Magnetic recording medium having low broadband noise

Information

  • Patent Application
  • 20060159963
  • Publication Number
    20060159963
  • Date Filed
    January 14, 2005
    19 years ago
  • Date Published
    July 20, 2006
    17 years ago
Abstract
A dual-layer magnetic recording tape comprising a non-magnetic substrate having a front side and a back side, a lower support layer formed over the front side and a magnetic recording layer formed over said lower support layer, comprising magnetic metallic pigment particles having an average particle length up to about 35 nm, and a coercivity of at least about 2000 Oersteds, wherein the magnetic tape has a BB noise less than −91 dB at 93 kfci.
Description
THE FIELD OF THE INVENTION

The present invention relates generally to magnetic recording media such as a magnetic tape, more specifically to a magnetic recording medium having a magnetic layer comprising magnetic metallic pigment particles having an average particle length up to about 35 nm.


BACKGROUND OF THE INVENTION

Magnetic recording media are widely used in data recording tapes, audio tapes, video tapes, computer tapes, disks and the like. Magnetic tapes may use thin metal layers as the recording layers, or may comprise coatings containing magnetic particles as the recording layer. The latter type of recording media employs particulate materials such as ferromagnetic iron oxides, chromium oxides, ferromagnetic alloy powders and the like dispersed in binders and coated on a substrate. In general terms, magnetic recording media generally comprise a magnetic layer coated onto at least one side of a non-magnetic substrate (e.g., a film for magnetic recording tape applications).


In certain designs, the magnetic coating (or “front coating”) is formed as a single layer directly onto a non-magnetic substrate. In an alternative approach, a dual-layer construction is employed more frequently, including a lower support layer on the substrate and a thin magnetic recording layer formed directly on the support or lower layer. The layers may be formed simultaneously or sequentially. With this type of construction, the lower support layer is generally thicker than the magnetic layer. The support layer is typically non-magnetic and generally comprised of a non-magnetic powder dispersed in a binder. Conversely, the upper layer comprises one or more magnetic metal particle powders or pigments dispersed in a binder system. The formulation for the magnetic layer is optimized to maximize the performance of the magnetic recording medium in such areas as signal-to-noise ratios, pulsewidth, and the like.


Magnetic tapes may also have a backside coating applied to the opposing side of the non-magnetic substrate in order to improve the durability, electrical conductivity, and tracking characteristics of the media. As with the front coatings, the backside coatings are typically combined with a suitable solvent to create a homogeneous mixture which is then coated onto the substrate, after which the coating is dried, calendered if desired, and then cured. The formulation for the backside coating or layer also comprises pigments and a binder system.


The magnetic recording medium is formed on a non-magnetic substrate. Conventionally used substrate materials include polyesters such as polyethylene terephthalate (PET), polyethylene naphthalate (PEN), and mixtures thereof; polyolefins (e.g., polypropylene); cellulose derivatives; polyamides; and polyimides.


It would be desirable to have a magnetic recording tape which has a magnetic particle smaller than that which has been previously used.


It has now been discovered that a magnetic recording medium which includes a magnetic recording layer comprising magnetic metallic pigment particles having an average particle length up to about 35 nm, and a coercivity of at least about 2000 Oersteds, has a broadband (BB) noise of less than −91 dB at 93 kfci.


SUMMARY OF THE INVENTION

The invention provides a dual-layer magnetic recording tape comprising a non-magnetic substrate having a front side and a back side, a lower support layer formed over the front side and a magnetic recording layer formed over said lower support layer, comprising magnetic metallic pigment particles having an average particle length up to about 35 nm, and a coercivity of at least about 2000 Oersteds, wherein the magnetic tape has a BB noise less than −91 dB at 93 kfci.


In one embodiment, the invention provides a magnetic recording medium having a front side and a back side, a lower support layer formed over the front side and a magnetic recording layer formed over said lower support layer, comprising magnetic metallic pigment particles having an average particle length up to about 35 nm, and a coercivity of at least about 2000 Oersteds, wherein the magnetic tape has a BB noise less than −92 dB at 131 kfci.


