Aspects of the present disclosure generally relate to a magnetic recording head assembly, such as a write head of a data storage device, that includes an external alternating current (AC) source for example a magnetic media drive.
The heart of the functioning and capability of a computer is the storing and writing of data to a data storage device, such as a hard disk drive (HDD). The volume of data processed by a computer is increasing rapidly. There is a need for higher recording density of a magnetic recording medium to increase the function and the capability of a computer.
In order to achieve higher recording densities, such as recording densities exceeding 2 Tbit/in2 for a magnetic recording medium, the width and pitch of write tracks are narrowed, and thus the corresponding magnetically recorded bits encoded in each write track is narrowed. One challenge in narrowing the width and pitch of write tracks is decreasing a surface area of a main pole of the magnetic write head at a media facing surface. As the main pole becomes smaller, the writing field becomes smaller as well, limiting the effectiveness of the magnetic write head.
Writing fields and writing performance can also be limited by shunting of spin torque devices—such as spin torque oscillators (STO's), delays in responses to switching, and gap field saturation.
Another challenge for HDD designs where a current is applied through a write head to write data to media is that higher amounts of current can cause a temperature of the write head to increase, which can cause degradation such as at a media facing surface (MFS). The degradation can hinder performance and reliability of the write head, and can even render the write head inoperable. However, lowering currents can limit writing fields.
As discussed, write fields can be limited for data storage devices. Therefore, there is a need for write heads that simply and effectively facilitate write head performance reliability, enhanced magnetic write fields, high areal density capability (ADC) of magnetic recording, high signal-to-noise ratios (SNR's), and reduced jitter.
Aspects of the present disclosure generally relate to a magnetic recording head assembly that includes an external alternating current (AC) source. A magnetic recording head of the magnetic recording head assembly includes a conductive structure between a main pole and a trailing shield. The conductive structure includes a conductive layer, and the conductive layer is nonmagnetic. The magnetic recording head assembly also includes an external AC source to supply AC current that flows through the conductive structure. In one aspect, the conductive structure is between a coil structure and the trailing shield, and the external AC source is coupled to the coil structure. The conductive structure and the external AC source facilitate consistently providing an enhanced AC writing field to facilitate effective and reliable writing, high ADC, high SNR, and reduced jitter.
In one implementation, a magnetic recording head assembly includes a magnetic recording head. The magnetic recording head includes a lower pole, an upper pole, a main pole between the upper pole and the lower pole, a leading shield on a leading side of the main pole, and a trailing shield on a trailing side of the main pole. The magnetic recording head also includes a conductive structure between the main pole and the trailing shield. The conductive structure includes a conductive layer. The conductive layer is nonmagnetic. The magnetic recording head assembly also includes an alternating current (AC) source coupled to the main pole and the upper pole of the magnetic recording head.
In one implementation, a magnetic recording head assembly includes a magnetic recording head. The magnetic recording head includes a lower pole, an upper pole, a main pole between the upper pole and the lower pole, a leading shield on a leading side of the main pole, and a trailing shield on a trailing side of the main pole. The magnetic recording head also includes a first conductive structure between the main pole and the trailing shield, and a second conductive structure between the main pole and the leading shield. Each of the first conductive structure and the second conductive structure includes a conductive layer. The magnetic recording head assembly also includes an alternating current (AC) source coupled to the lower pole and the upper pole of the magnetic recording head.
In one implementation, a magnetic recording assembly includes a magnetic recording head. The magnetic recording head includes a lower pole and an upper pole. The magnetic recording head also includes a conductive structure between the upper pole and the lower pole. The conductive structure includes a main pole, a first side gap conductive layer, and a second side gap conductive layer. Each of the main pole, the first side gap conductive layer, and the second side gap conductive layer is formed of a conductive material. The magnetic recording head also includes a leading shield on a leading side of the conductive structure, and a trailing shield on a trailing side of the conductive structure. The magnetic recording head assembly also includes an alternating current (AC) source coupled to a first outer side of the conductive structure and a second outer side of the conductive structure to supply AC current horizontally through the conductive structure along a cross-track direction. The second outer side opposes the first outer side along the cross-track direction.
