This disclosure relates to magnetic particle spectroscopy.
Bioassays are procedures for detecting or measuring the concentration or potency of a substance by its effect on living cells or tissues. Immunoassays are procedures for detecting or measuring specific proteins or other substances through their properties as antigens and/or antibodies. In some instances, immunoassays, among other tests, may be performed using magnetic particle spectroscopy (MPS).
In general, this disclosure describes example magnetic particle spectroscopy (MPS) devices and techniques for detecting chemicals and biological substances via MPS.
In some examples, a handheld MPS device is described. The handheld MPS device may be configured to generate an alternating magnetic field including a plurality of frequencies via conductive excitation coils. The handheld MPS device may be configured to position a sample including surface functionalized magnetic nanoparticles (MNPs) within the conductive excitation coils and within the alternating magnetic field. The handheld MPS device may be further configured to determine a magnetic response of the surface functionalized MNPs to the alternative magnetic field via a conductive sensing coil, e.g., a pick-up coil, which may generate a signal based on the magnetic response. In some examples, a biological sample may be added to the sample including the surface functionalized MNPs, and analytes within the biological sample may bind with the surface functionalized MNPs thereby changing the hydrodynamic size of the surface functionalized MNPs and, consequently, the magnetic response of the surface functionalized MNPs to the alternating magnetic field.
In some examples, a microfluidic MPS device is described. The microfluidic MPS device may be configured to be in fluid communication with a microfluidic filtering device configured to filter a fluid, e.g., blood, mix a fluid including analytes from the filtered fluid with a fluid including surface functionalized MNPs via microfluidic mixing channels, and provide the mixed fluid to a plurality of microfluidic channels. The microfluid MPS device may include a microfluidic sample strip including a plurality of sensing regions and in fluidic communication with one of the plurality of microfluidic channels of the microfluidic filtering device. Each sensing region may include conductive excitation coils and conductive sensing coils, and a surface area functionalized with biologic probes configured to bind with a specific analyte type. The sensing coils of each sensing region may detect the magnetic response of surface functionalized MNPs captured via binding to analytes that are bound to probes on the sensing region surface to an alternating magnetic field including a plurality of frequencies generated via the conductive excitation coils, and the sensing coils may output a signal proportional to the detected magnetic response. In some examples, the microfluidic MPS device may include a fluid container rather than a microfluidic sample strip. The fluid container may include one or more inner surfaces functionalized via coating of biologic probes configured to bind to a specific analyte type. The fluid container may be in fluidic communication with one of the plurality of microfluidic channels of the microfluidic device. The fluid container may include, and be disposed within, conductive excitation coils for generating an alternating magnetic field including a plurality of frequencies and conductive sensing coils for detecting the magnetic response of magnetic nanoparticles placed within the fluid container and bound to the specific analyte type bound to the surface via binding with the biologic probes.
Accordingly, the techniques disclosed may provide one or more technical advantages. For example, the techniques may provide a one step, wash-free immunoassay with reduced technical requirements. In examples, the techniques may improve sensitivity, improve portability, reduce cost and maintenance, reduce sample preparation time and complexity, reduce reliance on skilled technicians, may be performed in vitro, and may provide a point-of-care (POC) detection kit with improved ease of use.
In some examples, the disclosure describes a bioassay system comprising: at least one conductive excitation coil, the at least one conductive excitation coil configured to generate an alternating magnetic field including a first frequency and a second frequency; a sample mount configured to position a sample within the at least one conductive excitation coil; and at least one sensing conductive coil configured to determine a magnetic response of a sample positioned within the sample mount to the alternating magnetic field.
In some examples, the disclosure describes a bioassay system comprising: a first sample region comprising: at least one first conductive excitation coil, the at least one first conductive excitation coil configured to generate an alternating magnetic field including one of at least one sinusoidal wave, a square wave, a triangular wave, a sawtooth wave, and combination of sinusoids thereof, a first surface within the first sample region, the first surface coated with at least one probe configured to capture a first analyte type; and at least one first conductive sensing coil configured to determine a magnetic response of a surface functionalized MNP configured to be captured by the first analyte type; a second sample region comprising: at least one second conductive excitation coil, the at least one second conductive excitation coil configured to generate an alternating magnetic field including one of at least one sinusoidal wave, a square wave, a triangular wave, a sawtooth wave, and combination of sinusoids thereof; a second surface within the second sample region, the second surface coated with at least one probe configured to capture a second analyte type; at least one second conductive sensing coil configured to determine a magnetic response of a surface functionalized MNP configured to be captured by the second analyte type.
In some examples, the disclosure describes a bioassay system comprising: at least one conductive excitation coil, the at least one conductive excitation coil configured to generate an alternating magnetic field including a plurality of frequencies; a sample mount configured to position a sample within the at least one conductive excitation coil; and at least one sensing conductive coil configured to determine a magnetic response of a sample positioned within the sample mount to the alternating magnetic field.
Thus, the disclosed embodiments provide MPS techniques for one step, wash-free immunoassays with improved portability and sensitivity and reduced cost and complexity.
Like symbols in the drawings indicate like elements.
In recent years, magnetic particle spectroscopy (MPS) has emerged as a new technology for immunoassay applications. In MPS, alternating magnetic fields may be applied to magnetic nanoparticles (MNPs). The magnetic responses of these nanoparticles may be collected and recorded by a pair of specially designed pick-up coils. These magnetic responses may contain higher harmonics that are specific to the physical changes of the nanoparticles, such as binding events of target analytes to nanoparticles. MPS may be a volumetric-based bioassay method that analyzes the response signal from the whole nanoparticle suspension, and may allow for one step, wash-free immunoassay with reduced technical requirements. In examples, a handheld MPS system that may have high, or increased, sensitivity, reduced cost, may be performed in vitro, and may be an easy-to-use point-of-care (POC) detection kit is disclosed.