The substrate has a magnetic coating coated onto the front side, and may have a backside coating on the opposing side of the substrate. The magnetic layer may contain one or more metallic particulate pigments, and a binder system therefor. With a ferromagnetic magnetic recording layer, there may also be an optional support layer or sublayer which is coated directly onto the substrate and, in such cases, the magnetic recording layer is coated atop the sublayer. The magnetic recording layer may also comprise a magnetic thin film. An optional back coating may be formed on the opposing surface of the substrate, comprising carbon black dispersed in a binder.


In one embodiment, the invention provides a magnetic recording tape having longitudinal tracks comprising a non-magnetic substrate having a front side and a backside, having a front side and a back side, a lower support layer formed over the front side and a magnetic recording layer formed over said lower support layer, comprising magnetic metallic pigment particles having an average particle length up to about 35 nm, and a coercivity of at least about 2000 Oersteds, wherein the magnetic tape has a BB noise less than −92 dBs at 131 kfci.


These terms when used herein have the following meanings.


1. The term “coating composition” means a composition suitable for coating onto a substrate.


2. The terms “layer” and “coating” are used interchangeably to refer to a coated composition.


3. The terms “back coating” and “backside coating” are synonymous and refer to a coating on the opposing side of the substrate from a magnetic layer.


4. The term “vinyl” when applied to a polymeric material means that the material comprises repeating units derived from vinyl monomers. When applied to a monomeric material, the term “vinyl” means that the monomer contains a moiety having a free-radically polymerizable carbon-carbon double bond.


5. The term “resistivity” means the surface electrical resistance measured in Ohms/square.


6. The term “Tg” means glass transition temperature.


7. The term “coercivity” means the intensity of the magnetic field needed to reduce the magnetization of a ferromagnetic material to zero after it has reached saturation, taken at a saturation field strength of 10,000 Oersteds.


8. The term “Oersted,” abbreviated as “Oe,” refers to a unit of magnetic field in a dielectric material equal to 1/μ Gauss, where μ is the magnetic permeability.


9. The term “Broadband noise,” usually abbreviated “BB noise,” is the average integrated broad noise power expressed in decibels (dBs).


10. The term “Broadband Signal-to-Noise Ratio,” usually abbreviated “BBSNR,” is the ratio of average signal power to average integrated broad noise power of a tape clearly written at density TRD2, expressed in decibels (dB). BBSNR measures the area under the frequency curve from 4.5 KHz to 15.8 MHz. This value is obtained according to ECMA International Standard 319.


11. The term Ra means average roughness and is measured by atomic force microscopy. The values are reported in nanometers.


12. The term “tape” is used to refer to a type of magnetic recording medium and means a substrate coated with at least a magnetic coating on the front side of the substrate.


13. The term “dB” means decibel. The term includes both singular and plural.


All weights, amounts and ratios herein are by weight, unless otherwise specifically noted.







DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

The following detailed description describes certain embodiments and is not to be taken in a limiting sense. The scope of the present invention is defined by the appended claims.


The magnetic recording medium includes a substrate, a magnetic layer, and optionally, a sublayer and a backside layer. The various components are described in greater detail below. In general terms, however, the magnetic layer includes at least one magnetic metal pigment, and a binder system for the pigment


In one embodiment, the magnetic recording medium may be a dual-layer magnetic recording medium having a support layer coated on the front side of the substrate, with the magnetic layer being coated atop the support layer.


The Magnetic Recording Layer


In accordance with the current invention, the magnetic recording layer is a thin layer containing magnetic particle pigments. The layer is preferably from about 1 microinch (0.025μ) to about 10 microinches (0.25μ) in thickness, preferably from about 1 microinch to about 8 microinches.