So that the manner in which the above recited features of the present disclosure can be understood in detail, a more particular description of the disclosure, briefly summarized above, may be had by reference to embodiments, some of which are illustrated in the appended drawings. It is to be noted, however, that the appended drawings illustrate only typical embodiments of this disclosure and are therefore not to be considered limiting of its scope, for the disclosure may admit to other equally effective embodiments.
To facilitate understanding, identical reference numerals have been used, where possible, to designate identical elements that are common to the figures. It is contemplated that elements disclosed in one embodiment may be beneficially utilized on other embodiments without specific recitation.
In the following, reference is made to embodiments of the disclosure. However, it should be understood that the disclosure is not limited to specific described embodiments. Instead, any combination of the following features and elements, whether related to different embodiments or not, is contemplated to implement and practice the disclosure. Furthermore, although embodiments of the disclosure may achieve advantages over other possible solutions and/or over the prior art, whether or not a particular advantage is achieved by a given embodiment is not limiting of the disclosure. Thus, the following aspects, features, embodiments and advantages are merely illustrative and are not considered elements or limitations of the appended claims except where explicitly recited in a claim(s). Likewise, reference to “the disclosure” shall not be construed as a generalization of any inventive subject matter disclosed herein and shall not be considered to be an element or limitation of the appended claims except where explicitly recited in a claim(s).
Aspects of the present disclosure generally relate to a magnetic recording head assembly that includes an external alternating current (AC) source. A magnetic recording head of the magnetic recording head assembly includes a conductive structure between a main pole and a trailing shield. The conductive structure includes a conductive layer, and the conductive layer is nonmagnetic. The magnetic recording head assembly also includes an external AC source to supply AC current that flows through the conductive structure. In one aspect, the conductive structure is between a coil structure and the trailing shield, and the external AC source is coupled to the coil structure. The conductive structure and the external AC source facilitate consistently providing an enhanced AC writing field to facilitate effective and reliable writing, high ADC, high SNR, and reduced jitter. In one aspect, the magnetic recording head omits a spin torque device (such as an STO) that uses a field generating layer (FGL) and a spin polarizing layer (SPL).
Aspects of the present disclosure relate to data storage devices using an energy-assisted magnetic recording (EAMR) write head.
At least one slider 113 is positioned near the magnetic media 112, each slider 113 supporting one or more magnetic head assemblies 121. As the magnetic media rotates, the slider 113 moves radially in and out over the media surface 122 so that the magnetic head assembly 121 may access different tracks of the magnetic media 112 where data are written. Each slider 113 is attached to an actuator arm 119 by way of a suspension 115. The suspension 115 provides a slight spring force which biases the slider 113 toward the media surface 122. Each actuator arm 119 is attached to an actuator means 127. The actuator means 127 as shown in
During operation of the disk drive 100, the rotation of the magnetic media 112 generates an air bearing between the slider 113 and the media surface 122 which exerts an upward force or lift on the slider 113. The air bearing thus counter-balances the slight spring force of suspension 115 and supports slider 113 off and slightly above the magnetic media 112 surface by a small, substantially constant spacing during normal operation. The AC magnetic field generated from the magnetic head assembly 121 lowers the coercivity of the high-coercivity media so that the write elements of the magnetic head assemblies 121 may correctly magnetize the data bits in the magnetic media 112.
The various components of the disk drive 100 are controlled in operation by control signals generated by the control unit 129, such as access control signals and internal clock signals. The control unit 129 can include logic control circuits, storage means, and a microprocessor. The control unit 129 generates control signals to control various system operations, such as drive motor control signals on line 123 and head position and seek control signals on line 128. The control signals on line 128 provide the desired current profiles to optimally move and position slider 113 to the desired data track on the magnetic media 112. Write and read signals are communicated to and from write and read heads on the magnetic head assembly 121 by way of recording channel 125.