Magnetic particle imaging (MPI) has emerged as a new imaging modality that directly detects MNP tracers using alternating magnetic fields. MPS, a derivative technology of MPI, has emerged as a novel immunoassay tool that may be a wash-free, easy-to-use, and portable home healthcare modality. MPS may be interpreted as OD MPI, e.g., a spatially independent MPI, where a bi-directional sinusoidal magnetic field may be applied to a suspension of MNPs. The magnetization of MNPs relax in response to the external magnetic field through Brownian and Néel relaxations. These MNPs may be specially designed and coated with antibodies that specifically recognize and bind to target analytes from biofluid samples. Due to the nonlinear magnetic responses of these MNPs, higher harmonics may be picked up by a pair of specially designed pick-up coils. These harmonics may be extracted by means of appropriate filtering and may be indicators of the physical environments of MNPs, for example, the viscosity and temperature of the liquid medium as well as the binding events of target analytes onto MNPs. Since biological tissues and fluids are nonmagnetic, there may be negligible magnetic background noise from biological samples. MNPs may be the sole sources of magnetic responses from testing samples and this volumetric-based immunoassay tool may allow for reduced sample preparation.
Conventional disease diagnosis systems are often bulky in size, expensive, and rely on the expertise of skilled technicians as well as daily equipment maintenance. Such systems may not be used widely as advanced immunoassay technologies. In addition, disease diagnosis may often be unaffordable, for example, for people living in poor regions and developing countries. In some examples, the current disclosure describes MPS handheld devices for early diagnosis of diseases that may be portable and cost-effective. In some examples, the MPS handheld devices may mitigate the health burden in poor and developing regions and may enable early diagnosis of diseases, which may effectively prevent the spread of infectious diseases and save lives. In some examples, the MPS handheld devices may be used indoors or outdoors, for example, at research centers, medical clinics, homes, and in the field. In some examples, the MPS handheld device may provide users with an inexpensive, fast, convenient, and easy-to-use monitoring system. For example, the MPS handheld devices may allow users to perform daily monitoring of chronic diseases. In some implementations, the MPS handheld device may provide clinics, hospitals, and pharmaceutical industries with reduced laboratory and maintenance expenses. The MPS handheld devices may additionally provide versatile bio-sensing ability with a simple process, portability, and the ability to communicate wirelessly with mobile devices. In some examples, after receiving user consent, the MPS handheld devices may enable users to share real-time and long-term monitoring information with a medical provider and empower remote disease diagnostics, and may enable sharing of real-time information with local, regional, state, and/or federal entities, such as the Centers for Disease Control, for real-time monitoring of the spread and/or overspread of infectious disease. The MPS handheld devices may be a platform used for different disease detection and multiplexed immunoassays using just one sample (e.g. a drop of body fluid) in a single test.
In the example shown, MPS handheld device 102 includes a sample loading port 110, coils 112, a housing 114, and circuitry 116. Sample loading port 110 may be configured to accept samples, for example, sample vial 108, and to position the sample to be tested in the correct position with respect to coils 112 for an MPS measurement or measurements. Coils 112 may include drive coils, e.g., primary coils, secondary coils, etc., and pick-up coils, or any type of coil suitable for forming, controlling, and detecting or sensing magnetic fields. Coils 112 may be made of any suitable conductive and/or magnetic material, for example, copper, silver, aluminum, or the like. Housing 114 may be configured to enclose, support, and position the components of MPS handheld device 102 correctly with respect to each other, e.g., sample loading port 110 and coils 112, to provide a structure for connecting circuitry 116 to coils 112 and any other components of MPS handheld device 102, and to provide structure for a user physically manipulate MPS handheld device 102. In some examples, housing 114 may be 3D printed with any suitable material, such as a polymer. In some examples, the polymer may include polylactic acid (PLA). In some examples, MPS handheld device 102 may be manipulatable by hand by a user, e.g., MPS handheld device 102 may be a handheld device.
In some examples, sample vial 108 may include or contain a liquid including one or more MNPs. In some examples, material to be tested, e.g., a fluid such as a sample of a patient's blood or blood components, may be added to sample vial 108. The MNPs included in sample vial 108 may be surface functionalized via coating with ligands (e.g., carboxylic acid and amine, and the like), proteins (e.g., antibodies, streptavidin, protein A, and the like), antigens, nucleic acids (e.g., deoxyribonucleic acid (DNA), ribonucleic acid (RNA), or the like) or any combination thereof, or may be carried in a liquid. Sample vial 108 may be configured to have a long shelf life, for example, a shelf life greater than one hour, greater than one day, greater than one week, greater than one month, greater than one year, greater than ten years, or any other long shelf life. In some examples, the MNPs included in sample vial 108 may be configured to be stored at room temperature, or at lower temperatures, for example, near 4° Celsius (C). The MNPs included in sample vial 108 may be configured to be surface functionalized with different antibodies, antigens, DNA, RNA, and the like, designed to detect one or more specific biomarkers, e.g., one or more specific disease. In some examples, sample vial 108 may be a flat bottom, USP type I glass vial, may have dimensions of 31 millimeters (mm) by 5 mm and a volume capacity of 0.25 milliliters (mL), and may be one-time use only, e.g., disposable. In other examples, sample vial 108 may be a plastic vial, or made of any other suitable material.
