Magnetic recording medium

Information

  • Patent Grant
  • 4486498
  • Patent Number
    4,486,498
  • Date Filed
    Thursday, September 1, 1983
    41 years ago
  • Date Issued
    Tuesday, December 4, 1984
    40 years ago
  • Inventors
  • Original Assignees
  • Examiners
    • Lesmes; George F.
    • Schwartz; P. R.
    Agents
    • Oblon, Fisher, Spivak, McClelland & Maier
Abstract
A magnetic recording medium comprises cobalt as a main component and at least one of zinc, rhodium and iridium as an additional component of an alloy of a magnetic layer.
Description

BACKGROUND OF THE INVENTION
1. FIELD OF THE INVENTION
The present invention relates to a magnetic recording medium having excellent magnetic characteristics of particle magnetic recording in super high density recording system.
2. DESCRIPTION OF THE PRIOR ART
Magnetic powder coated recording media prepared by coating a magnetic powder composition comprising fine magnetic particles made of .gamma.-Fe.sub.2 O.sub.3, Fe.sub.3 O.sub.4, Co-.gamma.-Fe.sub.2 O.sub.3, Co-Fe.sub.3 O.sub.4, Fe and Fe-Co etc. on a substrate have been used in various uses. However, in the preparation of such magnetic powder coated recording media, it is not easy to form a magnetic layer having a thickness of upto 1 .mu.m in view of productivity, and it is not easy to give a desired improved characteristics such as an improvement of a recording density. From the viewpoint of the requirements, a new type magnetic recording medium having a thin metal or alloy layer formed by a plating process or a metal vapor deposition process has been proposed and practically employed. It is possible to prepare a magnetic recording medium having a thin metal or alloy layer which has a thin thickness such as upto 500 .cndot. whereby the recording density can be remarkably improved.
SUMMARY OF THE INVENTION
It is an object of the present invention to provide a magnetic recording medium having a thin alloy layer which has excellent magnetic characteristics.
It is another object of the present invention to provide a magnetic recording medium for perpendicular magnetic recording which is recently expected in a super high density recording system.
The foregoing and other objects of the present invention have been attained by providing a magnetic recording medium comprising cobalt as a main component and at least one of zinc, rhodium and iridium as an additional component of an alloy of the magnetic layer and the axes of easy magnetization of the metal component are substantially perpendicular to the surface of the magnetic layer.





