This application claims priority from Japanese Patent Application No. JP2004-372388, filed Dec. 24, 2004, the entire disclosure of which is incorporated herein by reference.
The present invention relates to a magnetic recording medium for attaining high-density magnetic recording and a magnetic storage device combined with a magnetic storage head.
The demand for a larger capacity magnetic disk drive is becoming more and more keen. To meet this demand it is required to develop a magnetic head of high sensitivity and a magnetic recording medium having a high S/N ratio. To improve the S/N ratio of a magnetic recording medium it is necessary to improve the read output for high-density recording. Generally, the magnetic recording medium comprises a first underlying layer called a seed layer formed on a substrate, a second underlying layer of a body-centered cubic structure formed of an alloy containing chromium as a main component, a magnetic film, and a protective film containing carbon as a main component. The magnetic film is formed of an alloy with a hexagonal close-packed structure containing cobalt as a main component. To improve the read output it is effective to let the magnetic film have a crystal orientation such that (110) plane or (100) plane is nearly parallel to the substrate surface and let the c-axis of the hexagonal close-packed structure be an axis of easy magnetization facing in the in-plane direction. It is known that the crystal orientation of the magnetic film can be controlled by the seed layer. As a technique for attaining both thermal stability and low noise there is disclosed in Patent Literature 1 (Japanese Patent Laid-open No. 7-134820 (p. 3)) a magnetic recording medium wherein an underlying layer is formed on a substrate and at least two magnetic layers of different compositions are formed in contact with each other on the underlying layer to constitute a laminated magnetic film, the laminated magnetic film being provided in multiple layers through a non-magnetic layer such as a ruthenium layer. As a technique for improving the crystallographic orientation of a magnetic layer there is disclosed in Patent Literature 2 (U.S. Pat. No. 6,150,015) a magnetic thin film having an ultra-thin nucleating layer formed of a Co—Cr-base alloy deposited at a low deposition rate of not higher than 1 Å/sec. and a recording layer formed of a Co—Cr—Pt-base magnetic alloy deposited at a high deposition rate. As a technique for improving the output characteristic of a magnetic recording medium there is disclosed in Patent Literature 3 (Japanese Patent No. 3576372) a magnetic recording medium comprising a non-magnetic underlying film, a magnetic film and a protective film formed in this order on a substrate, the non-magnetic underlying film being formed of a Cr or Cr alloy, the magnetic film comprising a plurality of magnetic layers of a Co alloy containing Cr, the magnetic layers having Cr contents which become gradually lower from lower to upper magnetic layers.
As a result of studies made by the present inventors it turned out that there were the following problems in the prior art. Improving the read output and also reducing the noise of a recording medium are important for improving the S/N ratio of the recording medium. To reduce the recording medium noise it is effective to form multiple layers, make the grain size microfine and decrease Brt. Brt is the product of remanence (Br) and the thickness (t) of magnetic layers. However, making the grain size microfine and decreasing Brt both to an extreme degree would cause deterioration of the thermal stability and thus a limit is encountered in the reduction of noise. Therefore, it is also necessary to study the higher coercivity of the recording medium. By making the coercivity high, it is possible to improve a half-value width PW50 of an isolated read wave output, but there arises a problem in that the overwrite characteristic may be deteriorated.
According to the technique disclosed in Patent Literature 1, Brt can be set low while maintaining the magnetic film thickness large in comparison with a recording medium formed by a single magnetic layer. However, it is still insufficient to attain a surface recording density of 95 Mbit or more per square millimeter. Thus, it is necessary to further improve the read output and decrease the recording medium noise.
In Patent Literature 2, the crystallographic orientation of a magnetic layer can be enhanced, but the effect of improving the crystallographic orientation by decreasing the film deposition rate is less significant and it is insufficient to attain a surface recording density of 95 Mbit or more per square millimeter of film. Thus, it is necessary to improve the read output and decrease the recording medium noise. The film formation using a low deposition rate of 1 Å/sec. or less is not realistic from the standpoint of productivity and discharge stability.
In Patent Literature 3, although the output characteristic is enhanced, it is insufficient to attain a surface recording density of 95 Mbit or more per square millimeter. It is necessary to optimize the composition and thickness of the magnetic layer formed in contact with the underlying layer and improve the crystallographic orientation of the magnetic layer and make crystal grains microfine, thereby reducing the recording medium noise.