The above description of a typical magnetic disk storage system and the accompanying illustration of
In one embodiment, which can be combined with other embodiments, the magnetic read head 211 is a magnetoresistive (MR) read head that includes an MR sensing element 204 located between MR shields S1 and S2. In one embodiment, which can be combined with other embodiments, the magnetic read head 211 is a magnetic tunnel junction (MTJ) read head that includes a MTJ sensing element 204 located between MR shields S1 and S2. The magnetic fields of the adjacent magnetized regions in the magnetic media 112 are detectable by the MR (or MTJ) sensing element 204 as the recorded bits.
The write head 210 includes a return pole 206, a main pole 220, a trailing shield 240, and a coil 218 that excites the main pole 220. The coil 218 may have a “pancake” structure which winds around a back-contact between the main pole 220 and the return pole 206, instead of a “helical” structure shown in
It is to be understood that the magnetic recording head discussed herein is applicable to a data storage device such as a hard disk drive (HDD) as well as a tape drive such as a tape embedded drive (TED) or an insertable tape media drive. An example TED is described in co-pending patent application titled “Tape Embedded Drive,” U.S. patent application Ser. No. 16/365,034, filed Mar. 3, 2019, assigned to the same assignee of this application, which is herein incorporated by reference. As such, any reference in the detailed description to a HDD or tape drive is merely for exemplification purposes and is not intended to limit the disclosure unless explicitly claimed. Furthermore, reference to or claims directed to magnetic recording devices are intended to include both HDD and tape drive unless HDD or tape drive devices are explicitly claimed.
The magnetic recording head assembly 310 includes a magnetic recording head 300. The magnetic recording head 300 includes a lower pole 301, an upper pole 302, and a main pole 303 between the upper pole 302 and the lower pole 301. The magnetic recording head 300 also includes a leading shield 304 on a leading side 305 of the main pole 303, and a trailing shield 306 on a trailing side 307 of the main pole 303. The magnetic recording head 300 includes a conductive structure 308 between the main pole 303 and the trailing shield 306. The magnetic recording head 300 includes a media facing surface (MFS) 315, such as an air bearing surface (ABS). The conductive structure 308 extends to the MFS 315.
The trailing shield 306 is of a height H1 along the stripe height direction. The height H1 is of 0.5 microns (500 nanometers) or less, such as about 500 nanometers. A portion of the trailing shield 306, such as a portion of the trailing shield 306 that is adjacent to the main pole 303, includes a height H2 that is less than the height H1. A nonmagnetic gap (shown as occupied by the conductive structure 308 in
The magnetic recording head assembly 310 also includes an alternating current (AC) source 309 coupled to the main pole 303 and the upper pole 302 of the magnetic recording head 300. The AC source 309 includes a first lead 311 coupled to the main pole 303 to supply current C1 to the main pole 303, and a second lead 312 coupled to the upper pole 302 to receive current C1 returned from the upper pole 302. The current C1 is supplied during writing operations using the main pole 303. The current C1 is a bias current (a secondary current) that is supplied independently of a write current that generates a write field to write magnetic media. In one embodiment, which can be combined with other embodiments, the current C1 is supplied at a bias frequency within a range of 0 GHz to 25 GHz, and the write current is supplied at a write frequency within a range of 1.0 GHz to 1.5 GHz as a 1 T frequency. The current C1 is an alternating current. In one embodiment, which can be combined with other embodiments, the current C1 is supplied by the AC source 309 at a frequency that is within a range of 10 GHz to 25 GHz. The current C1 supplied by the AC source 309 flows through the main pole 303, through the conductive structure 308, and to the trailing shield 306. The current C1 flows through the conductive structure 308, through the upper pole 302, and returns to the AC source 309. In this case, the upper pole 302 serves as an upper return pole. In one embodiment, which can be combined with other embodiments, the upper pole 302 includes a ledge 313 that protrudes from the upper pole 302 and toward the main pole 303. The magnetic recording head 300 includes a coil structure 314. The coil structure 314 can be a “pancake” structure that winds around the trailing side 307 of the main pole 303, or can be a “helical” structure that winds around the main pole 303. The AC source 309 is disposed externally to the magnetic recording head 300, in one embodiment. The AC source 309 is disposed externally to the lower pole 301, the main pole 303, and the upper pole 302, in one embodiment. The AC source 309 is disposed externally to the conductive structure 308, the leading shield 304, and the trailing shield 306, in one embodiment. In another embodiment, the AC source 309 is disposed externally to a hat of the writer head device of which the magnetic recording head 300 is a part.