In some examples, MPS handheld device 102 may be communicatively coupled, for example by a wired or a wireless connection 118 and/or 120, to computing device 104 and/or distributed system 106. In some examples, connection 118 and/or 120 may be a secured connection, e.g., encrypted, requiring two-factor authentication, and the like. Measurements and/or information corresponding to measurements may be transferred to computing device 106 and/or distributed system 106, for example, for processing of measurements and/or information corresponding to measurements. In some examples, circuitry 116 of MPS handheld device 102 may include processing circuitry 136 and memory 134, and may process measurements and/or information corresponding to measurements without transferring the measurements and/or information corresponding to measurements to computing device 104 or distributed computing system 106. In some examples, computing device 104 may be communicatively coupled to distributed computing system 106, for example by a wired or a wireless connection 120, and measurements and/or information corresponding to measurements from MPS handheld device 102 received by computing device 104 may be transferred to distributed computing system 106, for example, for processing of measurements and/or information corresponding to measurements.
In the illustrated example, computing device 106 may include processing circuitry 126 coupled to memory 124 and to a display, one or more outputs, and one or more user inputs of a user interface. Processing circuitry 126, as well as processing circuitry 136, and other processing modules or circuitry described herein, e.g., processing circuitry 146 of distributed computing system 106, may be any suitable software, firmware, hardware, or combination thereof. Processing circuitry 126, 136, 146 may include any one or more microprocessors, controllers, digital signal processors (DSPs), application specific integrated circuits (ASICs), field-programmable gate arrays (FPGAs), or discrete logic circuitry. The functions attributed to processors described herein, including processing circuitry 126, may be provided by processing circuitry of a hardware device, e.g., as supported by software and/or firmware.
In some examples, processing circuitry 126, as well as processing circuitry 136, 146, may be configured to determine diagnosis information associated with MPS measurements and/or MPS measurement information. For example, the processing circuitry 126 may determine amplitudes and/or phases of magnetic fields detected via coils 112 and may perform any suitable signal processing to determine a diagnosis based on the amplitudes and/or phases of the magnetic fields. Processing circuitry 126 may also receive input signals from additional sources (not shown). For example, processing circuitry 126 may receive an input signal containing position information, such as Global Navigation Satellite System (GNSS) coordinates of MPS handheld device 102 and/or computing device 104. Additional input signals may be used by processing circuitry 126 in any of the calculations or operations it performs. In some examples, processing circuitry 126 may be adapted to execute software, which may include an operating system and one or more applications, as part of performing the functions described herein. In some examples, processing circuitry 126 may include one or more processing circuitry modules for performing each or any combination of the functions described herein.
In some examples, processing circuitry 126 may be coupled to memory 124, processing circuitry 136 may be coupled to memory 134, and processing circuitry 146 may be coupled to memory 144. Memory 124, as well as memory 134 and 144, may include any volatile or non-volatile media, such as a random-access memory (RAM), read only memory (ROM), non-volatile RAM (NVRAM), electrically erasable programmable ROM (EEPROM), flash memory, and the like. Memory 124, 134, and 144 may be a storage device or other non-transitory medium. Memory 124, 134, and 144 may be used by processing circuitry 126, 136, and 146, respectively, for example, to store information corresponding MPS handheld device 102 measurements. In some examples, processing circuitry 126, 136, and 146 may store measurements or previously received data in memory 124, 134, and 144, respectively, and/or calculated values for later retrieval. In some examples, MPS handheld device 102 may be powered by a wall-plug, e.g., via alternating current (AC) power and may include power circuitry such as an AC adapter. In some examples, MPS handheld device 102 may be alternatively and/or additionally powered by batteries, solar cells, or any other suitable power source.
Processing circuitry 126 may be coupled to a user interface including a display, user inputs, and outputs. In some examples, the display may include one or more display devices (e.g., monitor, personal digital assistant (PDA), mobile phone, tablet computer, any other suitable display device, or any combination thereof). For example, the display may be configured to display measurements, measurement information, and/or diagnosis information. In some examples, the user input is configured to receive input from a user, e.g., information corresponding to MPS handheld device 102, a patient, and/or a sample, e.g., sample vial 108. For example, a user may input information such as MPS handheld device 102 parameters or sample vial 108 information by manually entering the product number from MPS handheld device 102 or sample vial 108, or by scanning a quick response (QR) code/bar code from MPS handheld device 102 or sample vial 108. In some examples, MPS handheld device 102 and/or sample vial 108 may be labeled with a serial number as well as a QR code or bar code for a user to input information before testing.
The user input may include components for interaction with a user, such as a keypad and a display, which may be the same as the display. In some examples, the display may be a cathode ray tube (CRT) display, a liquid crystal display (LCD) or light emitting diode (LED) display and the keypad may take the form of an alphanumeric keypad or a reduced set of keys associated with particular functions. The user input, additionally or alternatively, may include a peripheral pointing device, e.g., a mouse, via which a user may interact with the user interface. In some examples, the displays may include a touch screen display, and a user may interact with the user input via the touch screens of the displays. In some examples, the user may also interact with the user input remotely via a networked computing device.
In the examples shown, power unit 202 is configured to generate electrical power, for example, usable direct current (DC) voltages, from an off-board alternating current (AC) power supply to be used by multiple digital and analog system components. Power unit 202 may comprise an off-board AC to DC power supply adapter to provide DC power to MPS handheld device 102. In some examples, the DC voltage may be further dropped down using high current rated linear drop-off (LDO) regulators and switching power supply components for providing a stable supply at suitable voltages to be used by different stages of MPS handheld device 102. For example, an LDO may be utilized to generate a +/−2.5V supply voltage, or a +/−5V supply voltage, or a +3.3V supply voltage, or any other suitable supply voltage to power an onboard microcontroller. In some examples, switching regulators may be used to generate −15V and +15V supply voltages to feed the coils 112, as described further below. In other examples, power unit 202 may include a battery or other portable power source and associated voltage regulation circuitry.
