The main pole 20 resides on an underlayer 12 and includes sidewalls 22 and 24. The sidewalls 22 and 24 of the conventional main pole 20 form an angle α0 with the down track direction at the ABS and an angle α1 with the down track direction at the distance x1 from the ABS. As can be seen in
Although the conventional magnetic recording head 10 functions, there are drawbacks. In particular, the conventional magnetic recording head 10 may not perform sufficiently at higher recording densities. For example, the write field of the conventional main pole 20 may not have a sufficiently high magnitude write field to meet particular standards. Accordingly, what is needed is a system and method for improving the performance of a magnetic recording head.
The disk drive 100 includes media 102, a slider 110 and a write transducer 120. Additional and/or different components may be included in the disk drive 100. Although not shown, the slider 110 and thus the transducer 120 are generally attached to a suspension (not shown).
The transducer 120 is fabricated on the slider 110 and includes an air-bearing surface (ABS) proximate to the media 102 during use. In general, the disk drive 100 includes a write transducer 120 and a read transducer (not shown). However, for clarity, only the write transducer 120 is shown. The transducer 120 includes a main pole 130 and coils 140. In other embodiments, different and/or additional components may be used in the write transducer 120.
The coil(s) 140 are used to energize the main pole 130. Two turns 140 are depicted in
The main pole 130 includes a pole tip region 132 close to the ABS and a yoke region 134 recessed from the ABS. The pole tip region 132 is shown as having top and bottom bevels 131 and 133, respectively, near the ABS. In addition, the pole tip region 134 includes sidewalls 136 and 138 in the cross track direction. The sidewalls are configured such that the pole 130 has a bottom and a top wider than the bottom.
The sidewalls 136 and 138 form sidewall angles with the down track direction. At the ABS, the sidewall 136 forms sidewall angle α0 with respect to the down track direction. In some embodiments, the sidewalls 136 and 138 are symmetric. Thus, although not labeled, the sidewall 138 would form substantially the same sidewall angle with the down track direction as the sidewall 136. In some embodiments, α0 is not more than fourteen degrees. In some such embodiments, α0 is at least twelve degrees. For example, α0 may be nominally 13.5°. At a distance x1 recessed from the ABS, the sidewall 136 forms sidewall angle α1 with the down track direction. The sidewall angle α1 is less than α0 at x1. For example, if α0 is 12-14 degrees, then α1 is greater than or equal to zero degrees and not more than 12-14 degrees. In some embodiments, α1 is at least seven degrees. Further, the distance x1 may vary. In some embodiments, x1 is desired to be not more than the distance which the bevel 131 or 133 extends into the ABS. For example, in some embodiments, x1 is not more than two hundred nanometers. In some embodiments, x1 is desired to be closer to the ABS. In some embodiments, x1 may be not more than eighty nanometers. For example, x1 may be at least 30 nm from the ABS if, for example, the processing tolerance in the location of x1 is 10 nm (corresponding to a 3σ of 30 nm). In general, x1 is desired to be sufficiently large that the sidewall angle α0 at the ABS remains unchanged. The manner in which the sidewall angle changes from α0 to α1 may vary. The sidewall angle may monotonically decrease between the ABS and x1. In some embodiments, the sidewall angle smoothly varies from α0 to α1. In other embodiments, the sidewall angle may change in step function(s) from α0 to α1. Although described herein as step function(s), one of ordinary skill in the art will recognize that there are processing and/or other limitations or considerations. Therefore, the transitions of such a “step” function may be rounded and/or transitions may not be sharp. Thus, as used herein, a step function may not be identical to a purely mathematical step function. This may occur at x1 or between the ABS and x1. In other embodiments, the change may be linear or piece-wise linear. In other embodiments the change may be in accordance with a higher order function including but not limited to a quadratic function. However, other configurations are possible. Although described herein in terms of particular mathematical functions, one of ordinary skill in the art will recognize that there are processing and/or other limitations or considerations. Consequently, the actual profile of the main poles may not precisely follow the mathematical functions used herein.