It is a feature of the present invention to provide a longitudinal magnetic recording medium having a high recording medium S/N ratio, nonproblematic overwrite characteristics, a superior bit error rate and full stability to thermal fluctuation. It is another feature of the present invention to provide a highly reliable magnetic storage device which, when combined with a magnetic head of high sensitivity, can attain a surface recording density of 95 Mbit or more per square millimeter. In particular, the present invention aims at obtaining a composition and thickness of a magnetic film optimum for improving the output characteristic while reducing noise in a recording medium.
Typical modes of the invention as disclosed herein will now be outlined. A magnetic recording medium of the invention includes an underlying film, a magnetic film and a protective film, which are formed in this order on a substrate. The magnetic film is a cobalt-base alloy film containing chromium and includes a plurality of magnetic layers which are stacked without interposition of a non-magnetic layer. The plurality of magnetic layers comprise first, second and third magnetic layers, the first magnetic layer being disposed between the underlying film and the second magnetic layer, the second magnetic layer being disposed between the first and third magnetic layers, the third magnetic layer being disposed between the second magnetic layer and the protective film. The concentration of chromium contained in the first magnetic layer is lower than that of chromium contained in the second magnetic layer, and the thickness of the first magnetic layer is smaller than that of the second magnetic layer. The second and third magnetic layers each further contain platinum and boron, and the concentration of chromium contained in the third magnetic layer is set to a level lower than that of chromium contained in the second magnetic layer. Preferably, the thickness of the first magnetic layer is set at a value of not smaller than about 0.8 nm and not larger than about 2.0 nm.
According to the present invention it is possible to provide a longitudinal magnetic recording medium having a high recording medium S/N ratio, nonproblematic overwrite characteristics, a superior bit error rate, and full stability to thermal fluctuation. Further, it is possible to provide a highly reliable magnetic storage device which, when combined with a magnetic head of high sensitivity, can attain a surface recording density of 95 Mbit or more per square millimeter.
Working examples of the present invention will be described in detail with reference to the drawings.
As the substrate it is preferable to use a chemically strengthened glass substrate or a rigid substrate formed by plating a phosphorus-containing nickel alloy to an aluminum alloy. To impart magnetic anisotropy it is preferable to apply fine texturing in the substantially circumferential direction of a disc on the substrate. As a result of having measured a surface roughness in the radial direction of the disc under an intermittent contact type atomic force microscope and with respect to the size of 5 μm square, it has turned out that satisfactory flying reliability could be obtained by using a substrate of 2.68 to 4.2 nm in terms of a maximum height Rmax and 0.23 to 0.44 nm in terms of an average surface roughness.
An underlying film is formed between the substrate and the first magnetic layer, whereby it is possible to control the crystallographic orientation of the magnetic film and make crystal grains microfine. Here, a first underlying layer of any one of Ti—Co alloy, Ti—Co—Ni alloy and Ni—Ta alloy, a second underlying layer of W—Co alloy or Ta and a third underlying layer of a body centered cubic structure formed of Cr—Ti—B alloy or Cr—Ti alloy are provided between the substrate and the first magnetic layer.
The plural magnetic layers are stacked in three or more layers without interposition of a non-magnetic layer such as a ruthenium layer. That is, an intermediate layer for antiferromagnetic coupling between magnetic layers is not disposed between the magnetic layers, but magnetic layers are sputtered continuously. The material of the first magnetic layer is a cobalt-based alloy not containing platinum, tantalum and boron all together, such as Co—Cr alloy, Co—Cr—Pt alloy, Co—Cr—B alloy, or Co—Cr—Ta alloy. In particular, a Pt-containing alloy is preferred to stabilize the crystal growth because it is inert even when formed into a thin film.
The concentration of Cr contained in the second magnetic layer may be higher than that of Cr contained in the first magnetic layer and the concentration of Cr contained in the second magnetic layer may be lower than that of Cr contained in the third magnetic layer. In this case, lattice matching between the underlying film and the first magnetic layer is improved and so is lattice matching between the first and second magnetic layers and between the second and third magnetic layers. At the same time, in-plane orientation of magnetic properties is improved and it is also possible to improve the crystallographic orientation. Thus, the concentrations are more preferred for diminishing thermal fluctuation and attaining a high output resolution and a high recording medium S/N ratio.