The magnetic recording medium of the invention also has a magnetic or front side which is smoother, i.e., has a lower roughness value, than similar particulate magnetic recording media using larger particles. The magnetic side has a magnetic side average roughness (Ra) of no more than about 6 nanometeres (nm).


Magnetic recording tapes of the invention include at least one particulate magnetic pigment having an average particle length of less than about 35 nm. Useful particles have coercivities of at least about 1800 Oe, preferably at least about 2000 Oe. The magnetic metal particle pigments have a composition including, but not limited to, metallic iron and/or alloys of iron with cobalt and/or nickel, and magnetic or non-magnetic oxides of iron, other elements, or mixtures thereof. Alternatively, the magnetic particles can be composed of hexagonal ferrites such as barium ferrites. In order to improve the required characteristics, the preferred magnetic powder may contain various additives, such as semi-metal or non-metal elements and their salts or oxides such as Al, Nd, Si, Co, Y, Ca, Mg, Mn, Na, etc. The selected magnetic powder may be treated with various auxiliary agents before it is dispersed in the binder system, resulting in the primary magnetic metal particle pigment. Useful pigments according to the invention have an average particle length no greater than about 35 nanometers (nm). Use of these pigments in magnetic recording layers of dual-layer magnetic recording tapes provide tapes having excellent BB noise characteristics, as measured according to ECMA Standard 319.


This ECMA standard specifies the physical and magnetic characteristics of magnetic tape cartridges, using magnetic tape 12.65 mm wide so as to provide physical interchange of such cartridges between drives. It also specifies the quality of the recorded signals, the recording method and the recorded format, thereby allowing data interchange between drives by means of such cartridges. In Annex B of such standard, broadband noise values are defined and procedures for measure set out. Magnetic tape under 3.5 ounces of tension is run at 3 meters/second over a Certance Gen 2 LTO head. Noise is measured in the presence of a 2593 flux transition per millimeter (ftpmm) signal at 21 frequencies between 0 and 15.5 MHz. The standard tape amplitude is measured at 5187 ftpmm and 7.78 MHz.


Tapes of the invention have BBSNR ratios of less than −91 when tested at 93 kfci. In one embodiment, a dual-layer magnetic recording tape of the invention has a BBSNR ratio of less than −92 when tested at 131 kfci.


In addition to the preferred primary magnetic metal particle pigment described above, the magnetic layer further includes soft spherical particles. Most commonly these particles are comprised of carbon black. A small amount, preferably less than about 3%, of at least one large particle carbon material may also be included, preferably a material that includes spherical carbon particles. The large particle carbon materials have a particle size on the order of from about 50 to about 500 nm, more preferably from about 70 to about 300 nm. Spherical large carbon particle materials are known and commercially available, and in commercial form can include various additives such as sulfur to improve performance. The remainder of the carbon particles present in the upper layer are small carbon particles, i.e., the particles have a particle size on the order of less than 100 nm, preferably less than about 50 nm.


The magnetic layer also includes an abrasive or head cleaning agent (HCA) component. One preferred HCA component is aluminum oxide. Other abrasive grains such as silica, ZrO2, Cr2O3, etc., can also be employed, either alone or in mixtures with aluminum oxide or each other.


The binder system associated with the magnetic layer preferably incorporates at least one binder resin, such as a thermoplastic resin, in conjunction with other resin components such as binders and surfactants used to disperse the HCA, a surfactant (or wetting agent), and one or more hardeners. In one preferred embodiment, the binder system of the magnetic layer includes at least one hard resin component and at least one soft resin component in conjunction with the other binder components. Hard resin components typically have a glass transition temperature (Tg) of at least about 70° C., and soft resin components typically have a glass transition temperature of less than about 68° C.