The magnetic disk drive 100 may exhibit improved performance. Because of the variation in the sidewall angle, the magnetic field generated by the main pole 130 and used to write to the media 102 may be enhanced. The reverse overwrite gain may also be improved. The gradient in the magnetic field may also be improved while maintaining substantially the same side fields. As a result, adjacent track interference may not be adversely affected. Further, the pole tip region 132 of the main pole 130 may have an increased magnetic volume. Stated differently, the pole tip region 132 may include more magnetic material. As a result, the cross track magnetic anisotropy may be improved and domain lockup issues mitigated. Thus, performance of the disk drive 100 may be improved.
The transducer 120′ includes a main pole 130′ having sidewalls 136′ and 138′ that are analogous to the main pole 130 and sidewalls 136 and 138, respectively. The main pole 130′ also includes a pole tip region 132′ and a yoke region 134′ that are analogous to the pole tip 132 and yoke 134, respectively. The pole tip region 132′ is shown as having top and bottom bevels 131 and 133, respectively that are analogous to the bevels 131 and 133 depicted in
The sidewalls 136′ and 138′ form sidewall angles α0′ and α1′ with respect to the down track direction at the ABS and x1′, respectively. In some embodiments, α0′ has a size range analogous to α0. For example, α0′ may be at least twelve degrees and not more than fourteen degrees and in some embodiments may be nominally 13.5°. The sidewall angle α1′ is less than α0′ at x1′. In the embodiment shown, α1′ is zero degrees. The distance x1′ may also vary in a manner analogous to x1. In some embodiments, x1′ is desired to be not more than the distance which the bevel 131 or 133 extends into the ABS. For example, in some embodiments, x1′ is not more than two hundred nanometers. In some embodiments, x1′ is desired to be closer to the ABS. In some embodiments, x1′ is not more than eighty nanometers. For example, x1′ may be at least 30 nm from the ABS if, for example, the processing tolerance in location of x1′ is 10 nm. In general, x1′ is desired to be sufficiently large that the sidewall angle α0′ at the ABS remains unchanged. The manner in which the sidewall angle changes from α0′ to α1′ may vary. The sidewall angle may monotonically decrease between the ABS and x1′. In some embodiments, the sidewall angle smoothly varies from α0′ to α1′. In other embodiments, the sidewall angle may change in step function(s) from α0′ to α1′. These change(s) may occur at x1′ or between the ABS and x1′. In other embodiments, the change may be linear or piece-wise linear. In other embodiments the change may be in accordance with a higher order function including but not limited to a quadratic function. However, other configurations are possible. Although the variation in sidewall angle is described herein in terms of step function(s) and other mathematical functions, one of ordinary skill in the art will recognize that there exist processing and/or other limitations or considerations. Therefore, the transitions of such a “step” function may be rounded and/or transitions may not be sharp. Similarly, “linear” regions may not be perfectly straight. Thus, the actual profile of the main poles may not precisely follow the mathematical functions used herein.
The magnetic transducer 120′ may exhibit improved performance for analogous reasons to those discussed above. Because of the variations in the sidewall angle, the magnetic field generated by the main pole 130′ may be increased. The reverse overwrite gain may also be improved. The gradient in the magnetic field may also be improved while maintaining substantially the same side fields. As a result, adjacent track interference may not be adversely affected. Further, the pole tip region 132′ of the main pole 130′ may have an increased magnetic volume. As a result, the cross track magnetic anisotropy may be improved and domain lockup issues mitigated. Thus, performance of the disk drive 100 may be improved.