In some examples, control unit 204 may include microcontroller 236. In some examples, microcontroller 236 may include built-in floating-point hardware and may be utilized as an on-board processor, e.g., as processing circuitry 136. In some examples, microcontroller 236 may communicate with an analog-to-digital converter (ADC) and a communication connection module, e.g., using a using a serial peripheral interface (SPI) protocol. Microcontroller 236 may be additionally configured to select variable frequencies for coils 112, e.g., the primary and secondary drive coils, via SPI protocol to communicate with digital potentiometers for selecting appropriate excitation frequencies.
In the example shown, coil driver 206 may be configured to generate variable frequency waveforms for driving coils of coils 112. For example, coil driver 206 may generate two waveforms for primary and secondary drive coil excitation. In some examples, coil driver 206 may generate variable frequency waveforms via two sub-stage units, e.g., Wien-Bridge Oscillator 212 and gain amplifier and buffer 214. Wien-Bridge Oscillator 212 may generate base waveform signals to be further processed by later stages. Gain amplifier and buffer 214 may amplify incoming waveforms and may provide a buffer to meet high current requirements of coils 112. In some examples, waveforms may include any of a sinusoidal waveform, a rectangular or square waveform, a triangular waveform, a sawtooth waveform, or any combination thereof. In some examples, Wien-Bridge Oscillator 212 and gain amplifier and buffer 214 may include corresponding sets of circuitries for generating a low frequency high amplitude waveform for output to a primary coil and a for generating a high frequency low amplitude waveform for output to a secondary coil. For example, MPS handheld device 102 may include primary coils 112 (e.g., which may be drive coils 1212 illustrated and described below with reference to
In some examples, coil driver 206 driving coils of coils 112 may be configured to generate phase stable magnetic fields.
In the example shown, signal conditioning unit 208 may be configured to remove (e.g., filter) noise and amplify a signal received from pick-up coils of coils 112. For example, one or more pick-up coils of coils 112 may generate a differential voltage output, and signal conditioning unit 208 may condition the differential voltage output to remove noise and amplify the differential output. In some examples, signal conditioning unit 208 may provide an initial gain and convert the differential signal from pick-up (e.g., search) coils to a single-ended signal for further processing by filtering stages. In some examples, signal conditioning unit 208 may be configured to provide Sallen-Key based second-order low-pass and high-pass filtering to remove the powerline and high-frequency noises. In some examples, a cutoff frequency of a band-pass filter may be set at or near 53 kilohertz (kHz) for the low pass filtering, e.g., as the high frequency cutoff, and at or near 730 Hz for high pass filtering, e.g., as the low frequency cutoff. The filtered signal may be sampled at, for example, 200 kilo-samples per second (ksps) having 16-bit samples via an analog-to-digital (ADC) in communication with microcontroller 236 using SPI protocol. In some implementations, microcontroller 236 may transmit data sampled by the ADC via connectivity unit 210.
In the example shown, connectivity unit 210 may be configured to transfer data via a wired or wireless connection, e.g., connection 118. In some examples, connectivity unit 210 may communicate using any wired or wireless communication modality, for example, serial, universal serial bus (USB), WiFi, local area network (LAN), Bluetooth®, and the like. In some examples, connectivity unit 210 may be configured to execute application software. For example, application software may include a user interface configured to initiate execution of processing of information via microcontroller 236 and display of the processed information in real-time. Application software may further be configured to guide users on how to use MPS handheld device 102, for example, as illustrated and described below with respect to
In some examples, application software may include a mobile application, and may implement a Fast Fourier Transform (FFT) for frequency-domain processing of incoming information, e.g., executed by processing circuitry 126, 136, and/or 146. In some examples, FFT implementation in the mobile application may be executed and provide results within seconds. In some examples, FFT implementation may result in information such as frequency harmonic amplitudes and phase information, and may be used to derive immunoassay detection. In some implementations, harmonic amplitudes, phase angle information, and harmonic ratios may be metrics for quantifying target analytes from testing samples, such as sample vial 108.
In the examples shown, power unit 302 is configured to generate electrical power, for example, usable direct current (DC) voltages from an off-board alternating current (AC) power supply, e.g., a wall outlet. Power unit 302 may be substantially similar to power unit 202 illustrated and described above with respect to
Microcontroller 336 may be utilized as an on-board processor, e.g., as processing circuitry 136, and may be substantially similar to microcontroller 236 illustrated and described above with respect to
In the example shown, coil driver 306 may be configured to generate variable frequency waveforms for drive coils, e.g. coils 112, and may be substantially similar to coil driver 206 illustrated and described above with respect to
In the example shown, signal conditioning unit 308 may be configured to remove noise and amplify a signal received from pick-up coils 316, and perform analog to digital conversion. In some examples, signal conditioning unit 308 may be substantially similar to signal conditioning unit 208. For example, one or more pick-up coils of coils 112 may generate a differential voltage output, and signal conditioning unit 308 may operate to condition the differential voltage signal similar to signal conditioning unit 208 illustrated and described above with respect to
In the example shown, connectivity unit 310 may be configured to transfer data via a wired or wireless connection, e.g., connection 118. Connectivity unit 310 may be configured to provide an interface to external devices, e.g., external computing devices. In some examples, connectivity unit 310 may be substantially similar to connectivity unit 210 illustrated and described above with respect to
In the example shown in
A user may place a sample in MPS handheld device 102, e.g., a sample vial including surface functionalized MNPs without a biological sample added, and a baseline signal of the sample vial may be measured (402). Screen 508 may prompt the user to place the sample in MPS handheld device 102 and input a user input causing MPS handheld device 102 to measure the baseline signal (402).
Screen 510 may prompt the user to add the biological sample to the sample vial (404). In some examples, screen 510 may include a prompt indicating to the user to wait for a predetermined amount of time to allow mixing and/or chemical bonding of the biological sample and the surface functionalized MNPs.