In one embodiment, the binder system contains at least one binder resin, such as a thermoplastic resin, in conjunction with other resin components such as binders and surfactants used to disperse the HCA, a surfactant (or wetting agent), and one or more hardeners. In one preferred embodiment, the binder system of the magnetic recording layer includes a combination of a primary polyurethane resin and a vinyl chloride resin. Examples of polyurethanes include polyester-polyurethane, polyester-polyurethane, polycarbonate-polyurethane, polyester-polycarbonate-polyurethane, and polycaprolactone-polyurethane. Other acceptable vinyl chloride resins such as vinyl chloride-vinyl acetate copolymer, vinyl chloride-vinyl acetate-vinyl alcohol copolymer, and vinyl chloride-vinyl acetate-maleic anhydride can also be employed with the primary polyurethane binder. Resins such as bis-phenyl-A-epoxy, styrene-acrylonitrile, and nitrocellulose may also be acceptable.


The binder system further preferably includes an HCA binder used to disperse the selected HCA material, such as a polyurethane paste binder (in conjunction with a pre-dispersed or paste HCA). Alternatively, other HCA binders compatible with the selected HCA format (e.g., powder HCA) are acceptable. As with other ingredients, HCA may be added to the main dispersion separately or dispersed in the binder system, and then added to the main dispersion.


The magnetic layer may further contain one or more lubricants such as a fatty acid and/or a fatty acid ester. The incorporated lubricant(s) exists throughout the front coating and, importantly, at the surface thereof of the magnetic layer. The lubricant(s) reduces friction to maintain smooth contact with low drag, and protects the media surface from wear. In dual-layer media, lubricant(s) are generally provided in both the upper and lower layers, and are preferably selected and formulated in combination.


Preferred fatty acid lubricants include at least 90 percent pure stearic acid. Although technical grade acids and/or acid esters can also be employed for the lubricant component, incorporation of high purity lubricant materials ensures robust performance of the resultant medium. Other acceptable fatty acids include one or more of myristic acid, palmitic acid, oleic acid, etc., and their mixtures. The magnetic layer formulation can further include one or more fatty acid esters such as butyl stearate, isopropyl stearate, butyl oleate, butyl palmitate, butyl myristate, hexadecyl stearate, and oleyl oleate.


In a preferred embodiment, the lubricant is incorporated into the magnetic layer in an amount of from about 1 to about 10 parts by weight, and preferably from about 1 to about 5 parts by weight, based on 100 parts by weight of the primary pigment.


The binder system may also contain a conventional surfactant or wetting agent. Known surfactants, e.g., adducts of sulfuric, sulfonic, phosphoric, phosphonic, and carboxylic acids, are acceptable.


The coating composition may also contain a hardening agent such as isocyanate or polyisocyanate. In a preferred embodiment, the hardener component is incorporated into the upper layer in an amount of from about 1 to about 5 parts by weight, and preferably from about 1 to about 3 parts by weight, based on 100 parts by weight of the primary magnetic pigment.


The materials for the magnetic layer are mixed with the primary pigment and coated atop the lower layer. Useful solvents associated with the upper layer coating material preferably include cyclohexanone (CHO), with a preferred concentration of from about 5% to about 50%, methyl ethyl ketone (MEK) preferably having a concentration of from about 40% to about 90%, and toluene (Tol) of concentrations from about 0% to about 40%. Alternatively, other ratios can be employed, or even other solvents or solvent combinations including, for example, xylene, methyl isobutyl ketone, tetrahydrofuran, and methyl amyl ketone, are acceptable.


If a thin film magnetic layer is desired, a metal such as cobalt, cobalt chrome, cobalt nickel, cobalt chrome platinum, and other cobalt alloys is formed on the substrate by such methods as sputtering and vacuum evaporation.


The Lower Support Layer


The lower support layer of a dual-layer magnetic tape of the invention is essentially non-magnetic and includes non-magnetic powders and a resin binder system. By forming one or more essentially non-magnetic lower layers, the electromagnetic characteristics of the magnetic layer are not adversely affected.


The lower layer of magnetic recording media of the invention includes at least a primary pigment and a binder system therefor. Such support layers are used in combination with an upper magnetic layer to form a magnetic recording medium having high quality recording characteristics and good mechanical and handling properties.