The transducer 120″ includes a main pole 130″ having sidewalls 136″ and 138″ that are analogous to the main pole 130/130′ and sidewalls 136/136′ and 138/138′, respectively. The main pole 130″ also includes a pole tip region 132″ and a yoke region 134″ that are analogous to the pole tip 132/132′ and yoke 134/134′, respectively. The pole tip region 132″ is shown as having top and bottom bevels 131 and 133, respectively, that are analogous to the bevels 131 and 133 depicted in
The sidewalls 136″ and 138″ form sidewall angles α0″ and α1″ with respect to the down track direction at the ABS and x1″, respectively. In addition, the sidewalls 136″ and 138″ form sidewall angles α2 and α3 at positions x2 and x3. In the embodiment shown, α2 and α3 are between α0 and α1. Thus, the sidewall angle monotonically decreases from the ABS to x2, x3 and x1. In some embodiments, α0″ has a size range analogous to α0. For example, α0″ may be at least twelve degrees and not more than fourteen degrees and in some embodiments may be nominally 13.5°. The sidewall angle α1″ is less than α0″ at x1″. In the embodiment shown, α1″ is zero degrees. The distance x1″ may also vary in a manner analogous to x1/x1′. In some embodiments, x1″ is desired to be not more than the distance which the bevel 131 or 133 extends into the ABS. For example, in some embodiments, x1″ is not more than two hundred nanometers. In some embodiments, x1″ is desired to be closer to the ABS as described above. In general, x1″ is desired to be sufficiently large that the sidewall angle α0″ at the ABS remains unchanged. The manner in which the sidewall angle changes from α0″ to α1″ may vary. In some embodiments, the sidewall angle smoothly varies from α0′ to α1′. In other embodiments, the sidewall angle may change in a manner analogous to step function(s) from α0″ to α1″. These change(s) may occur at x2, x3 and x1″. For example, α2 may be 11° and x2 may be approximately 50 nm within tolerances. Similarly, α3 may be 7° and x3 may be one hundred nanometers within tolerances. However, in other embodiments, other distances and other sidewall angles may be possible. In other embodiments, the change may be linear or piece-wise linear. For example, a new slope for each line segment may occur at x2, x3 and x1. In other embodiments the change may be in accordance with a higher power function including but not limited to a quadratic function. However, other configurations are possible. Although the variation in sidewall angle is described herein in terms of step function(s) and other mathematical functions, one of ordinary skill in the art will recognize that there exist processing and/or other limitations or considerations. Therefore, the transitions of such a “step” function may be rounded and/or transitions may not be sharp. Similarly, “linear” regions may not be perfectly straight. Thus, the actual profile of the main poles may not precisely follow the mathematical functions used herein.
The magnetic transducer 120″ may exhibit improved performance for analogous reasons to those discussed above. Because of the variations in the sidewall angle, the magnetic field generated by the main pole 130″ may be increased. The reverse overwrite gain may also be improved. The gradient in the magnetic field may also be improved while maintaining substantially the same side fields. As a result, adjacent track interference may not be adversely affected. Further, the pole tip region 132″ of the main pole 130″ may have an increased magnetic volume. As a result, the cross track magnetic anisotropy may be improved and domain lockup issues mitigated. Thus, performance of the disk drive 100 may be improved.
The transducer 120′″ includes a main pole 130′″ having sidewalls 136′″ and 138′″ that are analogous to the main pole 130/130′/130″ and sidewalls 136/136′/136″ and 138/138′/138″, respectively. The main pole 130′″ also includes a pole tip region 132′″ and a yoke region 134′″ that are analogous to the pole tip 132/132′/132″ and yoke 134/134′/134″, respectively. The pole tip region 132′″ is shown as having top and bottom bevels 131 and 133, respectively, that are analogous to the bevels 131 and 133 depicted in
The sidewalls 136′″ and 138′″ form sidewall angles α0′″ and α1′″ with respect to the down track direction at the ABS and x1′″, respectively. In addition, the sidewalls 136′″ and 138′″ form sidewall angles α2′ and α3′ at positions x2′ and x3′. In the embodiment shown, α2′ and α3′ are substantially equal to α0′″. Thus, the sidewall angle is substantially constant from the ABS to x2 and at least x3. In some embodiments, α0′″ has a size range analogous to α0. For example, α0′″ may be at least twelve degrees and not more than fourteen degrees and in some embodiments may be nominally 13.5°. The sidewall angle α1′″ is less than α0′″ at x1′″. In the embodiment shown, α1′″ is zero degrees. The distance x1′″ may vary in a manner analogous to x1/x1′/x1″. In some embodiments, x1′″ is desired to be not more than the distance which the bevel 131 or 133 extends into the ABS. For example, in some embodiments, x1′″ is not more than two hundred nanometers. In some embodiments, x1′″ is desired to be closer to the ABS as described above. In general, x1′″ is desired to be sufficiently large that the sidewall angle αO′″ at the ABS remains unchanged. The manner in which the sidewall angle changes from α0′″ to α1′″ may vary. In some embodiments, the sidewall angle may change in a step function from α0′″ to α1′″ at some location after x3′ and by x1′″. However, other configurations are possible. Although the variation in sidewall angle is described herein in terms of step function(s) and other mathematical functions, one of ordinary skill in the art will recognize that there exist processing and/or other limitations or considerations. Therefore, the transitions of such a “step” function may be rounded and/or transitions may not be sharp. Similarly, “linear” regions may not be perfectly straight. Thus, the actual profile of the main poles may not precisely follow the mathematical functions used herein.