The magnetic recording head 300 includes a first side gap 320 disposed on a first side 317 of the main pole 303, and a first side shield 319 disposed on the first side 317 of the main pole 303. The first side gap 320 is disposed between the main pole 303 and the first side shield 319. The magnetic recording head 300 includes a second side gap 321 disposed on a second side 318 of the main pole 303, and a second side shield 322 disposed on the second side 318 of the main pole 303. The second side gap 321 is disposed between the main pole 303 and the second side shield 322. The magnetic recording head 300 also includes a leading side gap 323 disposed on the leading side 305 of the main pole 303. The leading side gap 323 is disposed between the main pole 303 and the leading shield 304. The current C1 flowing through the main pole 303 flows upward along the track direction from the main pole 303, through the conductive structure 308, and into the trailing shield 306.
In one embodiment, which can be combined with other embodiments, the width W1 can be up to (such as equal to) a total width TOW1, where the total width TOW1 includes the trailing width TW1, a trailing width TW3 of the first side gap 320, a first overhang length, a trailing width TW4 of the second side gap 321, and a second overhang length added together. In one example, the first overhang length is a length by which the conductive structure 308 extends to the right past the first side gap 320 along the cross-track direction. In one example, the second overhang length is a length by which the conductive structure 308 extends to the left past the second side gap 321 along the cross-track direction. In
The present disclosure contemplates that the first side gap 320 can extend to the right and into the first side shield 319 such that the trailing width TW3 can extend to the right. The present disclosure contemplates that the first side gap 320 can extend to the right and into the first side shield 319 through the entire width of the first side shield 319 along the cross-track direction. The present disclosure contemplates that the second side gap 321 can extend to the left and into the second side shield 322 such that the trailing width TW4 can extend to the left. The present disclosure contemplates that the second side gap 321 can extend to the left and into the second side shield 322 through the entire width of the second side shield 322 along the cross-track direction.
The magnetic recording head includes a first side insulation layer 324 disposed on a first side (corresponding to the first side 317) of the conductive structure 308, and a second side insulation layer 325 disposed on a second side (corresponding to the second side 318) of the conductive structure 308. The first side insulation layer 324 is disposed between the first side shield 319 and the first side gap 320 (on one side of the first side insulation layer 324) and the trailing shield 306. The second side insulation layer 325 is disposed between the second side shield 322 and the second side gap 321 (on another side of the second side insulation layer 325) and the trailing shield 306. Each of the first side insulation layer 324 and the second side insulation layer 325 is formed of an insulation material. The insulation material includes one or more of an aluminum oxide (AlO), a silicon nitride (SiN), and/or a tantalum nitride (TaN). If the conductive layers 316 have a wider cross-track width than depicted in
The first side gap layer 330, the second side gap layer 331, and the leading gap layer 333 occupy the first side gap 320, the second side gap 321, and the leading side gap 323 shown in
The magnetic recording head assembly 410 includes a magnetic recording head 400. The conductive structure 308 of the magnetic recording head 400 is a first conductive structure. The magnetic recording head 400 includes a second conductive structure 408 disposed on the leading side 305 of the main pole 303. The second conductive structure 408 is disposed between the main pole 303 and the leading shield 304. In the implementation shown in
In one embodiment, which can be combined with other embodiments, the magnetic recording head assembly 410 includes a direct current (DC) source 409. The DC source 409 is a second current source. The DC source 409 includes a first lead 411 coupled to the main pole 303 to supply current C3 to the main pole 303, and a second lead 412 coupled to the upper pole 302 to receive current C3 returned from the upper pole 302. The second lead 412 is coupled to the ledge 313 of the upper pole 302. The current C3 is a direct current. The current C3 is supplied during writing operations using the main pole 303. The current C3 is a bias current (a secondary current) that is supplied independently of a write current that generates a write field to write magnetic media. The current C3 supplied by the DC source 409 flows through the main pole 303, through the conductive structure 308, and to the trailing shield 306. The current C3 flows through the conductive structure 308, through the upper pole 302, and returns to the DC source 409. The current returns to the second lead 412 of the DC source 409 through the ledge 313 of the upper pole 302. In one embodiment, each of the DC source 409 and the AC source 309 may include a silicon chip. In one embodiment, which can be combined with other embodiments, the first lead 311 and the first lead 411 are swapped such that the first lead 311 is coupled to the main pole 303 and the first lead 411 is coupled to the lower pole 301, and the currents C2 and C3 are re-routed accordingly.