The coercivity of the recording medium is ensured by incorporating Pt in the second and subsequent magnetic layers. Likewise, by incorporating B in the second and subsequent magnetic layers, the crystal grain size in the magnetic layers is made micro fine and the recording medium noise is reduced.
The magnetic recording medium is formed on the substrate by sputtering a target. As a physical vapor deposition method, not only DC sputtering, but also high-frequency sputtering or DC pulse sputtering is also effective. In a case of adopting the DC sputtering method, it is preferable to apply a bias voltage in the process of forming the second and subsequent magnetic layers to increase the coercivity. In a magnetic storage device comprising the magnetic recording medium fabricated in the above manner, a driver for driving the magnetic recording medium, a magnetic head comprising a write section and a read section, a mechanism for moving the magnetic head relatively with respect to the magnetic recording medium, a mechanical section for unloading the head to a ramp, a signal input unit for the magnetic head, and a read/write signal processing unit for read of an output signal from the magnetic head, if there is used as the magnetic head a magnetic head having a read section constituted by a magnetoresistive sensor, the magnetoresistive sensor including a plurality of electrically conductive magnetic films which undergo a relative change by the action of an external magnetic field and induce a large change in resistance and an electrically conductive non-magnetic film disposed between the electrically conductive magnetic films, it becomes possible to attain a surface recording density of 95 Mbit or more per square millimeter.
Co-12at. % Cr-13at. % Cr-12at. % B
Co-18at. % Cr-13at. % Cr-8at % B
Co-12at. % Cr-12at. % Cr-10at. % B-2at. % Cu.
The above multi-layer film was formed using a single wafer sputtering apparatus. A base vacuum degree of this sputtering apparatus was 1.0˜1.2×10−5 Pa and tact was set at 9 seconds. The first underlying layer up to the third magnetic layer were formed in an Ar gas atmosphere of 0.93 Pa. Heating was performed in a mixed gas atmosphere comprising Ar and 1% oxygen added thereto and the protective film of carbon was formed in a mixed gas atmosphere comprising Ar and 10% nitrogen added thereto. During sputtering of the third underlying layer and the second and third magnetic layers, a bias voltage of −200V was applied to the substrate. The discharge time of the first underlying layer and the second and third magnetic layers was set at 4.5 seconds, that of the second underlying layer and the first magnetic layer was set at 2.5 seconds, and that of the third underlying layer was set at 4.0 seconds. Brt (Br: magnetic layer remanence, t: magnetic layer thickness) and remanence coercivity Hcr were evaluated using a Fast Remanent Moment Magnetomer (FRMM) with respect to each recording medium fabricated. KV/kT (K: crystal magnetic anisotropy constant, V: volume of magnetic crystal grains, k: Boltzmann constant, T: absolute temperature) was determined by fitting the time dependency of remanence coercivity from 7.5 to 240 seconds at room temperature into Sharrock's expression with use of a vibrating sample magnetometer (VSM). According to the studies made by the present inventors, if the value of KV/kT obtained by this method is approximately 70 or more, it is possible to suppress output attenuation caused by thermal fluctuation, so that reliability is not affected.
Evaluation of electromagnetic conversion characteristic was made in spin stand mode by combination with a composite head having both an inductive magnetic head for write and a spin valve type magnetic head for read. Characteristics of heads used in this Example and other Examples are shown in
Evaluation results of SAMPLE No. 101-124 are shown in
For the thickness dependency of the first magnetic layer MAGLAY1, Brt increased with an increase in thickness TH1 of the first magnetic layer MAGLAY1. Hcr became maximum at a thickness of the first magnetic layer of about 0.8 nm and greatly decreased at a first magnetic layer thickness of 1.5 nm or more, thus exhibiting a great decrease with an increase of the thickness. When the thickness of the first magnetic layer was in the range of 1.0 to 1.5 nm, kNdhf decreased to a minimum, Smf/N was improved, and BER became small. Even when the thickness of the first magnetic layer was in the range of about 0.8 to 2.0 nm, there were obtained satisfactory Smf/N and BER close to those obtained at a thickness of 1.0 to 1.5 nm. kNdhf, Smf/N and BER exhibited a conspicuous deterioration at first magnetic layer thicknesses of 0.6 nm and 2.5 nm or more. However, KV/kT was improved with an increase in thickness of the first magnetic layer. In the case where the thickness of the first magnetic layer was as thin as 0.6 nm, it is probable that the deterioration in crystallographic orientation of the second and subsequent magnetic layers grown on the first magnetic layer led to deterioration of the electromagnetic conversion characteristic. It can be said that the conspicuous deterioration at a first magnetic layer thickness of about 2.0 nm or more is because of a great decrease of Hcr.