Screen 510 may include a prompt instructing the user to perform a user input causing MPS handheld device 102 to measure a sample signal, and a processor may perform signal processing and diagnostics, and return results to the application. For example, screen 510 may prompt the user to tap a touch screen after waiting for the predetermined mixing and/or chemical bonding time. After the user performs the user input that causes MPS handheld device 102 to measure the sample signal, the user may wait for a predetermined time, during which time the surface functionalized MNPs may interact with magnetic fields generated by MPS handheld device 102, e.g., via drive coils, and generate a signal, e.g., via pick-up coils 316 as illustrated and described above with respect to
In some examples, method 400 may be a wash-free, one-step bioassay method that may be performed by non-technicians with reduced and/or minimal training, and unbound target analytes may not need to be removed.
In the example shown, sample area 1118 and MNP area 1120 are fluidically connected to each other and microfluidic channels 1116. Sample area 1118 may be configured to receive biological samples, and provide biological samples to microfluidic channels 1116, e.g., via valve 3. MNP area 1120 may be configured to receive surface functionalized MNPs and provide surface functionalized MNPs to microfluidic channels 116, e.g., via valve 2. Microfluidic channels 1116 may be configured to mix the biological samples and surface functionalized MNPs, e.g., for MPS detection techniques described herein.
Buffer area 1122 may be fluidically connected to reaction area 1124, e.g., via valve 1 and may be configured to receive a solution configured to mix with MNPs and biological samples, e.g., to achieve a desired dilution. Microfluidic channels 1116 may be fluidically coupled to reaction area 1124, and pump 1128 may be configured to move fluids from sample area 1118, MNP area 1120, and buffer 1122 to reaction area 1124 and from reaction area 1124 to waste sink 1126.
In some examples, the magnetic response of MNPs within sample vial 108 may change based on the presence of analytes in a biofluid added to sample vial 108. For example, the analytes may bind to the surface functionalized MNPs and alter the magnetic response of the MNPs relative to the magnetic response of surface functionalized MNPs with no analytes present in the biofluid. In some examples, the altered magnetic response of the MNPs due to analytes may be distinguished from features of detected magnetic flux B(t), for example, via changes to the amplitudes and/or frequencies of the spectral content, e.g., harmonics, of B(t).
For example, in the presence of oscillating magnetic fields, MNPs may be magnetized and their magnetic moments may tend to align with the magnetic fields. For a ferrofluid system of monodispersed, noninteracting MNPs, the magnetic response may obey a Langevin function:
The MNPs are characterized by magnetic core diameter D, saturation magnetization MS and concentration c. In some examples, MNPs may be assumed to be spherical and without mutual interactions. Consequently, the magnetic moment of each particle may be ms=MSπD3/6, where Vc=πD3/6 is the volume of the magnetic core, ξ is the ratio of magnetic energy over thermal energy, kB is Boltzmann's constant, and T is the absolute temperature in Kelvin. The external magnetic fields may be expressed as H(t)=AH cos(2πfHt)+AL cos(2πfLt) where AH, AL, fH, and fL are the amplitude and frequency of high and low frequency fields, respectively.
The harmonics generated by MNPs at specific frequencies may be represented by a phasor, e.g., Aej(ωt+φ), or A∠φ, where ω is the angular frequency of the driving field, A is the harmonic amplitude, φ is the harmonic phase, and j is the square root of negative one.
According to Faraday's law, the induced voltage in a pair of pick-up coils is expressed as:
where V is the volume of an MNP suspension. Pick-up coil sensitivity S0 is equal to the external magnetic field strength divided by current.
Taylor expansion of MD(t) shows the major frequency mixing components:
The mixing frequency components are found at odd harmonics exclusively:
Amplitudes of induced voltages at the 3rd and 5th harmonics may be expressed as:
The harmonic amplitudes of the 3rd and 5th harmonics may be simplified as:
A
3rd∝(fH±2fL)×cos[φf
A
5th∝(fH±4fL)×cos[φf
where
φf
For iron oxide MNPs with diameters of 20 nanometers (nm), the effective relaxation time is dominated by Brownian relaxation:
In some examples, a change in MNP hydrodynamic size may cause a change in harmonic angle (phase angle), which further may cause a change in harmonic amplitude. Harmonic amplitudes may be proportional to the number of MNPs in a testing vial, and to make each testing result repeatable, a harmonic ratio of the 3rd harmonic over the 5th harmonic may be used to reduce and/or eliminated the effect of MNP quantities in the testing vial. The harmonic ratio of the 3rd over the 5th harmonics may be expressed as:
In some examples, because fL<<fH, the harmonic ratio of the 3rd over the 5th may be further simplified as:
In some examples, a change in MNP hydrodynamic size may cause a change in harmonic angle, which may further cause a change in the harmonic amplitude ratio.
Harmonic ratio may be used as an MNP quantity-independent parameter to monitor the binding of target analytes onto MNPs, e.g., the hydrodynamic size change. In addition, any kinds of harmonic ratios such as R37 (the 3rd over the 7th harmonic ratio), R57 (the 5th over the 7th harmonic ratio), Rij (the ith over the jth harmonic ratio, where i and j are odd numbers and i≠j), or any other harmonic ration, may be used.