The width W1 of the one or more conductive layers 316 of the conductive structure 308 can be modified as discussed for example in relation to
The current C3 flowing through the main pole 303 flows upward along the track direction from the main pole 303, through the conductive structure 308, and into the trailing shield 306. The current C2 flowing through the lower pole 301 flows upward along the track direction from the lower pole 301, through the leading shield 304, through the second conductive structure 408, through the main pole 303, through the first conductive structure 308, and into the trailing shield 306.
The magnetic recording head assembly 510 includes a magnetic recording head 500. The magnetic recording head 500 includes a conductive structure 540 (including the main pole 303) between the upper pole 302 and the lower pole 301. In the implementation shown in
The coil structure 314 is a primary current structure (a write current structure) that uses the write current to activate the main pole 303 within the conductive structure 540 to write magnetic media. The coil structure 314 receives the write current from an internal current source that is independent of the AC source 309. The conductive structure 540 is a secondary current structure (a bias current structure) that uses the current C4 (a bias current) independently of the write current to facilitate writing operations. The AC source 309 supplies the current C4 independently of the write current.
The current C4 flows horizontally through the conductive structure 540 (which includes the main pole 303, a first side gap conductive layer 530, a second side gap conductive layer 531, a first side shield 519 and a second side shield 522) along the cross-track direction from the first lead 311 and to the second lead 312. The second outer side 542 opposes the first outer side 541 along the cross-track direction. The width W1 of the trailing insulation layer 575 is lesser than a width W2 of the conductive structure 540 along the cross-track direction. The width W2 of the conductive structure 540 is greater than a trailing width W3 of the leading side gap 323. The conductive structure 540 is of a thickness T2 along the track direction. The width W2 can be as wide as a width between outer sides of writer shields 519 and 522. The thickness T2 may be equal to a thickness of the main pole 303 along the track direction. In one embodiment, which can be combined with other embodiments, the thickness T2 is within a range of 50 nm to 150 nm.
The conductive structure 540 includes the main pole 303, the first side gap conductive layer 530, and the second side gap conductive layer 531. The conductive structure 540 also includes the first side shield 519 and the second side shield 522. A leading portion 526 of the first side shield 519 and a leading portion 527 of the second side shield 522 are disposed on the leading side 505 of the conductive structure 540. The leading side gap 323 is disposed between the leading portion of the first side shield 519 and the leading portion 527 of the second side shield 522. Each of the main pole 303, the first side gap conductive layer 530, the second side gap conductive layer 531, the first side shield 519, and the second side shield 522 are formed of a conductive material and are insulated, such as insulated on a media facing surface side thereof.
The first side shield 519 includes an insulation layer 570 embedded in the first side shield 519 to define a current flow boundary for the first side shield 519, and the second side shield 522 includes an insulation layer 571 embedded in the second side shield 522 to define a current flow boundary for the second side shield 522. The embedded insulation layers 570, 571 are lower flow limits of the respective first and second side shield 519, 522 below which the current C4 will not flow as the current C4 flows through the respective first or second side shield 519, 522.