The magnetic transducer 120′″ may exhibit improved performance for analogous reasons to those discussed above. Because of the variations in the sidewall angle, the magnetic field generated by the main pole 130′″ may be increased. The reverse overwrite gain may also be improved. The gradient in the magnetic field may also be improved while maintaining substantially the same side fields. As a result, adjacent track interference may not be adversely affected. Further, the pole tip region 132′″ of the main pole 130′″ may have an increased magnetic volume. As a result, the cross track magnetic anisotropy may be improved and domain lockup issues mitigated. Thus, performance of the disk drive 100 may be improved.
Referring to
The coil(s) 140 are provided, via step 204. Portions of step 204 may thus be interleaved with the remaining steps of the method 200. For example, portions of the coil 140 may be provided before the formation of the main pole 130. However, other portions of the coil 140 may be provided after some or all of the main pole 130 has been formed. Step 204 may also include depositing and patterning the material(s) used for the coil(s) 140. Step 204 may include forming a single helical coil or one or more pancake/spiral coil. In such embodiments, a pancake coil 140 may include other turns far from the ABS.
Using the method 200, the magnetic disk drive 100 and magnetic transducers 120, 120′, 120″ and/or 120′″ may be provided. Thus, the benefits of the magnetic transducers 120, 120′, 120″ and/or 120′″ may be achieved.
Referring to
A trench is etched for the pole, via step 204. Step 204 may include using one or more damascene processes. The different materials may have different etch characteristics. Consequently, each material may etch a different amount and provide a portion of the trench that has a different profile. Thus, the trench may have different sidewall angles at different distances from the ABS. The material(s) for the pole 130 deposited, via step 216. One or more ferromagnetic materials may be plated. The pole tip 132 and yoke 134 may be formed.
Using the method 210, the main pole 130/130′/130″/130′″, magnetic disk drive 100 and magnetic transducers 120, 120′, 120″ and/or 120′″ may be provided. Thus, the benefits of the magnetic transducers 120, 120′, 120″ and/or 120′″ may be achieved.
This application claims priority to provisional U.S. Patent Application Ser. No. 61/876,340, filed on Sep. 11, 2013, which is hereby incorporated by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
5801910 | Mallary | Sep 1998 | A |
6016290 | Chen et al. | Jan 2000 | A |
6018441 | Wu et al. | Jan 2000 | A |
6025978 | Hoshi et al. | Feb 2000 | A |
6025988 | Yan | Feb 2000 | A |
6032353 | Hiner et al. | Mar 2000 | A |
6033532 | Minami | Mar 2000 | A |
6034851 | Zarouri et al. | Mar 2000 | A |
6043959 | Crue et al. | Mar 2000 | A |
6046885 | Aimonetti et al. | Apr 2000 | A |