A comparison will now be made about the composition of the third magnetic layer MAGLAY3 in the case where the thickness of the first magnetic layer is in the range of 1.0 to 1.5 nm. In recording media having a relatively high Cr concentration of the third magnetic layer like test examples (SAMPLE No.) 112 to 114, kNdhf was smaller than in the other compositions. In recording media having a relatively low Cr concentration of the third magnetic layer like test examples (SAMPLE No.) 104 to 106 and 120 to 122, PW50 was smaller than and Smf/N was equal to or higher than in test examples (SAMPLE No.) 112 to 114 having a high Cr concentration. That is, the following facts became clear. In the case of selecting a composition with a high Cr concentration as the composition of the third magnetic layer, it is possible to reduce the recording medium noise, but the output characteristic is deteriorated. Conversely, in the case of selecting a composition with a low Cr concentration as the composition of the third magnetic layer, the output characteristic is improved, but the recording medium noise increases. From a comparison between test examples (SAMPLE No.) 104 to 106 and test examples (SAMPLE No.) 120 to 122, both having an equal Cr concentration, it turned out that test examples (SAMPLE No.) 104 to 106 high in the concentration of B were lower in kDdhf and larger in Smf/N. It is seen that a higher concentration of B is also effective in reducing noise. In the case of adding Cu as in test examples (SAMPLE No.) 120 to 122, it was possible to ensure sufficient Hcr despite the concentration of Pt being low. Thus, it is seen that the addition of Cu is effective in improving Hcr. In this Example, the recording media using Co-12at. % Cr-13at. % Pt-12at. % B as the material of the third magnetic layer exhibited the best BER, but no significant difference was recognized with respect to the other compositions.
Magnetic recording media not having the first magnetic layer were also fabricated, all of which could not afford an output signal in evaluation using FRMM and hence made it impossible to evaluate magnetic properties. This is probably due to the lack of in-plane preferential orientation of the second and third magnetic layers in the absence of any first magnetic layer.
Magnetic recording media not having the third magnetic layer were also fabricated, all of which decreased 100 kA/m or more in Hcr and had a serious problem in thermal stability. This is probably because the second magnetic layer is high in Cr concentration and low in crystal magnetic anisotropy and therefore it became impossible to maintain sufficient coercivity in the absence of the third magnetic layer lower in Cr concentration and higher in crystal magnetic anisotropy than the second magnetic layer.
Therefore, the first magnetic layer is essential for preferential in-plane orientation of the second and third magnetic layers. The formation of a second magnetic layer having a high Cr concentration is effective for the attainment of low Brt and low noise, but a high Cr magnetic layer is low in coercivity and cannot ensure thermal stability. Further, in the case of forming a third magnetic layer higher in Cr concentration than the second magnetic layer, it is also impossible to obtain sufficient coercivity and thermal stability cannot be ensured. Therefore, after the formation of a second magnetic layer having a high Cr concentration, it is necessary to form a third magnetic layer lower in Cr concentration than the second magnetic layer in order to increase coercivity and ensure thermal stability. It is generally known that, in the case of forming a magnetic film by plural magnetic layers, the output characteristic is improved by making the ratio of a ferromagnetic material such as cobalt to a nonmagnetic material such as chromium high in upper layers to increase magnetization. Platinum exhibits ferromagnetism by being incorporated in a cobalt-base alloy. Therefore, by making the concentration of cobalt and that of platinum higher in upper layers than the second magnetic layer, it becomes possible to improve the output characteristic.