cl DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
It has been studied to evaluate total characteristics of magnetic recording media prepared by forming a thin metal or alloy layer of Fe type, Co type, Ni type and Mn type metal or alloy by a chemical plating process, an electrochemical plating process, a vacuum vapor deposition process, an ion plating process or a sputtering process. As a result, it has been found that a magnetic recording medium having a thin alloy layer made of Co as a main component (at least 50 wt. % of Co.) and at least one of Zn, Rh and Ir as an additional component imparts remarkably excellent characteristics.
The present invention will be further illustrated by certain examples and references which are provided for purposes of illustration only and are not intended to be limiting the present invention.
EXAMPLE 1
A thin Co-Ir layer was formed by an electron beam vapor deposition process under the condition shown in Table 1.
TABLE 1______________________________________Condition of PreparationFormulation of alloy Co: 90 wt. %; Ir: 10 wt. %______________________________________Thickness 0.2 .mu.mSubstrate polyester filmBackground gas pressure 5.8 .times. 10.sup.-6 TorrBeam current 0.8 ATilt angle 30 degree______________________________________
EXAMPLE 2
A thin Co-Zn alloy layer was formed by a direct current dielectrode sputtering process under the condition shown in Table 2 after a chamber baking and a degasification of a substrate so as to reduce an adverse effect of impurities such as N.sub.2 and O.sub.2.
TABLE 2______________________________________Condition of SputteringFormulation of alloy Co: 86 wt. %; Zn: 14 wt. %______________________________________Thickness 0.5 .mu.mSubstrate polyimide filmBackground gas pressure 4.9 .times. 10.sup.-7 TorrArgon gas pressure 1.0 .times. 10.sup.-2 TorrPlate voltage 500 VPlate current 0.37 ATemperature of substrate 180.degree. C.______________________________________
REFERENCE
A thin Co-Ni alloy layer was prepared by an electron beam vapor deposition under the condition shown in Table 3.
TABLE 3______________________________________Condition of PreparationFormulation of alloy Co: 80 wt. %; Ni: 20 wt. %______________________________________Thickness 0.2 .mu.mBackground gas pressure 6.0 .times. 10.sup.-6 TorrTilt angle 30 degreeBeam current 0.8 ASubstrate polyester film______________________________________
Magnetic characteristics of thin Co type alloy layers formed in Examples 1 and 2 and Reference 1 and recording characteristics of the magnetic recording media having the magnetic layer are shown in Table 4.
The magnetic recording medium of Example 1 had high in-plane coercive force to impart remarkably superior characteristics when it is used as a conventional in-plane type magnetic recording medium. Example 1 shows the embodiment of the thin Co-Ir alloy layer.
It was confirmed that when a thin Co-Zn alloy layer is formed by the same electron beam vapor deposition process, the thin Co-Zn alloy layer imparts the same characteristics as the thin Co-Ir alloy layer as the in-plane type magnetic recording medium.
The magnetic recording medium of Example 2 had excellent perpendicular anisotropy and perpendicular coercive force and excellent characteristics suitable for a perpendicular magnetic recording medium which is developing.
Each ideal perpendicular magnetic recording medium was also obtained by forming a thin Co-Rh alloy layer or a thin Co-Ir alloy layer by a sputtering process.
On the contrary, the magnetic recording medium of Reference had low coercive force and inferior recording characteristics. This is considered as follows:
The incorporation of Zn, Rh or Ir in Co in the present invention results in an enlargement of a stable region of hcp structure of Co which is magnetically preferable crystalline structure whereas the incorporation of Ni in Co in the reference results in a reduction of hcp stable region.
The thin alloy layer of the present invention has a thickness of 500 .cndot. to 3 .mu.m. When it is less than 500 .cndot., the magnetic moment is too low and a satisfactory S/N ratio can not be obtained whereas when it is more than 3 .mu.m, the improvement of the characteristics balanced to a cost increase is not found.
Of course, the thin alloy layer of the present invention can be used as an upper layer of the two layer type magnetic recording medium which has a lower layer having high magnetic permeability whereby remarkable improvement of a recording sensitivity can be attained in comparison with the monolayer type magnetic recording medium.
TABLE 4______________________________________Magnetic characteristics andRecording characteristics Exp. 1 Exp. 2 Ref.______________________________________Magnetic characteristics:In-plane coercive force (Oe) 1020 280 630Perpendicular coercive force -- 1430 --(Oe)Saturated magnetization 830 620 880(ewu/cc)Squareness ratio 0.98 -- 0.96Anisotropy magnetic field -- 6040 --(Oe)Recording characteristics:Type In-plane Perpen- In-plane dicularRecording density (KBPI) 25 52 14S/N ratio (dB) 31 43 26______________________________________
Claims
  • 1. A magnetic recording medium comprising a substrate layer and at least one magnetic layer consisting essentially of cobalt as a main component and zinc, rhodium or iridium as an additional component wherein the ratio of Co:Zn ranges from 70-86:14-30, Co:Rh ranges from 73-85:15-27, and Co:Ir ranges from 75-90:10-25 of an alloy of a magnetic layer wherein axes of easy magnetization of said components are substantially perpendicular to a surface of said magnetic layer and thickness of said magnetic layer is in a range of 500 .cndot. to 3 .mu.m.
  • 2. The magnetic recording medium according to claim 1 wherein the upper layer of a two layer magnetic structure consists essentially of cobalt as a main component and zinc, rhodium or iridium as an additional component wherein the ratio of Co:Zn ranges from 70-86:14-30, Co:Rh ranges from 73-85:15-27, and Co:Ir ranges from 75-90:10-25 of an alloy of a magnetic layer wherein axes of easy magnetization of said components are substantially perpendicular to a surface of said magnetic layer and thickness of said magnetic layer is in a range of 500 .cndot. to 3 .mu.m.
Priority Claims (1)
Number Date Country Kind
55-120969 Sep 1980 JPX
Parent Case Info

This is a continuation of application Ser. No. 286,289, filed July 23, 1981 now U.S. Pat. No. 4,416,943.

US Referenced Citations (2)
Number Name Date Kind
4210946 Iwasaki et al. Jul 1980
4277809 Fisher et al. Jul 1981
Foreign Referenced Citations (4)
Number Date Country
2506210 Sep 1975 DEX
5174605 Jun 1976 JPX
5438135 Mar 1979 JPX
54140505 Oct 1979 JPX
Continuations (1)
Number Date Country
Parent 286289 Jul 1981