067
7.5
61
-2
indicates data missing or illegible when filed
In the example shown, the five MNPs A-E include varying sizes, concentrations, magnetic properties, and surface modifications. Samples A-C are iron oxide nanoparticles with an average magnetic core size of 30 nm. Samples D and E are iron oxide nanoparticles with an average magnetic core size of 25 nm. MNPs from samples A, B, and D are coated with biotin, while MNPs from samples C and E are coated with a carboxylic group. These different surface coating layers act as reactive groups and improve the colloidal stability of MNP suspensions. As a result, the coating layers increase the hydrodynamic size of MNPs by ˜10 nm. Eighty microliters of MNP suspension is drawn to a glass vial for MPS measurements, e.g., via MPS handheld device 102. Each of samples A-E may be additionally measured via standard direct current (DC) hysteresis loop and the saturation magnetization of the MNPs, Ms (unit: emu/g), may be ranked. In the example shown, samples A-E may be ranked as: A>C>B˜D>E. Due to the varying concentrations of MNPs in each sample, the magnetic moment per volume of suspension is calculated and listed in Table 1. Although all MNPs of samples, A-E are iron oxide nanoparticles, their saturation magnetizations are different due to different ratios of γ-Fe2O3, Fe3O4, and α-Fe2O3 materials used for synthesizing the magnetic cores. Sample C, with the highest MNP concentration, yields the highest magnetic moment per microliter volume (unit: μemu/μL). The magnetic moment per volume of MNPs from highest to lowest are ranked as: C>A>B˜D>E. All the MNP samples show negligible coercivities.
In the example shown in
In the example shown, the SHB30 MNPs are prepared by two-fold dilutions such that the MNP weight is 64 μg for sample 1, 32 μg for sample 2, 16 μg for sample 3, 8 μg for sample 4, and 4 μg for sample 5. The Blank sample is 80 μL of phosphate-buffered saline (PBS). Sample 1 of plot 1422 has highest MPS signals followed by samples 2 and 3, and although samples 4 and 5 show similar harmonic amplitudes compared to the Blank sample, a two-sample t test results show that the 9th and the 11th harmonics from sample 4 are statistically significantly different from the Blank sample, (e.g., with p-values of 0.034 and 0.01, respectively). In addition, the 11 harmonic from sample 5 is significantly different from the Blank sample, with a p-value of 0.04 for the example shown. In the example, the MPS device, e.g., MPS handheld portable device 102, may therefore detect as low as 4 μg of iron oxide MNPs, and a calculated lowest detectable magnetic moment by this portable device is 273.2 μemu, e.g., a signal from the Blank sample.
In the example shown, 80 μL of 1 mg/mL SHB30 iron oxide MNPs that are surface functionalized with biotin are mixed with varying concentrations/amounts of 80 μL of streptavidin protein. For example, samples I-IX are prepared by twofold dilution of streptavidin, such that the streptavidin concentrations of samples I-IX, respectively in order from I to IX, are 2048 nM, 1024 nM, 512 nM, 256 nM, 128 nM, 64 nM, 32 nM, 16 nM, and 8 nM. Sample X is prepared by mixing 80 μL of 1 mg/mL SHB30 iron oxide MNPs with 80 sL of PBS. The corresponding MNP to streptavidin ratios of samples I-IX, respectively in order from I to IX, are 1:60, 1:30, 1:15, 1:7.5, 1:3.75, 1:1.88, 1:0.94, 1:0.47, and 1:0.24. All of samples I-X may be incubated at room temperature for 30 minutes to allow the binding of streptavidin molecules to biotins from the MNP surface.
Each bar of plot 1432 represents an average harmonic amplitude measurement of multiple measurements of each sample I-X, e.g., six measurements in the example shown. A two-sample t test may be performed on each sample to compare with the control, e.g., sample index X with a 0 nM streptavidin concentration. In the example shown, the 3rd harmonic amplitudes from samples I-V are significantly different from the control sample X with p-values smaller than 0.05. The 3rd harmonics from samples VI-IX are not significantly different from the control sample X with p-values larger than 0.05. As such, for the example of
The larger amount of streptavidin proteins of samples I-II may cause the MNPs of those samples to form clusters. Due to the cross-linking of MNPs and streptavidin, MNPs may be closely compacted and their hydrodynamic sizes may dramatically increase. As a result, the Brownian relaxation of bound MNPs may be blocked and their dynamic magnetic responses may become weaker. In the example shown, because of the larger amount of streptavidin in samples I and II, their respective harmonic amplitudes are significantly lower than samples, III-X, e.g., due to the larger hydrodynamic sizes of the MNPs of those samples.
In some examples, one or more higher harmonics, alone or in conjunction with the 3rd harmonics may be used and may improve the detection limit of MPS handheld device 102. For example, the 7th, the 11th, and the 15th harmonics of sample VI are significantly different from control sample X, e.g., with two-sample t test p-values smaller than 0.05, indicating that MPS handheld device 102 may detect as low as 64 nM of streptavidin (equal to 5.12 pmole). In some examples, MPS handheld device 102 measurement of target biomarkers may be based on any MPS higher order harmonics, e.g., 3rd through 15th harmonics of plot 1432 or any other harmonics, alone or in any combination. In some examples, MPS handheld device 102 measurement of target biomarkers may alternatively or additionally be based on higher order phase angles and harmonic ratios, and which may be MNP quantity independent.
In some examples, e.g., as with target analytes from complex biological media such as blood, nasal swab, sputum sample and the like, further surface modifications of the MNPs may be made, e.g., to minimize and/or block nonspecific bindings (NSBs). In some examples, block buffers and/or blocking reagents such as dextrans, ethanolamine, bovine serum albumin (BSA) and the like, may be used after MNP surface functionalization, e.g., to occupy remaining NSB sites.