The substrate 10 may be a substrate having an outside diameter of 84 mm, inside diameter 25 mm, thickness 1.27 mm, maximum height Rmax 3.5 nm, and average surface roughness Ra 0.35 nm, or a substrate having an outside diameter of 65 mm, inside diameter 20 mm, thickness 0.635 mm, Rmax 2.68 to 4.0 nm, and Ra 0.23 to 0.44 nm. There is no restriction on the shape of the substrate 10. Surface roughness in the radial direction of the disc was determined by observing the size of 5 μm square under an intermittent contact type atomic force microscope.
As the material of the first underlying layer there may be used Ti-50at. % Co alloy or Ni-38at. % Ta alloy. From the standpoint of slide reliability it is preferable that the thickness of the first underlying layer be greater than 10 nm. Likewise, from the standpoint of productivity it is preferable that the thickness of the first underlying layer be not greater than about 30 nm. A microcrystalline or amorphous metallic thin film having a composition other than the compositions described above is also employable.
Ta may be used as the material of the second underlying layer. If the second underlying layer is formed too thick, its mechanical reliability will be deteriorated and therefore it is preferable that the thickness of the second underlying layer be 5 nm or smaller.
Cr—Ti alloy not containing B may be used as the material of the third underlying layer. To make crystal grains microfine in a discharge atmosphere in which oxygen and nitrogen are not added intentionally, it is preferable to add boron to the third underlying layer. A suitable concentration of boron to be added can be selected so as to afford a desired value of coercivity. If boron is added in an amount exceeding 10at. %, the crystal grains will become microfine to an excessive degree.
The first magnetic layer may be an alloy not containing platinum, tantalum and boron all together, such as Co—Cr alloy, Co—Cr—B alloy, Co—Cr—Pt alloy, or Co—Cr—Ta alloy. It is preferable that the concentration of Cr added be in the range of 10at. % to 20at. %. In particular, an alloy not containing Pt is preferable in point of stabilizing the crystal growth because the surface thereof is relatively inert even when formed into a thin film.
Magnetic recording media were formed in the same way as in Example 1 except that the compositions and thicknesses of the first, second and third magnetic layers and the substrate temperature were changed. A Co-12at. % Cr-14at. % Pt-4at. % B-2at. % Ta alloy layer having a thickness of 10 nm was formed as the second magnetic layer and a Co-11at. % Cr-13at. % Cr-15at. % B alloy layer having a thickness of 8 nm was formed as the third magnetic layer. The following alloys were used as the materials of first magnetic layers each formed of a Co-base alloy:
Co-16at. % Cr-9at. % Pt
Co-34at. % Cr.
Magnetic properties and electromagnetic conversion characteristic were evaluated in the same manner as in Example 1. Head No. 2 (
As comparative examples, magnetic recording media using Cr—Mo alloy layers instead of Co-base alloys of the first magnetic layers were also formed. As Cr—Mo alloys there were provided two compositions of Cr-30at. % Mo and Cr-40at. % Mo. Thicknesses of the Cr—Mo alloy layers were set at 1.0 nm, 1.5 nm, and 2.0 nm. In the case of using Cr—Mo alloys, as compared with SAMPLE Nos. 201-206, Brt values of the media lowered by 3 Tnm or more independently of their compositions and thicknesses. This is probably because the magnetic layers overlying the Cr—Mo alloy layers did not exhibit in-plane preferential orientation. The first magnetic layer should be formed of a Co-base alloy in order to attain in-plane preferential orientation of the second and subsequent magnetic layers.
Magnetic recording media were formed in the same way as in Example 1 except that the compositions and thicknesses of the first underlying layer and the first magnetic layers were changed. As the material of the third magnetic layer there was selected Co-12at. % Cr-13at. % Pt-12at. % B. A Ti-50at. % Co alloy layer having a thickness of 15 nm was formed as the first underlying layer. The following alloys were used as the materials of first magnetic layers:
Co-10at. % Cr
Co-14at. % Cr
Co-27at. % Cr
Co-14at. % Cr-4at. % Pt
Co-14at. % Cr-8at. % Pt
Co-14at. % Cr-12at. % Pt
Co-19at. % Cr-8at. % Pt.