6049650 | Jerman et al. | Apr 2000 | A |
6055138 | Shi | Apr 2000 | A |
6058094 | Davis et al. | May 2000 | A |
6073338 | Liu et al. | Jun 2000 | A |
6078479 | Nepela et al. | Jun 2000 | A |
6081499 | Berger et al. | Jun 2000 | A |
6094803 | Carlson et al. | Aug 2000 | A |
6099362 | Viches et al. | Aug 2000 | A |
6103073 | Thayamballi | Aug 2000 | A |
6108166 | Lederman | Aug 2000 | A |
6118629 | Huai et al. | Sep 2000 | A |
6118638 | Knapp et al. | Sep 2000 | A |
6125018 | Takagishi et al. | Sep 2000 | A |
6130779 | Carlson et al. | Oct 2000 | A |
6134089 | Barr et al. | Oct 2000 | A |
6136166 | Shen et al. | Oct 2000 | A |
6137661 | Shi et al. | Oct 2000 | A |
6137662 | Huai et al. | Oct 2000 | A |
6160684 | Heist et al. | Dec 2000 | A |
6163426 | Nepela et al. | Dec 2000 | A |
6166891 | Lederman et al. | Dec 2000 | A |
6172848 | Santini | Jan 2001 | B1 |
6173486 | Hsiao et al. | Jan 2001 | B1 |
6175476 | Huai et al. | Jan 2001 | B1 |
6178066 | Barr | Jan 2001 | B1 |
6178070 | Hong et al. | Jan 2001 | B1 |
6178150 | Davis | Jan 2001 | B1 |
6181485 | He | Jan 2001 | B1 |
6181525 | Carlson | Jan 2001 | B1 |
6185051 | Chen et al. | Feb 2001 | B1 |
6185077 | Tong et al. | Feb 2001 | B1 |
6185081 | Simion et al. | Feb 2001 | B1 |
6188549 | Wiitala | Feb 2001 | B1 |
6190764 | Shi et al. | Feb 2001 | B1 |
6193584 | Rudy et al. | Feb 2001 | B1 |
6195229 | Shen et al. | Feb 2001 | B1 |
6198608 | Hong et al. | Mar 2001 | B1 |
6198609 | Barr et al. | Mar 2001 | B1 |
6201673 | Rottmayer et al. | Mar 2001 | B1 |
6204998 | Katz | Mar 2001 | B1 |
6204999 | Crue et al. | Mar 2001 | B1 |
6212153 | Chen et al. | Apr 2001 | B1 |
6215625 | Carlson | Apr 2001 | B1 |
6219205 | Yuan et al. | Apr 2001 | B1 |
6221218 | Shi et al. | Apr 2001 | B1 |
6222707 | Huai et al. | Apr 2001 | B1 |
6229782 | Wang et al. | May 2001 | B1 |
6230959 | Heist et al. | May 2001 | B1 |
6233116 | Chen et al. | May 2001 | B1 |
6233125 | Knapp et al. | May 2001 | B1 |
6237215 | Hunsaker et al. | May 2001 | B1 |
6252743 | Bozorgi | Jun 2001 | B1 |
6255721 | Roberts | Jul 2001 | B1 |
6258468 | Mahvan et al. | Jul 2001 | B1 |
6266216 | Hikami et al. | Jul 2001 | B1 |
6271604 | Frank, Jr. et al. | Aug 2001 | B1 |
6275354 | Huai et al. | Aug 2001 | B1 |
6277505 | Shi et al. | Aug 2001 | B1 |
6282056 | Feng et al. | Aug 2001 | B1 |
6296955 | Hossain et al. | Oct 2001 | B1 |
6297955 | Frank, Jr. et al. | Oct 2001 | B1 |
6304414 | Crue, Jr. et al. | Oct 2001 | B1 |
6307715 | Berding et al. | Oct 2001 | B1 |
6310746 | Hawwa et al. | Oct 2001 | B1 |
6310750 | Hawwa et al. | Oct 2001 | B1 |
6317290 | Wang et al. | Nov 2001 | B1 |
6317297 | Tong et al. | Nov 2001 | B1 |
6322911 | Fukagawa et al. | Nov 2001 | B1 |
6330136 | Wang et al. | Dec 2001 | B1 |
6330137 | Knapp et al. | Dec 2001 | B1 |
6333830 | Rose et al. | Dec 2001 | B2 |
6340533 | Ueno et al. | Jan 2002 | B1 |
6349014 | Crue, Jr. et al. | Feb 2002 | B1 |
6351355 | Min et al. | Feb 2002 | B1 |
