Claims
- 1. A magnetic recording medium comprising: on a non-magnetic substrate,at least a soft magnetic undercoat film comprising a soft magnetic material; an orientation control film for controlling an orientation of a film directly above; a perpendicular magnetic film in which an axis of easy magnetization is oriented mainly perpendicularly with respect to the substrate; and a protection film, wherein the perpendicular magnetic film has a structure in which a large number of magnetic grains are separated by a grain boundary layer, and an average separating distance between the magnetic grains along a straight line which connects centers of gravity of mutually neighboring magnetic grains is 1 nm or greater, and wherein the perpendicular magnetic film comprises Co and Cr, and when a Cr concentration in the magnetic grains is c1, and a Cr concentration in the grain boundary layer is c2, c2/c1 is 1.4 or greater.
- 2. A magnetic recording medium according to claim 1, wherein the Cr concentration in the grain boundary layer is 15 at % or greater.
- 3. A magnetic recording medium according to claim 1, wherein the perpendicular magnetic film has a granular structure.
- 4. A magnetic recording medium comprising: on a non-magnetic substrate,at least a soft magnetic undercoat film comprising a soft magnetic material; an orientation control film for controlling an orientation of a film directly above; a perpendicular magnetic film in which an axis of easy magnetization is oriented mainly perpendicularly with respect to the substrate; and a protection film, wherein the perpendicular magnetic film has a structure in which a large number of magnetic grains are separated by a grain boundary layer, and an average separating distance between the magnetic grains along a straight line which connects centers of gravity of mutually neighboring magnetic grains is 1 nm or greater, and wherein a non-magnetic intermediate film is provided between the orientation control film and the perpendicular magnetic film, and the non-magnetic intermediate film comprises a CoCrPtX1 type alloy (X1 being at least one of Mo, Ta, B, V, W, Zr, Re, Cu, Ru, Hf, Ir, and Y), a content of Cr is 20 to 45 at %, a content of Pt is 5 to 25 at %, a content of X1 is 0.5 to 20 at %, and the remainder is Co, and wherein the non-magnetic intermediate film comprises Co and Cr, has a structure in which crystal grains having a high Cr content are separated by a grain boundary layer having a low Cr content, and an average separating distance between the crystal grains along straight lines which connect centers of gravity of mutually neighboring crystal grains is 1 nm or greater.
- 5. A magnetic recording medium according to claim 4, wherein an average grain diameter of the crystal grains is 4 to 12 nm.
- 6. A manufacturing method for a magnetic recording medium having on a non-magnetic substrate, at least a soft magnetic undercoat film comprising a soft magnetic material, an orientation control film for controlling an orientation of a film directly above, a perpendicular magnetic film in which an axis of easy magnetization is oriented mainly perpendicularly with respect to the substrate, and a protection film,wherein the perpendicular magnetic film is made to have a structure in which a large number of magnetic grains are separated by a grain boundary layer, and an average separating distance between the magnetic grains along straight lines which connect centers of gravity of mutually neighboring magnetic grains is 1 nm or greater, and wherein the perpendicular magnetic film comprises Co and Cr, and when a Cr concentration in the magnetic grains is c1, and a Cr concentration in the grain boundary layer is c2, c2/c1 is 1.4 or greater.
- 7. A magnetic recording and reproducing apparatus comprising:a magnetic recording medium, and a magnetic head for recording and reproducing information on the magnetic recording medium, wherein the magnetic recording medium comprises on a non-magnetic substrate, at least a soft magnetic undercoat film comprising a soft magnetic material, an orientation control film for controlling an orientation of a film directly above, a perpendicular magnetic film in which an axis of easy magnetization is oriented mainly perpendicularly with respect to the substrate, and a protection film, and wherein the perpendicular magnetic film has a structure in which a large number of magnetic grains are separated by a grain boundary layer, and an average separating distance between the magnetic grains along straight lines which connect centers of gravity of mutually neighboring magnetic grains is 1 nm or greater, and wherein the perpendicular magnetic film comprises Co and Cr, and when a Cr concentration in the magnetic grains is c1, and a Cr concentration in the grain boundary layer is c2, c2/c1 is 1.4 or greater.
- 8. A magnetic recording medium according to claim 1, wherein an average grain diameter of the magnetic grains is 4 to 12 nm.
- 9. A magnetic recording medium according to claims 1, wherein the nucleation field is 0 (Oe) or greater as measured using a vibrating sample magnetometer.