Magnetic properties and electromagnetic conversion characteristic were evaluated in the same manner as in Example 1. Head No. 3 (
When a comparison was made with respect to test examples having a Cr concentration of the first magnetic layer of 14 at. %, BER values in SAMPLE Nos. 310 to 315 containing 4 at. % or 8 at. % of Pt were smaller by an order of about 0.2 than in SAMPLE Nos. 304 to 306 not containing Pt. From these results it turned out preferable that the first magnetic layer formed of a Co-base alloy containing Cr further contain Pt. However, in SAMPLE Nos. 316 to 318 containing 12 at. % of Pt, there occurred a slight deterioration in BER, etc. Thus, it turned out that an upper limit was encountered in the concentration of Pt added to the first magnetic layer for improving the electromagnetic conversion characteristic.
Magnetic recording media were formed in the same way as in Example 1 except that different alloy layers were formed as first magnetic layers. Co-12at. % Cr-13at. % Pt-12at. % B was selected as the material of the third magnetic layer. The following alloys were used as the materials of first magnetic layers:
Co-14at. % Cr
Co-16at. % Cr
Co-18at. % Cr
Co-20at. % Cr
Co-14at. % Cr-4at. % Pt
Co-16at. % Cr-4at. % Pt
Co-16at. % Cr-9at. % Pt.
Magnetic properties and electromagnetic conversion characteristic were evaluated in the same manner as in Example 1. Head No. 4 (
In SAMPLE Nos. 417 to 426 using first magnetic layers each having a Cr concentration of 14 at. % or 16 at. % and containing 4 at. % or 9at. % of Pt, BER values were smaller by an order of about 0.5 than in SAMPLE Nos. 401 to 416 not containing Pt in first magnetic layers. As in Example 3, it turned out that the electroconversion characteristic was further improved by the addition of Pt to the first magnetic layers. It also turned out that an upper limit of the concentration of Pt added for the improvement of electromagnetic conversion characteristic was higher than 9 at. %.
Magnetic recording media were formed in the same way as in Example 1 except that the compositions and thicknesses of the first magnetic layers were changed. Co-12at. % Cr-13at. % Pt-12at. % B was selected as the material of the third magnetic layer. The following alloys were used as the materials of first magnetic layers. Although nonmagnetic materials are included among the following alloys, they are here designated first magnetic layers for convenience:
Co-16at. % Cr-9at. % Pt
Co-40at. % Ru
Co-50at. % Ru
Co-40at. % Ru-3at. % B
Co-24at. % Ru-14at. % B
Co-26at. % Ru-10at. % B
Co-20at. % Cr-30at. % Ru
Co-20at. % Cr-40at. % Ru.
Magnetic properties and electromagnetic conversion characteristic were evaluated in the same manner as in Example 1. Head No. 5 (
From the above results it can be said that the first magnetic layers not containing Ru afford better magnetic properties and electromagnetic conversion characteristic.
Magnetic recording media were formed in the same way as in Example 1 except that the composition and thickness of the second magnetic layer and the substrate temperature were changed. The first magnetic layers were formed at a thickness of 1.2 nm. Co-12at. % Cr-13at. % Pt-12at. % B alloy was selected as the material of third magnetic layers. The following alloys were used as the materials of second magnetic layers:
Co-22at. % Cr-14at. % Pt-4at. % B-2at. % Ta
Co-22at. % Cr-14at. % Pt-6at. % B-2at. % Ta
Co-24at. % Cr-14at. % Pt-6at. % B
Co-22at. % Cr-14at. % Pt-8at. % B
Co-18at. % Cr-12at. % Pt-8at. % B
Co-20at. % Cr-12at. % Pt-8at. % B.
Magnetic properties and electromagnetic conversion characteristic were evaluated in the same manner as in Example 1. The results obtained in SAMPLE Nos. 601 to 606 using Head No. 6 (
SAMPLE Nos. 601 to 606 using Co—Cr—Pt—B—Ta alloys as second magnetic layers were equal in electromagnetic conversion characteristic independently of the concentration of B. In SAMPLE Nos. 604 to 606 using a B concentration of 6 at. %, KV/kT was smaller than in SAMPLE Nos. 601 to 603 using a B concentration of 4 at. %, but the level thereof poses no problem in point of reliability. The reason why the value of KV/kT was small is probably that the crystal grain size of magnetic layers became microfine with an increase of the concentration of B.