6353318 | Sin et al. | Mar 2002 | B1 |
6353511 | Shi et al. | Mar 2002 | B1 |
6356412 | Levi et al. | Mar 2002 | B1 |
6359779 | Frank, Jr. et al. | Mar 2002 | B1 |
6369983 | Hong | Apr 2002 | B1 |
6376964 | Young et al. | Apr 2002 | B1 |
6377535 | Chen et al. | Apr 2002 | B1 |
6381095 | Sin et al. | Apr 2002 | B1 |
6381105 | Huai et al. | Apr 2002 | B1 |
6389499 | Frank, Jr. et al. | May 2002 | B1 |
6392850 | Tong et al. | May 2002 | B1 |
6396660 | Jensen et al. | May 2002 | B1 |
6399179 | Hanrahan et al. | Jun 2002 | B1 |
6400526 | Crue, Jr. et al. | Jun 2002 | B2 |
6404600 | Hawwa et al. | Jun 2002 | B1 |
6404601 | Rottmayer et al. | Jun 2002 | B1 |
6404706 | Stovall et al. | Jun 2002 | B1 |
6410170 | Chen et al. | Jun 2002 | B1 |
6411522 | Frank, Jr. et al. | Jun 2002 | B1 |
6417998 | Crue, Jr. et al. | Jul 2002 | B1 |
6417999 | Knapp et al. | Jul 2002 | B1 |
6418000 | Gibbons et al. | Jul 2002 | B1 |
6418048 | Sin et al. | Jul 2002 | B1 |
6421211 | Hawwa et al. | Jul 2002 | B1 |
6421212 | Gibbons et al. | Jul 2002 | B1 |
6424505 | Lam et al. | Jul 2002 | B1 |
6424507 | Lederman et al. | Jul 2002 | B1 |
6430009 | Komaki et al. | Aug 2002 | B1 |
6430806 | Chen et al. | Aug 2002 | B1 |
6433965 | Gopinathan et al. | Aug 2002 | B1 |
6433968 | Shi et al. | Aug 2002 | B1 |
6433970 | Knapp et al. | Aug 2002 | B1 |
6437945 | Hawwa et al. | Aug 2002 | B1 |
6445536 | Rudy et al. | Sep 2002 | B1 |
6445542 | Levi et al. | Sep 2002 | B1 |
6445553 | Barr et al. | Sep 2002 | B2 |
6445554 | Dong et al. | Sep 2002 | B1 |
6447935 | Zhang et al. | Sep 2002 | B1 |
6448765 | Chen et al. | Sep 2002 | B1 |
6451514 | Iitsuka | Sep 2002 | B1 |
6452742 | Crue et al. | Sep 2002 | B1 |
6452765 | Mahvan et al. | Sep 2002 | B1 |
6456465 | Louis et al. | Sep 2002 | B1 |
6459552 | Liu et al. | Oct 2002 | B1 |
6462920 | Karimi | Oct 2002 | B1 |
6466401 | Hong et al. | Oct 2002 | B1 |
6466402 | Crue, Jr. et al. | Oct 2002 | B1 |
6466404 | Crue, Jr. et al. | Oct 2002 | B1 |
6468436 | Shi et al. | Oct 2002 | B1 |
6469877 | Knapp et al. | Oct 2002 | B1 |
6477019 | Matono et al. | Nov 2002 | B2 |
6479096 | Shi et al. | Nov 2002 | B1 |
6483662 | Thomas et al. | Nov 2002 | B1 |
6487040 | Hsiao et al. | Nov 2002 | B1 |
6487056 | Gibbons et al. | Nov 2002 | B1 |
6490125 | Barr | Dec 2002 | B1 |
6496330 | Crue, Jr. et al. | Dec 2002 | B1 |
6496334 | Pang et al. | Dec 2002 | B1 |
6504675 | Shukh et al. | Jan 2003 | B1 |
6504676 | Hiner et al. | Jan 2003 | B1 |
6512657 | Heist et al. | Jan 2003 | B2 |
6512659 | Hawwa et al. | Jan 2003 | B1 |
6512661 | Louis | Jan 2003 | B1 |
6512690 | Qi et al. | Jan 2003 | B1 |
6515573 | Dong et al. | Feb 2003 | B1 |
6515791 | Hawwa et al. | Feb 2003 | B1 |
6532823 | Knapp et al. | Mar 2003 | B1 |
6535363 | Hosomi et al. | Mar 2003 | B1 |
6552874 | Chen et al. | Apr 2003 | B1 |
6552928 | Qi et al. | Apr 2003 | B1 |
6577470 | Rumpler | Jun 2003 | B1 |
6583961 | Levi et al. | Jun 2003 | B2 |
