The present invention pertains to a magnet housing assembly and method of construction.
Magnet housing assemblies are particularly desirable for use with magnetic advertising signs used on automotive vehicles. Because the magnets must withstand forces occurring during the vehicle's motion without becoming dislodged, high strength is necessary; however, when the signs are used as temporary fixtures, magnet strength must not be so high as to defeat removal. Therefore for certain applications, it is desirable to use a plurality of smaller magnets arranged in a permanent fashion inside a housing, so that the magnetic force is distributed across the housing's surface area.
To assure that the magnets do not shift during construction of the assembly and during use, it is necessary to permanently fix the magnets in place. Although glue is used as one method to fix magnets in place, the glue must be able to withstand the temperatures to which the finished housing will be subjected for applying a coating, such as polyolefin or a similar coating material to be applied. Such coatings, regardless of the method of application, are applied at temperatures in the range of 400 to 500 degrees Fahrenheit, and thus, require the use of high temperature glue to assure the magnet remains attached to the housing during and after manufacturing. Use of high temperature glue is relatively expensive as well as unnecessary for the routine use of the magnet. In order to avoid these problems alternate solutions are desirable.
A mounting assembly according to the teachings of the present invention may comprise a housing having a bottom wall and an upstanding sidewall forming a cavity therefor. A plate is carried within the cavity and includes a plurality of apertures therein. Permanent magnets are positioned within each of the plurality of apertures. A cover having a top wall and an upstanding sidewall makes frictional contact with the upstanding sidewall of the housing for securing the cover to the housing. As a result, transverse movement of each magnet is limited by placement of the magnet within the aperture and longitudinal movement limited by the opposing inside surfaces of the cover and housing bottom walls.
The housing, the plate, and the cover each may include a central opening for receiving a fastener therethrough when fastening the mounting assembly to an object, and wherein each of the plurality of apertures within the plate is offset from the central opening. Optionally, the housing and cover may be cylindrical in shape. A plastic coating may substantially covering the housing and cover outside surfaces.
With regard to the plate, at least a portion of the plate may be in a spaced relation to the bottom wall of the housing. The plate may comprise an arcuate shape for permitting a peripheral portion to contact the housing bottom wall while having an intermediate portion including the plurality of apertures spaced from the bottom wall. Tabs may be carried by the housing, cover, or plate. The tabs may extend from a peripheral portion of the plate for making frictional contact with at least one of the cover and the housing upstanding sidewall for providing a compression-fit therebetween.
A central portion of the cover may include a depression with a portion of the depression contacting or at least proximate the bottom wall of the housing when the cover is secured thereto. One embodiment may include the cover secured within the housing through frictional contact between a cooperating outer surface of the upstanding sidewall of the cover and an inner surface of the upstanding wall of the housing. The magnets may have varying cross-sections and shapes with the aperture shaped accordingly to accommodate the shape of the magnet.
An embodiment of the invention may also be described, by way of example, in an apparatus and method for containing one or more magnets that may be used as a means for removably attaching an object to a finished metal surface using a plurality of magnets held in a magnet housing assembly. A magnet housing may be made from a metal or from any other suitable material, and be described to include a bottom portion, a top portion and an insert template or plate. The insert template may have one or more apertures that allow non-magnetized elements to be secured in a fixed position without glue. The insert template is placed inside the bottom portion and the magnetic elements are introduced into the apertures in the insert template. The top portion or cover is then fitted between the inside wall of the bottom portion and the insert. The completed housing assembly may be dipped or sprayed using an appropriate coating for the application for which the magnets are required. Once the coating dries, the housing assembly is subjected to a magnetic field, by way of example, for causing the non-magnetized elements to become magnetized for use as permanent magnets in a contemplated application.
A method aspect of the invention includes assembling a mounting for attaching an object to a metallic surface. The method may comprise providing a housing having a bottom wall and an upstanding sidewall forming a cavity therein, inserting a plate within the cavity, the plate having a plurality of apertures therein, placing a magnetic substrate within each of the plurality of apertures, securing a cover to the housing for providing an assembly, the cover having a bottom wall and an upstanding sidewall, the upstanding sidewall making frictional contact with the upstanding sidewall of the housing for securing the cover thereto, wherein transverse movement of each magnet is limited by placement of the magnet within the aperture and longitudinal movement limited by the opposing inside surfaces of the cover and housing bottom walls, and exposing the coated assembly to a field for magnetizing the magnetic substrate so as to form a permanent magnet. The method may further comprise coating the assembly with a plastic material.