In some examples, one or more antigens 1520 may bind to the one or more monoclonal antibodies 1510, for example, via addition of a biofluid containing antigens 1520 to sample vial 108 including MNPs 1502. In some examples, antigens 1520 may be one or more analytes, for example, antigens 1520 may be one or more analytes of a coronavirus such as human coronavirus 229E, human coronavirus OC43, SARS-CoV (2003), HCoV NL63 (2004), HKU1 (2005), MERS-CoV (2102), SARS-CoV-2, and the like. In some examples, antigens 1520 may be any of a membrane, an envelope, a structure protein, a Hemagglutinin esterase protean, a nucleocapsid protein inside the envelop, and the like, of a coronavirus. MNP 1502 may have an increased hydrodynamic size as a result of the binding of antigens 1520 to monoclonal antibodies 1510. The increased hydrodynamic size may change the relaxation time of MNP 1502 in response to the applied magnetic fields described herein, which may affect the magnetic fields detected by the pick-up coil.
Additionally, in some examples, microbeads 2402, 2502 may replace one of the types of MNP 2202, 2204 as described and illustrated above with respect to
Streptavidin is a homo-tetramer with an extraordinarily high affinity for biotin, e.g., 1 mol of streptavidin can bind with 4 mol of biotin. In the example shown, well-dispersed biotinylated MNPs 2530 show high dynamic magnetic responses to external oscillating fields as well as large harmonic amplitudes 2532. In the presence of streptavidin 2526, biotinylated MNPs 2530 may cross-link and form clusters 2540 on streptavidin homo-tetramers. The clustering of MNPs may weaken the dynamic magnetic responses, and as a result, the harmonic amplitudes drop and/or reduce relative to well-dispersed MNPs, e.g., illustrated as harmonic amplitudes 2542 reduced relative to harmonic amplitudes 2532 in the example shown. The difference in harmonic amplitude reduction may be used to quantitatively analyze the amount and concentration of streptavidin in a sample. An MPS-based bioassay, e.g., such as with MPS handheld device 102, may not require removing unbound target analytes (e.g., streptavidin 2526 in the example shown) and may be a wash-free, one-step test that is accessible by a layperson in nonclinical settings.
In some examples, one or more antisense oligonucleotides 2556 may be bound to biotin 2524 to form biotinylated antisense oligonucleotides 2560 and introduced to streptavidin-saturated biotinylated MNPs 2554, e.g., alone or in combination with a biological sample including analytes 2570 of a coronavirus such as human coronavirus 229E, human coronavirus OC43, SARS-CoV (2003), HCoV NL63 (2004), HKU1 (2005), MERS-CoV (2102), SARS-CoV-2, and the like. For example, analyte 2570 may be a SARS-CoV-2 viral RNA. In some examples, streptavidin-saturated biotinylated MNPs 2554, biotinylated antisense oligonucleotides 2560, and analytes 2570 may be combined and/or mixed biological sample vial 2556.
In some examples, the biotinylated antisense oligonucleotides 2560 may be configured to bind and/or pair with analytes 2570, and the streptavidin-saturated biotinylated MNPs 2554, biotinylated antisense oligonucleotides 2560, and analytes 2570 may form clusters 2580. The clustering of MNPs may weaken the dynamic magnetic responses, and as a result, the harmonic amplitudes drop and/or reduce relative to well-dispersed MNPs. The difference in harmonic amplitude reduction may be used to quantitatively analyze the amount and concentration of analyte 2570 in a sample. An MPS-based bioassay, e.g., such as with MPS handheld device 102, may not require removing unbound target analytes 2570 and may be a wash-free, one-step test that is accessible by a layperson in nonclinical settings.
In the example shown, excitation coils 2612 are located on or adjacent to the bottom surface of testing strip 2620. Excitation coils 2612 may be substantially similar in function to excitation coils 1212 and/or 1214 illustrated and described above with respect to
In the example shown in
In the example shown, sensing coils 2616 are located on the top surface of testing strip 2620, and may be substantially similar to pick-up coils 1216 illustrated and described above with respect to
In the example shown testing strip 2620 may provide structure for MPS device 2602 and a flow path for a biofluid to come in fluid communication with surface functionalization layer 2630. In some examples, testing strip 2620 may be and/or include a nitrocellulose membrane.
In the example shown, each probe type 2642-2648 of sensing region 2632-2638 may bind to a specific analyte type, and each bound analyte type may further bind to a surface functionalized MNP. For example, a fluid including a biologic sample including one or more analytes and one or more surface functionalized MNPs may be fluidically provided to testing strip 2620 and may come in fluid communication with surface functionalization layer 2630.
The analytes corresponding to the specific probe types 2642-2648 may be bound and captured by the probes 2642-2648, and MNPs with surface functionalization corresponding to the captured analytes may be bound and captured to the captured analytes. In some examples, an alternating magnetic field may be generated by excitation coils 2612, and sensing coils 1610 may detect the magnetic response of the captured MNPs and generate a signal based on the magnetic response of the captured MNPs.
In some examples, MPS device 2602 may detect the magnetic moment of captured MNPs, e.g., sensing coil 2616 may generate a signal proportional to the magnetic moment of one or more captured MNPs within the alternating magnetic field. For example, MPS device 2602 may generate a signal including harmonics of the frequencies of the excitation coils, and the presence of the harmonics may be proportional to the magnetic moment of the plurality of captured MNPs. Because the motion of MNPs due to the alternating magnetic field is restricted via being bound to a surface of MPS device 2602, the magnetic response of MNPs of MPS device 2602 bound to the surface may not undergo Brownian motion and may not obey a Langevin function, e.g., in contrast to the operating principle of MPS handheld device 102 described above with respect to
In some examples, MPS device 2602 may communication with a computing device or devices, e.g., computing device 104, similar to MPS handheld device 102 as illustrated and described above with respect to
In some examples, MPS device 2602 may be a double-layered printed circuit board (PCB), or integrated into a double-layered PCB, or MPS device 2602 may be, or may be integrated into, a silicon substrate and/or a polymer substrate, e.g., via microfabrication. For example, coils 2612 and 1610 may be integrated into a double-layered PCB or micro-fabricated on a silicon substrate, and MPS device 2602 may be an adaptor card configured to be inserted into, and communicatively coupled to, a different MPS device, e.g., MPS device 3004 described and illustrated below, and/or a computing device.