The primary lower layer pigment material consists primarily of non-magnetic particles such as iron oxides, titanium dioxide, alumina, tin oxide, titanium carbide, silicon carbide, silicon dioxide, silicon nitride, boron nitride, and the like.


In a preferred embodiment, the primary lower layer pigment material is a hematite material (α-iron oxide), which can be acidic or basic in nature. In one embodiment, alpha-iron oxides are substantially uniform in particle size and annealed to reduce the number of pores. After annealing, the pigment is ready for surface treatment, which is typically performed prior to mixing with other layer materials such as carbon black and the like. Alpha-iron oxides are well known and are commercially available from Dowa Mining Company, Toda Kogyo, Sakai Chemical Industry Co., and others.


Conductive carbon black material provides a certain level of conductivity so as to provide the formulation with protection from charging with static electricity. The conductive carbon black material is preferably of a conventional type and widely commercially available. In one preferred embodiment, the conductive carbon black material has an average particle size of less than 20 nm, more preferably about 15 nm.


The support or lower layer may also include an alumina containing pigment. In one embodiment, such pigment is an aluminum oxide pigment. Other abrasive grains such as silica, ZrO2, Cr2O3, etc., can also be employed, either alone or in mixtures with aluminum oxide. Such pigments are frequently referred to as head cleaning agents (HCA) due to the abrasive nature of the pigments.


The binder system or resin associated with the lower layer preferably incorporates at least one binder resin, such as a thermoplastic resin, in conjunction with other components. Additional components may include binders and surfactants used to disperse the HCA, a surfactant (or wetting agent), and one or more hardeners. The binder system of the support layer contain a hard resin along with a soft resin. The soft resin has a Tg of less than about 68° C. The hard resin has a Tg of at least about 70° C.


The coating composition further may include an additional binder used as a dispersant, such as a polyurethane paste binder.


The binder system may also contain a conventional surfactant or wetting agent. Known surfactants, e.g., adducts of sulfuric, sulfonic, phosphoric, phosphonic, and carboxylic acids, are acceptable.


The binder system may also contain a hardening agent such as isocyanate or polyisocyanate. In a preferred embodiment, the hardener component is incorporated into the lower layer in an amount of 2 to 5 parts by weight, and preferably 3 to 4 parts by weight, based on 100 parts by weight of the primary lower layer pigment.


The support layer may further contain one or more lubricants such as a fatty acid and/or a fatty acid ester. As with the magnetic layer, the support layer includes stearic acid which is at least about 90% pure. Other acceptable fatty acids include myristic acid, palmitic acid, oleic acid, etc., and their mixtures. The support layer formulation can further include a fatty acid ester such as butyl stearate, isopropyl stearate, butyl oleate, butyl palmitate, butyl myristate, hexadecyl stearate, and oleyl oleate. The fatty acids and fatty acid esters may be employed singly or in combination. The lubricant is typically incorporated into the lower layer in an amount of from about 1 to about 10 parts by weight, and preferably from about 1 to about 5 parts by weight, based on 100 parts by weight based on the primary lower layer pigment combination.


The materials for the lower layer are mixed with the primary pigment and the lower layer is coated to the substrate. Useful solvents associated with the lower layer coating material preferably include cyclohexanone (CHO), with a preferred concentration of from about 5% to about 50%, methyl ethyl ketone (MEK) preferably having a concentration of from about 40% to about 90%, and toluene (Tol) of concentrations from 0% to about 40%. Alternatively, other ratios can be employed, or even other solvents or solvent combinations including, for example, xylene, methyl isobutyl ketone, tetrahydrofuran, and methyl amyl ketone, are acceptable.