In one embodiment, which can be combined with other embodiments, the first side shield 519 and the second side shield 522 are formed of a conductive material that is magnetic, such as NiFe20 or NiFe65. In one embodiment, which can be combined with other embodiments, the first side gap conductive layer 530 and the second side gap conductive layer 531 are formed of a conductive material such as one or more of Cu, Ru, NiCr, and/or NiTa. In one embodiment, which can be combined with other embodiments, the main pole 303 is formed of a conductive but magnetic material such as CoFe.
In
Benefits of the present disclosure include simple and effective facilitated magnetic recording performance and reliability; consistent and continuous application of AC writing fields; increased ADC for magnetic recording at operating current densities; reduced jitter; reduced voltage or current while maintaining or facilitating increased moment-thickness product; and increased SNR. AC field is applied even when the writer switches such that linearly polarized AC field is applied to media at all times during writing operations. Additionally, a chirality change is not required as the writer switches. Moreover, the AC source is decoupled from the base writer.
It is contemplated that one or more aspects disclosed herein may be combined. Moreover, it is contemplated that one or more aspects disclosed herein may include some or all of the aforementioned benefits. As an example, aspects, components, features, and/or properties of the various magnetic recording heads 300, 400, 500 described herein (including the magnetic recording head 300 implementation shown in
In one embodiment, a magnetic recording head assembly comprises a magnetic recording head. The magnetic recording head comprises a lower pole, an upper pole, a main pole between the upper pole and the lower pole, a leading shield on a leading side of the main pole, and a trailing shield on a trailing side of the main pole. The magnetic recording head also includes a conductive structure between the main pole and the trailing shield. The conductive structure includes a conductive layer. The conductive layer is nonmagnetic. The magnetic recording head assembly also includes an alternating current (AC) source coupled to the main pole and the upper pole of the magnetic recording head. The AC source supplies AC current to the main pole and receives AC current returned from the upper pole. The AC source supplies AC current at a frequency, and the frequency is within a range of 10 GHz to 25 GHz. The conductive structure is of a width along a cross-track direction that is about equal to a trailing width of the main pole along the cross track direction. The conductive layer is formed of one or more of ruthenium (Ru), chromium (Cr), tantalum (Ta), gold (Au), copper (Cu), nickel-chrome (NiCr), nickel-aluminum (NiAl), nickel-tantalum (NiTa), and/or nickel-iron-tantalum (NiFeTa). The AC source is disposed externally to the lower pole, the main pole, and the upper pole. In one example, which can be combined with other examples, the magnetic recording head includes a first side gap disposed on a first side of the main pole and between the main pole and a first side shield, a second side gap disposed on a second side of the main pole and between the main pole and a second side shield, and a leading side gap disposed on a leading side of the main pole and between the main pole and the leading shield. In one example, which can be combined with other examples, the magnetic recording head includes a first side gap layer disposed on a first side of the main pole and between the main pole and a first side shield, a second side gap layer disposed on a second side of the main pole and between the main pole and a second side shield, and a leading gap layer disposed on a leading side of the main pole and between the main pole and the leading shield. A magnetic recording device including the magnetic recording head assembly is also disclosed.
In one embodiment, a magnetic recording head assembly comprises a magnetic recording head. The magnetic recording head comprises a lower pole, an upper pole, a main pole between the upper pole and the lower pole, a leading shield on a leading side of the main pole, and a trailing shield on a trailing side of the main pole. The magnetic recording head also includes a first conductive structure between the main pole and the trailing shield, and a second conductive structure between the main pole and the leading shield. Each of the first conductive structure and the second conductive structure includes a conductive layer. The magnetic recording head assembly also includes an alternating current (AC) source coupled to the lower pole and the upper pole of the magnetic recording head. The conductive layer of each of the first conductive structure and the second conductive structure is nonmagnetic. The AC source supplies AC current to the lower pole and receives AC current returned from the upper pole. The magnetic recording head assembly also includes a direct current (DC) source coupled to the main pole and the upper pole of the magnetic recording head. The second conductive structure is of a trailing width along a cross-track direction that is greater than a leading width of the main pole along the cross track direction. In one example, the trailing width is within a range of 20 nm to 500 nm. A magnetic recording device including the magnetic recording head assembly is also disclosed.