- 10. A magnetic recording medium according to claim 9, wherein the nucleation field is a value measured at 70° C.
- 11. A magnetic recording medium according to claim 1, wherein the perpendicular magnetic film comprises CoCrPtX type alloy (where X is one or more of Mo, B, V, W, Zr, Re, Cu, Ru, Hf, k, and Y), and an amount of X contained is 0.5 to 15 at %.
- 12. A magnetic recording medium according to claim 11, wherein X is B, and the amount of X contained is 10 at % or less.
- 13. A magnetic recording medium according to claim 11, wherein the perpendicular magnetic film comprises Cr in an amount of 12 to 26 at %, Pt in an amount of 10 to 24 at %, X in an amount of 0.5 to 15 at %, and the remainder as Co.
- 14. A magnetic recording medium according to claim 4, wherein the content of Cr is 30 to 45 at %.
- 15. A manufacturing method for a magnetic recording medium having on a non-magnetic substrate, at least a soft magnetic undercoat film comprising a soft magnetic material, an orientation control film for controlling an orientation of a film directly above, a perpendicular magnetic film in which an axis of easy magnetization is oriented mainly perpendicularly with respect to the substrate, and a protection film,wherein the perpendicular magnetic film is made to have a structure in which a large number of magnetic grains are separated by a grain boundary layer, and an average separating distance between the magnetic grains along straight lines which connect centers of gravity of mutually neighboring magnetic grains is 1 nm or greater, and wherein a non-magnetic intermediate film is provided between the orientation control film and the perpendicular magnetic film, and the non-magnetic intermediate film comprises a CoCrPtX1 type alloy (X1 being at least one of Mo, Ta, B, V, W, Zr, Re, Cu, Ru, Hf, Ir, and Y), a content of Cr is 20 to 45 at %, a content of Pt is 5 to 25 at %, a content of X1 is 0.5 to 20 at %, and the remainder is Co, and wherein the non-magnetic intermediate film comprises Co and Cr, has a structure in which crystal grains having a high Cr content are separated by a grain boundary layer having a low Cr content, and an average separating distance between the crystal grains along straight lines which connect centers of gravity of mutually neighboring crystal grains is 1 nm or greater.
- 16. A magnetic recording and reproducing apparatus comprising:a magnetic recording medium, and a magnetic head for recording and reproducing information on the magnetic recording medium, wherein the magnetic recording medium comprises on a non-magnetic substrate, at least a soft magnetic undercoat film comprising a soft magnetic material, an orientation control film for controlling an orientation of a film directly above, a perpendicular magnetic film in which an axis of easy magnetization is oriented mainly perpendicularly with respect to the substrate, and a protection film, and wherein the perpendicular magnetic film has a structure in which a large number of magnetic grains are separated by a grain boundary layer, and an average separating distance between the magnetic grains along straight lines which connect centers of gravity of mutually neighboring magnetic grains is 1 nm or greater, and wherein a non-magnetic intermediate film is provided between the orientation control film and the perpendicular magnetic film, and the non-magnetic intermediate film comprises a CoCrPtX1 type alloy (X1 being at least one of Mo, Ta, B, V, W, Zr, Re, Cu, Ru, Hf, Ir, and Y), a content of Cr is 20 to 45 at %, a content of Pt is 5 to 25 at %, a content of X1 is 0.5 to 20 at %, and the remainder is Co, and wherein the non-magnetic intermediate film comprises Co and Cr, has a structure in which crystal grains having a high Cr content are separated by a grain boundary layer having a low Cr content, and an average separating distance between the crystal grains along straight lines which connect centers of gravity of mutually neighboring crystal grains is 1 nm or greater.
Priority Claims (1)
Number |
Date |
Country |
Kind |
P2001-055950 |
Feb 2001 |
JP |
|
Parent Case Info
This application claims benefit of earlier applications based on Provisional U.S. Patent Application No. 60/275,102 (Filed: Mar. 13, 2001).
US Referenced Citations (4)
Number |
Name |
Date |
Kind |
4722869 |
Honda et al. |
Feb 1988 |
A |
5679473 |
Murayama et al. |
Oct 1997 |
A |
5815343 |
Ishikawa et al. |
Sep 1998 |
A |
20020012816 |
Shimizu et al. |
Jan 2002 |
A1 |
Foreign Referenced Citations (1)
Number |
Date |
Country |
2002-025030 |
Jan 2002 |
JP |
Provisional Applications (1)
|
Number |
Date |
Country |
|
60/275102 |
Mar 2001 |
US |