Substrate


Magnetic recording media of the invention comprise a magnetic recording medium for use with a magnetic recording head, comprising a substrate having a magnetic layer formed over the front side of said substrate, which comprises magnetic pigment particles, and a binder system therefor; wherein the magnetic recording medium has a cross-web dimensional difference from the magnetic recording head of less than 900 microns/meter over a 35 degree temperature range, and over a 70% relative humidity range, e.g., from 10% to 80% relative humidity.


Preferred substrates for use in a magnetic recording medium of the invention include metal, metal alloys, and glass films. In at least one embodiment comprising a substrate having a magnetic layer formed thereover, the magnetic recording medium has a cross-web dimensional difference from the magnetic recording head of less than 500 microns/meter over a 70% relative humidity range, e.g., from 10% to 80% relative humidity.


The Back Coat


The back coat primarily consists of a soft non-magnetic particle material such as carbon black or silicon dioxide particles. In one embodiment, the back coat layer comprises a combination of two kinds of carbon blacks, including a primary, small carbon black component and a secondary, large texture carbon black component, in combination with appropriate binder resins. The primary, small carbon black component preferably has an average particle size on the order of from about 10 to about 50 nm, whereas the secondary, large carbon component preferably has an average particle size on the order of from about 50 to about 300 nm. The back coat of the magnetic recording medium of the present invention contains from about 25 to about 50 percent small particle carbon particles based on total composition weight, preferably from about 35 to about 50 percent based on total composition weight.


Back coat pigments are dispersed as inks with appropriate binders, surfactant, ancillary particles, and solvents. Preferably, the back coat binder includes at least one of a polyurethane resin, a phenoxy resin, and nitrocellulose blended appropriately to modify coating stiffness as desired.


Useful solvents to create dispersions of the invention include methyl ethyl ketone, toluene, and cyclohexanone, and mixtures thereof, as well as other solvents or solvent combinations including, for example, xylene, methyl isobutyl ketone, and methyl amyl ketone, are acceptable.


Process for Manufacture


In a magnetic recording medium using a particulate magnetic recording layer, the coating materials of the upper layer, lower layer, if any, and back coat are prepared by dispersing the corresponding powders or pigments and the binders in a solvent. For example, with respect to the coating material for the upper layer, the primary metal particle powder or pigment and the large particle carbon materials are placed in a high solids mixing device along with certain of the resins (i.e., polyurethane binder, non-halogenated vinyl binder, and surfactant) and the solvent, and processed for from about 1 to about 4 hours. The resulting material is processed in a high-speed impeller dissolver for about 30 to about 90 minutes, along with additional amounts of the solvent. Following this letdown processing, the resulting composition is subjected to a sandmilling or polishing operation. Subsequently, the HCA and related binder components are added, and the composition left standing for about 30 to about 90 minutes. Following this letdown procedure, the composition is processed through a filtration operation, and then stored in a mixing tank at which the hardener component and lubricants are added. The resulting upper layer coating material is then ready for coating.


Preparation of a sublayer coating, when such a layer is used, entails a similar process, including high solids mixing of the pigment combination including the primary lower layer pigment, conductive carbon black material, and HCA with the binder and a solvent, for about 2 to 4 hours.


Finally, preparation of the back coat coating material preferably entails mixing the various components, including a solvent, in a planetary mixer or similar device, and then subjecting the dispersion to a sandmilling operation. Subsequently, the material is processed through a filtration operation in which the material is passed through a number of filters.