In one implementation, a magnetic recording assembly includes a magnetic recording head. The magnetic recording head includes a lower pole and an upper pole. The magnetic recording head also includes a conductive structure between the upper pole and the lower pole. The conductive structure includes a main pole, a first side gap conductive layer, and a second side gap conductive layer. Each of the main pole, the first side gap conductive layer, and the second side gap conductive layer is formed of a conductive material. The magnetic recording head also includes a leading shield on a leading side of the conductive structure, and a trailing shield on a trailing side of the conductive structure. The magnetic recording head assembly also includes an alternating current (AC) source coupled to a first outer side of the conductive structure and a second outer side of the conductive structure to supply AC current horizontally through the conductive structure along a cross-track direction. The second outer side opposes the first outer side along the cross-track direction. The magnetic recording head also includes a trailing insulation layer disposed between the conductive structure and the trailing shield. The trailing insulation layer is of a width along a cross-track direction that is less than a width of the conductive structure along the cross track direction. The conductive structure includes a first side shield and a second side shield. Each of the first side shield and the second side shield is formed of a conductive material. The magnetic recording head assembly includes a leading side gap disposed on a leading side of the conductive structure and between a leading portion of the first side shield and a leading portion of the second side shield. A magnetic recording device including the magnetic recording head assembly is also disclosed.
While the foregoing is directed to embodiments of the present disclosure, other and further embodiments of the disclosure may be devised without departing from the basic scope thereof, and the scope thereof is determined by the claims that follow.
This application claims benefit of U.S. provisional patent application Ser. No. 63/107,085, filed Oct. 29, 2020, which is herein incorporated by reference.
Number | Name | Date | Kind |
---|---|---|---|
6201653 | Contreras et al. | Mar 2001 | B1 |
7212367 | Clinton et al. | May 2007 | B2 |
7593184 | Clinton et al. | Sep 2009 | B2 |
7724469 | Gao et al. | May 2010 | B2 |
7848054 | Hsiao et al. | Dec 2010 | B2 |
8179747 | Mugino et al. | May 2012 | B1 |
8411390 | Franca-Neto et al. | Apr 2013 | B2 |
8472135 | Kusukawa et al. | Jun 2013 | B1 |
8547656 | Igarashi et al. | Oct 2013 | B2 |
8547661 | Bai | Oct 2013 | B2 |
8582240 | Chen et al. | Nov 2013 | B1 |
8705206 | Maeda | Apr 2014 | B1 |
8724242 | Gao | May 2014 | B2 |
8737006 | Livshitz et al. | May 2014 | B2 |
8929030 | Hou et al. | Jan 2015 | B2 |
8988826 | Sugiyama et al. | Mar 2015 | B2 |
8995088 | Boone et al. | Mar 2015 | B1 |
9001465 | Shimizu et al. | Apr 2015 | B1 |
9019646 | Rausch et al. | Apr 2015 | B2 |
9230571 | Chen et al. | Jan 2016 | B1 |