In the example shown, coils 2716 are configured to coil around container 2708. Although only one set of coils is illustrated, coils 2716 may include primary, secondary, etc., excitation coils and one or more sets of sensing coils, e.g., pick-up coils. The excitation coils may be substantially similar to excitation coils 1212 and/or 1214 illustrated and described above with respect to
In the example shown, container 2708 includes a chemical functionalization layer 2706. Chemical functionalization layer 2706 may be bound to one or more inner surfaces of container 2708, and may include a surface functionalization coating including a plurality of probe types, for example, antibodies, antigens, single stranded DNA or RNA, and the like. In the example shown, chemical functionalization layer 2706 is coated with antibodies 2712. Each of the plurality of probes, e.g., antibodies 2712, may be configured for detecting, binding with, etc., a specific type of analyte.
In the example shown, MPS device 2702 includes a plurality of MNPs, e.g., MNP 2704. MNP 2704 may be surface functionalized via a coating of a probe type, e.g., antibodies, antigens, single stranded DNA or RNA, and the like. In the examples shown, MNP 2704 is surface functionalized via a coating of antibodies 2710. In some examples, antibodies 2712 may correspond to antibodies 2710, that is, antibodies 2710 and 2712 may be configured for detecting, binding with, etc., the same specific type of analyte.
In operation, a biological sample may be added to MPS device 2702 including an analyte, e.g., an antibody, antigen, single stranded DNA or RNA, and the like. In the example shown, antigen 2720 has been added to container 2708. In some examples, the antibodies 2710 and 2712 may bind with antigen 2720, thereby binding MNP 2704 to chemical functionalization layer 2706.
In some examples, MPS device 2702 may communication with a computing device or devices, e.g., computing device 104, similar to MPS handheld device 102 as illustrated and described above with respect to
In some examples, fluid filtration system 2802 may be configured to filter a fluid, e.g., a patient's blood, and to transfer the filtered fluid and/or biological samples to microfluidic channels 2804. Microfluidic channels 2804 may be configured to transport filtered fluid and/or biological samples to a plurality of MPS devices, e.g., MPS devices 2602 and/or 2702.
Excitation coils 2612 and/or excitation coils of coils 2716 may generate magnetic fields, and sensing coils 2616 and/or sensing coils of coils 2716 may measure a baseline signal (2902). A biofluid sample may flow across testing strip 2620 and chemical functionalization layer 2630, or a biofluid sample may flow into container 2708 (2904). In some examples, target analytes specific to the probes coated in each of regions 2632-2638 may be captured in each region, and the target analytes may be anchored to the top surface of testing strip 2620 by the coated probes. In other examples, target analytes specific to the probes coated on chemical functionalization layer 2706 may be captured and anchored to chemical functionalization layer 2706. Surface functionalized MNPs may flow across testing strip 2620 and chemical functionalization layer 2630 (2906). The MNPs may include any of the surface functionalized MNPs illustrated and described above with respect to
In some examples, method 2900 may include additional steps, or may be performed in a different order, e.g., for measuring target proteases. In this scenario, MNPs surface functionalized with peptides may be added first. The MNPs may be captured in one or more regions correspondingly functionalized on testing strip 2620, or on chemical functionalization layer 2706. Baseline measurement may occur next, followed by an add biofluid sample step, e.g., a biofluid containing target proteases that may cleave the peptides. This may then be followed by a capture measurement step, with a positive result being indicated by the opposite magnetic response, e.g., measuring the lack of MNPs rather than their presence.
The techniques described in this disclosure may be implemented, at least in part, in hardware, software, firmware or any combination thereof. For example, various aspects of the described techniques may be implemented within one or more processors, including one or more microprocessors, DSPs, application specific integrated circuits (ASICs), field programmable gate arrays (FPGAs), or any other equivalent integrated or discrete logic circuitry, as well as any combinations of such components. The term “processor” or “processing circuitry” may generally refer to any of the foregoing logic circuitry, alone or in combination with other logic circuitry, or any other equivalent circuitry. A control unit comprising hardware may also perform one or more of the techniques of this disclosure.
Such hardware, software, and firmware may be implemented within the same device or within separate devices to support the various operations and functions described in this disclosure. In addition, any of the described units, modules or components may be implemented together or separately as discrete but interoperable logic devices. Depiction of different features as modules or units is intended to highlight different functional aspects and does not necessarily imply that such modules or units must be realized by separate hardware or software components. Rather, functionality associated with one or more modules or units may be performed by separate hardware or software components or integrated within common or separate hardware or software components.
The techniques described in this disclosure may also be embodied or encoded in a computer-readable medium, such as a computer-readable storage medium, containing instructions. Instructions embedded or encoded in a computer-readable storage medium may cause a programmable processor, or other processor, to perform the method, e.g., when the instructions are executed. Computer readable storage media may include random access memory (RAM), read only memory (ROM), programmable read only memory (PROM), erasable programmable read only memory (EPROM), electronically erasable programmable read only memory (EEPROM), flash memory, a hard disk, a CD-ROM, a floppy disk, a cassette, magnetic media, optical media, or other computer readable media.
This application claims the benefit of U.S. Provisional Patent Application Ser. No. 63/011,702, entitled “MAGNETIC PARTICLE SPECTROSCOPY METHOD AND DEVICE,” and filed on Apr. 17, 2020.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2021/070401 | 4/16/2021 | WO |
Number | Date | Country | |
---|---|---|---|
63011702 | Apr 2020 | US |