6583968 | Scura et al. | Jun 2003 | B1 |
6597548 | Yamanaka et al. | Jul 2003 | B1 |
6611398 | Rumpler et al. | Aug 2003 | B1 |
6618223 | Chen et al. | Sep 2003 | B1 |
6629357 | Akoh | Oct 2003 | B1 |
6633464 | Lai et al. | Oct 2003 | B2 |
6636394 | Fukagawa et al. | Oct 2003 | B1 |
6639291 | Sin et al. | Oct 2003 | B1 |
6650503 | Chen et al. | Nov 2003 | B1 |
6650506 | Risse | Nov 2003 | B1 |
6654195 | Frank, Jr. et al. | Nov 2003 | B1 |
6657816 | Barr et al. | Dec 2003 | B1 |
6661621 | Iitsuka | Dec 2003 | B1 |
6661625 | Sin et al. | Dec 2003 | B1 |
6674610 | Thomas et al. | Jan 2004 | B1 |
6680863 | Shi et al. | Jan 2004 | B1 |
6683763 | Hiner et al. | Jan 2004 | B1 |
6687098 | Huai | Feb 2004 | B1 |
6687178 | Qi et al. | Feb 2004 | B1 |
6687977 | Knapp et al. | Feb 2004 | B2 |
6691226 | Frank, Jr. et al. | Feb 2004 | B1 |
6697294 | Qi et al. | Feb 2004 | B1 |
6700738 | Sin et al. | Mar 2004 | B1 |
6700759 | Knapp et al. | Mar 2004 | B1 |
6704158 | Hawwa et al. | Mar 2004 | B2 |
6707083 | Hiner et al. | Mar 2004 | B1 |
6710973 | Okada et al. | Mar 2004 | B2 |
6713801 | Sin et al. | Mar 2004 | B1 |
6721138 | Chen et al. | Apr 2004 | B1 |
6721149 | Shi et al. | Apr 2004 | B1 |
6721203 | Qi et al. | Apr 2004 | B1 |
6722018 | Santini | Apr 2004 | B2 |
6724569 | Chen et al. | Apr 2004 | B1 |
6724572 | Stoev et al. | Apr 2004 | B1 |
6729015 | Matono et al. | May 2004 | B2 |
6731460 | Sasaki | May 2004 | B2 |
6735850 | Gibbons et al. | May 2004 | B1 |
6737281 | Dang et al. | May 2004 | B1 |
6738223 | Sato et al. | May 2004 | B2 |
6744608 | Sin et al. | Jun 2004 | B1 |
6747301 | Hiner et al. | Jun 2004 | B1 |
6751055 | Alfoqaha et al. | Jun 2004 | B1 |
6754049 | Seagle et al. | Jun 2004 | B1 |
6756071 | Shi et al. | Jun 2004 | B1 |
6757140 | Hawwa | Jun 2004 | B1 |
6760196 | Niu et al. | Jul 2004 | B1 |
6762910 | Knapp et al. | Jul 2004 | B1 |
6762911 | Sasaki et al. | Jul 2004 | B2 |
6765756 | Hong et al. | Jul 2004 | B1 |
6775902 | Huai et al. | Aug 2004 | B1 |
6778358 | Jiang et al. | Aug 2004 | B1 |
6781927 | Heanuc et al. | Aug 2004 | B1 |
6785955 | Chen et al. | Sep 2004 | B1 |
6791793 | Chen et al. | Sep 2004 | B1 |
6791807 | Hikami et al. | Sep 2004 | B1 |
6798616 | Seagle et al. | Sep 2004 | B1 |
6798625 | Ueno et al. | Sep 2004 | B1 |
6801408 | Chen et al. | Oct 2004 | B1 |
6801411 | Lederman et al. | Oct 2004 | B1 |
6803615 | Sin et al. | Oct 2004 | B1 |
6806035 | Atireklapvarodom et al. | Oct 2004 | B1 |
6807030 | Hawwa et al. | Oct 2004 | B1 |
6807332 | Hawwa | Oct 2004 | B1 |
6809899 | Chen et al. | Oct 2004 | B1 |
6813116 | Nakamura et al. | Nov 2004 | B2 |
6816345 | Knapp et al. | Nov 2004 | B1 |
6828897 | Nepela | Dec 2004 | B1 |
6829160 | Qi et al. | Dec 2004 | B1 |
6829819 | Crue, Jr. et al. | Dec 2004 | B1 |
6833979 | Knapp et al. | Dec 2004 | B1 |
6834010 | Qi et al. | Dec 2004 | B1 |
6857181 | Lo et al. | Feb 2005 | B2 |
6859343 | Alfoqaha et al. | Feb 2005 | B1 |