Embodiments of the invention are described by way of example with reference to the accompanying drawings in which:
a is a cross-sectional view of a mounting assembly constructed in accordance with the present invention while illustrating an alternate configuration and dimension of components thereof;
a is a top perspective view of one magnet having a rectangular cross section;
b-3d are top views illustrating individual components of a mounting assembly of
e is a top view of partially assembled components less the cover for illustrating by way of example, one arrangement thereof in accordance with the teachings of the present invention;
a-4c are sequential cross-sectional views illustrating one method of assembling the components of
a and 5b depict alternative configurations of the present invention; and
a-6c depict alternative arrangements of magnets positioned within a plate of a mounting assembly, by way of example.
The present invention will now be described more fully with reference to the accompanying drawings in which alternate embodiments of the invention are shown and described. It is to be understood that the invention may be embodied in many different forms and should not be construed as limited to the illustrated embodiments set forth herein. Rather, these embodiments are provided so that this disclosure may be thorough and complete, and will convey the scope of the invention to those skilled in the art.
With reference initially to
The housing 16, the plate 24, and the cover 30 each include a central opening 40 cooperating for receiving a fastener 42 therethrough, such as the screw illustrated by way of example with reference again to
With reference to
By way of further detail, and with reference again to
The plate 24, an insert template has a plurality of apertures 26 having a similar shape as the magnet 28 but fractionally larger in dimension than the corresponding magnet. When a magnet 28 is inserted in the aperture 26, the convex plate 24 rests with its outer circumference touching the inside surface 21 of the housing upstanding wall 20. The housing 16 thus holds the plate 24 in place and provides a structural framework for the assembly 10. The cover 30 is then inserted into the housing 16 so that the cover outer surface 35 extends along the inner surface 21 of the sidewall 20. The tabs 50, as illustrated again by way of example in
When fully assembled, only an outside surface of the cover bottom wall 32, an outside surface of the housing bottom wall 18, and a circumferential outside surface of the housing upstanding sidewall 20 are exposed. Then the coating 44, such as polyolefin or another similar polymeric coating depending on the contemplated application may be applied to the fabricated assembly 10. The completed assembly 10 may then be subjected to a magnetic field, which activates the magnets 28.
a illustrates an individual polygonal-shaped magnet 28, such as may be used in a completed assembly 10. A person skilled in the art will recognize that magnets come in a number of shapes including toroidal, semi-toroidal as well as various polygonal shapes, and irregular shapes and circles. The shape shown is illustrative of these possibilities.
As herein described, by way of example, the cover 30 is made from stainless steel or another non-magnetic material and is formed as a circular disk having the sidewall 34 and an outside diameter slightly smaller than the inside diameter of the housing 16, as illustrated with reference again to
With reference again to
With regard to a method of assembling, reference is again made to
Alternative embodiments are presented with reference to
b illustrates an inside view of an alternate assembly 210 having two semi toroidal-shaped magnets 228 arranged along an axis of orientation 230 so that the center of one magnet 228 is located 180-degrees from the center of a second opposing magnet 229. Four crimps or tabs 250 are located on the surface of plate 24 and are oriented at right angles with respect to a second set of axes 231. As earlier described, the apertures 26 are modified in shape to accommodate the semi-toroidal magnets.
a-6c present yet additional arrangements. An arrangement of five square magnets is presented in
By way of further example,
With reference again to
Many modifications and other embodiments of the invention will come to the mind of one skilled in the art having the benefit of the teachings presented in the foregoing descriptions and the associated drawings. Therefore, it is to be understood that the invention is not to be limited to the specific embodiments disclosed, and that modifications and alternate embodiments are intended to be included within the scope of the appended claims.
This application claims the benefit of U.S. Provisional Application No. 60/536,303, filed Jan. 14, 2004 for “Magnet Housing Assembly and Method,” the disclosure of which is hereby incorporated herein in its entirety by reference.
Number | Date | Country | |
---|---|---|---|
60536303 | Jan 2004 | US |