The process for manufacture of this type of magnetic recording medium may include an in-line portion and one or more off-line portions. The in-line portion includes unwinding the substrate or other material from a spool or supply. The substrate is coated with the backcoating on one side of the substrate, and next the backside coating is dried, typically using conventional ovens. A front coating is applied to the substrate; for the dual-layer magnetic recording media of the invention, the sublayer or support layer is applied first, directly onto the substrate, and the magnetic coating is then coated atop the support layer. For single layer magnetic recording media, the magnetic layer is coated directly atop the substrate. Alternatively, the front coating can occur prior to the backcoating. The coated substrate is magnetically oriented and dried, and then proceeds to the in-line calendaring station. According to one embodiment, called compliant-on-steel (COS), in-line calendering uses one or more in-line nip stations, in each of which a steel or other generally non-compliant roll contacts or otherwise is applied to the magnetically coated side of the substrate, and a rubberized or other generally compliant roll contacts or otherwise is applied to the back coated side. The generally non-compliant roll provides a desired degree of smoothness to the magnetically coated side of the substrate. Alternately, the in-line calendering is “steel-on-steel” (SOS), meaning both opposing rolls are steel. The process may also employ one or more nip stations each having generally non-compliant rolls. After in-line calendaring, the substrate or other material is wound. The process then proceeds to an off-line portion which occurs at a dedicated stand-alone machine. The coated substrate is unwound and then is calendered. The off-line calendering includes passing the coated substrate through a series of generally non-compliant rollers, e.g., multiple steel rollers, although materials other than steel may be used. The coated, calendered substrate then is wound a second time. The wound roll is then slit, burnished, and tested for defects according to methods known in the industry.


When a thin metal magnetic recording layer is used, a sputtering or evaporative process forms the metal onto the substrate. In one evaporative process, the substrate (and any intermediate layers) is transported past a vapor deposition apparatus, which continuously deposits a magnetic layer comprising cobalt, cobalt chrome, cobalt nickel, cobalt chrome platinum, or other cobalt alloys and/or their oxides, onto the substrate. The vapor deposition device can be any such device known in the industry including sputtering apparatus, vacuum deposition apparatus, or electron beam deposition apparatus. Preferred methods of deposition include vacuum deposition, which is conducted in a vacuum deposition chamber. The metal vapor can be introduced over a broad range of incident angles to the substrate surface, but is typically introduced at an average angle of from about 30 degrees to about 60 degrees.


Although specific embodiments have been illustrated and described herein for purposes of description of the preferred embodiment, it will be appreciated by those of ordinary skill in the art that a wide variety of alternate and/or equivalent implementations calculated to achieve the same purposes may be substituted for the specific embodiments shown and described without departing from the scope of the present invention. Those with skill in the chemical, mechanical, electromechanical, electrical, and computer arts will readily appreciate that the present invention may be implemented in a very wide variety of embodiments. This application is intended to cover any adaptations or variations of the preferred embodiments discussed herein. Therefore, it is manifestly intended that this invention be limited only by the claims and the equivalents thereof.


EXAMPLES

The following table lists the physical attributes along with the BB noise results measured at 93 kfci for magnetic tapes.


Examples 1-3

Examples 1-3 in Table 1 are dual-layer tapes comprising a magnetic upper layer and non-magnetic lower layer coated on a PEN substrate. In addition, each of the tapes has a back coat on the opposite side of the substrate to the magnetic layer. Both the magnetic layer and non-magnetic sublayer use a binder system comprising a PVC-vinyl copolymer (MR 104) and a commercially available polyurethane (UR-4122) polymer. In addition to the binders, the formulation contains a mixture of fatty acid (stearic acid) and fatty acid esters (butyl stearate and palmitate) as lubricants, alumina as a head cleaning agent, and carbon particles. The magnetic particles used in these examples are acicular metal particles with a long axis length and coercivity as indicated in Table 1. Magnetic orientation was carried out in a conventional manner by passing the coated tape through 10 magnetic coils while the magnetic and sublayer coatings were in the process of drying.


After drying, the tape was in-line steel-on-steel calendered followed by off-line steel-on-steel calendering.


Examples 1-3 illustrate the effect of reducing the MP length and achieving improved BBSNR as compared to Comparative Example C1. Example C5 further illustrates the effect of reducing the MP particle length for improved BBSNR relative to Example C4. Examples 3 and C6 were used to show that while BBSNR may differ from run-to-run, the BB noise stays at the same levels. Example 3 and C6 were coated on the same day. Example 2 is paired with C5 and Example 1 is paired with C4.