In SAMPLE Nos. 613 to 624 using Co—Cr—Pt—B alloys as second magnetic layers and SAMPLE Nos. 613 to 618 having a Cr concentration in second layers of 22 at. % or higher, there were exhibited equal levels of kNdhf, Smf/N and BER to those in SAMPLE Nos. 601 to 603 using Co-22at. % Cr-14at. % Pt-4at. % B-2at. % Ta alloy as the material of second magnetic layers. SAMPLE Nos. 613-618 were smaller in KV/kT than SAMPLE Nos. 601-603, but the level thereof poses no problem in point of reliability. The reason why KV/kT was small is probably that the crystal grain size of magnetic layers became microfine with an increase of the concentration of B. In SAMPLE Nos. 622 to 624 having a Cr concentration in second layers of 20 at. %, kNdhf values were equivalent to those in the above SAMPLE Nos. 601 to 618, but SmF/N and BER were somewhat deteriorated. In SAMPLE Nos. 619-621 having a Cr concentration in second magnetic layers of 18 at. %, kNdhf, Smf/N and BER were deteriorated in comparison with the other test examples. Thus, it turned out that to reduce noise of each magnetic recording medium it was preferable to set the Cr concentration of the second magnetic layer at about 20 at. % or higher and that for further improvement of Smf/N and BER it was preferable to set the Cr concentration of the second magnetic layer at 22 at. % or higher.
A first underlying layer of Ti-50at. % Co alloy having a thickness of 15 nm, a second underlying layer of W-30at. % Co alloy having a thickness of 3 nm, a third underlying layer of Cr-10at. % Ti-3at. % B alloy having a thickness of 8 nm, a first magnetic layer of Co-16at. % Cr-9at. % Pt alloy having a thickness of 1 nm, a second magnetic layer of Co-23at. % Cr-13at. % Pt-5at. % B-2at. % Ta alloy having a thickness of II nm, and a third magnetic layer of Co-11at. % Cr-13a. % Pt-15at. % B alloy were formed in this order on a substrate in the same way as in Example 1, followed by further formation of a fourth magnetic layer. After the formation of the fourth magnetic layer, a protective layer and a lubricant layer were formed in the same manner as in Example 1. The following alloys were used as the materials of fourth magnetic layers:
Co-12at. % Cr-13at. % Pt-12at. % B
Co-12at. % Cr-12at. % Pt-10at. % B-2at. % Cu.
Magnetic properties and electromagnetic conversion characteristic were evaluated in the same manner as in Example 1. Head No. 9 (
Magnetic recording media were formed in the same way as in Example 7 except that different alloy layers were formed as third and fourth magnetic layers. The following alloys were used as the materials of third magnetic layers:
Co-12at. % Cr-13at. % Pt-12at. % B
Co-18at. % Cr-13at. % Pt-8at. % B.
The following alloys were used as the materials of fourth magnetic layers:
Co-6at. % Cr-13at. % Pt-16at. % B
Co-8at. % Cr-13at. % Pt-16at. % B
Co-8at. % Cr-13at. % Pt-14at. % B
Co-8at. % Cr-13at. % Pt-12at. % B
Co-10at. % Cr-13at. % Pt-14at. % B
Co-10at. % Cr-13at. % Pt-12at. % B
Co-10at. % Cr-13at. % Pt-10at. % B
Co-12at. % Cr-13at. % Pt-10at. % B
Co-10at. % Cr-6at. % Pt-4at. % B.
Magnetic properties and electromagnetic conversion characteristic were evaluated in the same manner as in Example 1. Head No. 10 (
It is to be understood that the above description is intended to be illustrative and not restrictive. Many embodiments will be apparent to those of skill in the art upon reviewing the above description. The scope of the invention should, therefore, be determined not with reference to the above description, but instead should be determined with reference to the appended claims along with their full scope of equivalents.
Number | Date | Country | Kind |
---|---|---|---|
2004-372388 | Dec 2004 | JP | national |
Number | Date | Country | |
---|---|---|---|
Parent | 11317344 | Dec 2005 | US |
Child | 12387164 | US |