9275672 | Shiroishi et al. | Mar 2016 | B2 |
9355655 | Udo et al. | May 2016 | B1 |
9368135 | Gao | Jun 2016 | B2 |
9478242 | Liu et al. | Oct 2016 | B1 |
9691416 | Izawa et al. | Jun 2017 | B1 |
9792933 | Koizumi et al. | Oct 2017 | B2 |
9881637 | Wilson et al. | Jan 2018 | B1 |
10121497 | Takahashi et al. | Nov 2018 | B1 |
10181334 | Song et al. | Jan 2019 | B1 |
10186284 | Narita et al. | Jan 2019 | B2 |
10236021 | Narita et al. | Mar 2019 | B2 |
10276193 | Narita et al. | Apr 2019 | B2 |
10325618 | Wu et al. | Jun 2019 | B1 |
10366714 | Olson et al. | Jul 2019 | B1 |
10388305 | De Albuquerque et al. | Aug 2019 | B1 |
10446178 | Tang et al. | Oct 2019 | B1 |
10580441 | Chen et al. | Mar 2020 | B1 |
10593355 | Basu et al. | Mar 2020 | B1 |
10706876 | Rausch et al. | Jul 2020 | B1 |
10777219 | Asif Bashir et al. | Sep 2020 | B1 |
10861485 | Asif Bashir et al. | Dec 2020 | B1 |
10891974 | Chembrolu | Jan 2021 | B1 |
10957348 | Bai et al. | Mar 2021 | B2 |
10991390 | Kobayashi | Apr 2021 | B2 |
11211082 | Sasaki et al. | Dec 2021 | B1 |
11289117 | Sasaki et al. | Mar 2022 | B1 |
11508401 | Asif Bashir et al. | Nov 2022 | B1 |
20080205202 | Komura et al. | Aug 2008 | A1 |
20080239541 | Shimazawa et al. | Oct 2008 | A1 |
20080304176 | Takagishi et al. | Dec 2008 | A1 |
20090059423 | Yamada et al. | Mar 2009 | A1 |
20090109570 | Scholz et al. | Apr 2009 | A1 |
20090152119 | Tachibana et al. | Jun 2009 | A1 |
20090310244 | Shimazawa et al. | Dec 2009 | A1 |
20130114384 | Mochizuki et al. | May 2013 | A1 |
20130250456 | Yamada et al. | Sep 2013 | A1 |
20140139952 | Takeo et al. | May 2014 | A1 |
20140177092 | Katada et al. | Jun 2014 | A1 |
20140177100 | Sugiyama et al. | Jun 2014 | A1 |
20150092292 | Furukawa et al. | Apr 2015 | A1 |
20160027455 | Kudo et al. | Jan 2016 | A1 |
20160118065 | Chen et al. | Apr 2016 | A1 |
20170092304 | Koizumi et al. | Mar 2017 | A1 |
20170236537 | Murakami et al. | Aug 2017 | A1 |
20180268848 | Narita et al. | Sep 2018 | A1 |
20190088274 | Narita et al. | Mar 2019 | A1 |
Number | Date | Country |
---|---|---|
104835510 | Nov 2017 | CN |
2013251042 | Dec 2013 | JP |
2015126326 | Aug 2015 | WO |
Entry |
---|
Ludeman “Three Technologies That Make HDD Magic—Western Digital Blog.” Western Digital Corporate Blog, published on Jul. 16, 2020 in Tech & Products, 7 pages, https://blog.westemdigital.com/hdd-magic-20tb-18tb/. |
Koga, R. et al., “Increasing AC-Field Frequency in Microwave-Assisted Magnetic Recording”, Intermag, 2015. |
Zhu, Jian-Gang et al., “Microwave Assisted Magnetic Recording Utilizing Perpendicular Spin Torque Oscillator With Switchable Perpendicular Electrodes”, IEEE Transactions on Magnetics, vol. 46, No. 3, Mar. 2010, pp. 751-757. |
Mallary, Mike et al; “Head and Media Challenges for 3 Tb/in2 Microwave-Assisted Magnetic Recording”; IEEE Transactions on Magnetics, vol. 50, No. 7, Jul. 2014 (8 pages). |
Katayama, Takuto et al., “Model Analysis of Tilted Spin-Torque Oscillator With Magnetic Write Head for Shingled Microwave-Assisted Magnetic Recording”, IEEE Transactions on Magnetics, vol. 50, No. 11, Nov. 2014. |
Number | Date | Country | |
---|---|---|---|
63107085 | Oct 2020 | US |