Comparative Examples C4-C6

Examples C4-C6 in Table 1 are dual-layer magnetic recording tapes which are coated similar to those tapes in Examples 1-3, except that they use magnetic pigment particles in the upper magnetic recording layer which are larger than 35 nm, as indicated in Table 1.

TABLE 1BB noiseMP LengthCoercivityat 93 kfciBB noiseBBSNRExample(nm)(Oe)(dB)at 131 kfciAt 93 kfci1352280−92.36−92.4827.62352268−92.30−92.3327.83352269−92.05−92.3229.5C4602716−88.05−88.8226.8C5452375−90.96−90.6727.9C6452375−90.67−90.8329.5

Claims
  • 1. A dual-layer magnetic recording tape comprising a non-magnetic substrate having a front side and a back side, a lower support layer formed over the front side and a magnetic recording layer formed over said lower support layer, comprising magnetic metallic pigment particles having an average particle length up to about 35 nm, and a coercivity of at least about 2000 Oersteds, wherein the magnetic tape has a BB noise less than −91 dB at 93 kfci.
  • 2. A dual-layer magnetic recording tape according to claim 1 having a BB noise less than about −92 dB at 131 kfci.
  • 3. A dual-layer magnetic recording tape according to claim 1 having a BBSNR of at least about 27 dB at 93 kfci.
  • 4. A dual-layer magnetic recording tape according to claim 1, wherein said tape has an average magnetic side surface roughness Ra value no greater than about 6 nm, as measured by atomic force microscopy.
  • 5. A dual-layer magnetic recording tape according to claim 1, wherein said magnetic recording layer further comprises a binder system for the magnetic pigment particles.
  • 6. A dual-layer magnetic recording tape according to claim 5, wherein said binder system comprises at least two resin components.
  • 7. A dual-layer magnetic recording tape according to claim 6, wherein one of said resin components is a polyurethane resin.
  • 8. A dual-layer magnetic recording tape according to claim 6, wherein one of said resin components is a vinyl chloride resin.
  • 9. A dual-layer magnetic recording tape according to claim 1, wherein said magnetic recording layer further comprising a particulate carbon material.
  • 10. A dual layer magnetic recording tape according to claim 1, wherein the magnetic recording layer comprises a primary ferromagnetic pigment, aluminum oxide, a spherical large particle carbon material having an average particle size of from about 50 nm to about 500 nm, a polyurethane binder, a vinyl chloride binder, a hardener, a fatty acid ester lubricant, and a fatty acid lubricant.
  • 11. A dual-layer magnetic recording tape according to claim 1, wherein said lower support layer comprises a pigment powder selected from a non-magnetic or soft magnetic powder having a coercivity of less than 300 Oe, and a resin binder system therefor.
  • 12. A dual-layer magnetic recording tape according to claim 11, wherein said lower support layer further includes a fatty acid ester lubricant, a fatty acid lubricant, and a conductive carbon black material dispersed in said binder.
  • 13. A dual-layer magnetic recording tape according to claim 12, wherein said conductive carbon black comprises less than about 5 weight percent of said lower support layer.
  • 14. A dual-layer magnetic recording tape according to claim 1 further comprising a back coat coated on said back side of said substrate.
  • 15. A dual-layer magnetic recording tape according to claim 14, wherein the back coat includes a carbon black pigment, a urethane binder, and at least one compound selected from phenoxy resin and nitrocellulose.
  • 16. A magnetic recording tape according to claim 14, wherein the back coat further comprises a metal oxide selected from titanium dioxide, aluminum oxide and a mixture thereof.
  • 17. A magnetic recording tape having longitudinal tracks comprising a non-magnetic substrate having a front side and a backside, a lower support layer formed over the front side and a magnetic recording layer formed over said lower support layer, comprising magnetic metallic pigment particles having an average particle length up to about 35 nm, and a coercivity of at least about 2000 Oersteds, wherein the magnetic tape has a BB noise less than −92 dBs at 131 kfci.