Oct 2004 A1
20040202865 Homola et al. Oct 2004 A1
20040209123 Bajorek et al. Oct 2004 A1
20040209470 Bajorek Oct 2004 A1
20050036223 Wachenschwanz et al. Feb 2005 A1
20050053803 Umeda Mar 2005 A1
20050151300 Harper et al. Jul 2005 A1
20050155554 Saito Jul 2005 A1
20050167867 Bajorek et al. Aug 2005 A1
20050263401 Olsen et al. Dec 2005 A1
20060147758 Jung et al. Jul 2006 A1
20060181697 Treves et al. Aug 2006 A1
20060207890 Staud Sep 2006 A1
20070070549 Suzuki et al. Mar 2007 A1
20070245909 Homola Oct 2007 A1
20080075845 Sonobe et al. Mar 2008 A1
20080093760 Harper et al. Apr 2008 A1
20080131735 Das et al. Jun 2008 A1
20090117408 Umezawa et al. May 2009 A1
20090130346 Osawa May 2009 A1
20090136784 Suzuki et al. May 2009 A1
20090169922 Ishiyama Jul 2009 A1
20090191331 Umezawa et al. Jul 2009 A1
20090202866 Kim et al. Aug 2009 A1
20090311557 Onoue et al. Dec 2009 A1
20100143752 Ishibashi et al. Jun 2010 A1
20100190035 Sonobe et al. Jul 2010 A1
20100196619 Ishiyama Aug 2010 A1
20100196740 Ayama et al. Aug 2010 A1
20100209601 Shimokawa et al. Aug 2010 A1
20100215992 Horikawa et al. Aug 2010 A1
20100232065 Suzuki et al. Sep 2010 A1
20100261039 Itoh et al. Oct 2010 A1
20100279151 Sakamoto et al. Nov 2010 A1
20100300884 Homola et al. Dec 2010 A1
20100304186 Shimokawa Dec 2010 A1
20110097603 Onoue Apr 2011 A1
20110097604 Onoue Apr 2011 A1
20110151280 Takahashi et al. Jun 2011 A1
20110171495 Tachibana et al. Jul 2011 A1
20110206947 Tachibana et al. Aug 2011 A1
20110212346 Onoue et al. Sep 2011 A1
20110223446 Onoue et al. Sep 2011 A1
20110244119 Umezawa et al. Oct 2011 A1
20110299194 Aniya et al. Dec 2011 A1
20110311841 Saito et al. Dec 2011 A1
20120069466 Okamoto et al. Mar 2012 A1
20120070692 Sato et al. Mar 2012 A1
20120077060 Ozawa Mar 2012 A1
20120127599 Shimokawa et al. May 2012 A1
20120127601 Suzuki et al. May 2012 A1
20120129009 Sato et al. May 2012 A1
20120140359 Tachibana Jun 2012 A1
20120141833 Umezawa et al. Jun 2012 A1
20120141835 Sakamoto Jun 2012 A1
20120148875 Hamakubo et al. Jun 2012 A1
20120156523 Seki et al. Jun 2012 A1
20120164488 Shin et al. Jun 2012 A1
20120170152 Sonobe et al. Jul 2012 A1
20120171369 Koike et al. Jul 2012 A1
20120175243 Fukuura et al. Jul 2012 A1
20120189872 Umezawa et al. Jul 2012 A1
20120196049 Azuma et al. Aug 2012 A1
20120207919 Sakamoto et al. Aug 2012 A1
20120225217 Itoh et al. Sep 2012 A1
20120251842 Yuan et al. Oct 2012 A1
20120251846 Desai et al. Oct 2012 A1
20120276417 Shimokawa et al. Nov 2012 A1
20120308722 Suzuki et al. Dec 2012 A1
20130040167 Alagarsamy et al. Feb 2013 A1
20130071694 Srinivasan et al. Mar 2013 A1
20130165029 Sun et al. Jun 2013 A1
20130175252 Bourez Jul 2013 A1
20130216865 Yasumori et al. Aug 2013 A1
20130230647 Onoue et al. Sep 2013 A1
20130314815 Yuan et al. Nov 2013 A1
20140011054 Suzuki Jan 2014 A1
20140044992 Onoue Feb 2014 A1
20140050843 Yi et al. Feb 2014 A1
20140151360 Gregory et al. Jun 2014 A1
20140234666 Knigge et al. Aug 2014 A1
20160125903 Tamai May 2016 A1
Non-Patent Literature Citations (5)
Entry
Brown, et al., “Correlations for Diffusion Constants,” Acta Metallurgica, Aug. 1980, vol. 28, Issue 8, pp. 1085-1101.
Final Rejection Office Action on U.S. Appl. No. 14/556,993 dated Apr. 28, 2017(10 pages).
MSE 201, Introduction to Materials Science, Diffusion, Callister, Ch. 5, University of Tennessee, Dept. of Materials Science and Engineering, pp. 1-26.
Notice of Allowance on U.S. Appl. No. 14/556,993 dated Jul. 13, 2017 (7 pages).
Office Action on Chinese Patent Application No. 2015108544523 dated Jun. 1, 2018.
Related Publications (1)
Number Date Country
20180047420 A1 Feb 2018 US
Continuations (1)
Number Date Country
Parent 14556993 Dec 2014 US
Child 15794140 US