6859997 | Tong et al. | Mar 2005 | B1 |
6861937 | Feng et al. | Mar 2005 | B1 |
6870712 | Chen et al. | Mar 2005 | B2 |
6873494 | Chen et al. | Mar 2005 | B2 |
6873547 | Shi et al. | Mar 2005 | B1 |
6879464 | Sun et al. | Apr 2005 | B2 |
6888184 | Shi et al. | May 2005 | B1 |
6888704 | Diao et al. | May 2005 | B1 |
6891697 | Nakamura et al. | May 2005 | B2 |
6891702 | Tang | May 2005 | B1 |
6894871 | Alfoqaha et al. | May 2005 | B2 |
6894877 | Crue, Jr. et al. | May 2005 | B1 |
6903900 | Sato et al. | Jun 2005 | B2 |
6906894 | Chen et al. | Jun 2005 | B2 |
6909578 | Missell et al. | Jun 2005 | B1 |
6912106 | Chen et al. | Jun 2005 | B1 |
6934113 | Chen | Aug 2005 | B1 |
6934129 | Zhang et al. | Aug 2005 | B1 |
6940688 | Jiang et al. | Sep 2005 | B2 |
6942824 | Li | Sep 2005 | B1 |
6943993 | Chang et al. | Sep 2005 | B2 |
6944938 | Crue, Jr. et al. | Sep 2005 | B1 |
6947255 | Hsiao et al. | Sep 2005 | B2 |
6947258 | Li | Sep 2005 | B1 |
6950266 | McCaslin et al. | Sep 2005 | B1 |
6950277 | Nguy et al. | Sep 2005 | B1 |
6952325 | Sato et al. | Oct 2005 | B2 |
6954332 | Hong et al. | Oct 2005 | B1 |
6958885 | Chen et al. | Oct 2005 | B1 |
6961221 | Niu et al. | Nov 2005 | B1 |
6969989 | Mei | Nov 2005 | B1 |
6975486 | Chen et al. | Dec 2005 | B2 |
6987643 | Seagle | Jan 2006 | B1 |
6989962 | Dong et al. | Jan 2006 | B1 |
6989972 | Stoev et al. | Jan 2006 | B1 |
6995949 | Nakamura et al. | Feb 2006 | B2 |
7006326 | Okada et al. | Feb 2006 | B2 |
7006327 | Krounbi et al. | Feb 2006 | B2 |
7007372 | Chen et al. | Mar 2006 | B1 |
7012832 | Sin et al. | Mar 2006 | B1 |
7023658 | Knapp et al. | Apr 2006 | B1 |
7026063 | Ueno et al. | Apr 2006 | B2 |
7027268 | Zhu et al. | Apr 2006 | B1 |
7027274 | Sin et al. | Apr 2006 | B1 |
7035046 | Young et al. | Apr 2006 | B1 |
7041985 | Wang et al. | May 2006 | B1 |
7046490 | Ueno et al. | May 2006 | B1 |
7054113 | Seagle et al. | May 2006 | B1 |
7057857 | Niu et al. | Jun 2006 | B1 |
7059868 | Yan | Jun 2006 | B1 |
7070698 | Le | Jul 2006 | B2 |
7092195 | Liu et al. | Aug 2006 | B1 |
7100266 | Plumer et al. | Sep 2006 | B2 |
7110289 | Sin et al. | Sep 2006 | B1 |
7111382 | Knapp et al. | Sep 2006 | B1 |
7113366 | Wang et al. | Sep 2006 | B1 |
7114241 | Kubota et al. | Oct 2006 | B2 |
7116517 | He et al. | Oct 2006 | B1 |
7124654 | Davies et al. | Oct 2006 | B1 |
7126788 | Liu et al. | Oct 2006 | B1 |
7126790 | Liu et al. | Oct 2006 | B1 |
7131346 | Buttar et al. | Nov 2006 | B1 |
7133252 | Takano et al. | Nov 2006 | B2 |
7133253 | Seagle et al. | Nov 2006 | B1 |
7134185 | Knapp et al. | Nov 2006 | B1 |
7139153 | Hsiao et al. | Nov 2006 | B2 |
7154715 | Yamanaka et al. | Dec 2006 | B2 |
7159302 | Feldbaum et al. | Jan 2007 | B2 |
7170725 | Zhou et al. | Jan 2007 | B1 |
7177117 | Jiang et al. | Feb 2007 | B1 |
7185415 | Khera et al. | Mar 2007 | B2 |
7193815 | Stoev et al. | Mar 2007 | B1 |
7196880 | Anderson et al. | Mar 2007 | B1 |
7199974 | Alfoqaha | Apr 2007 | B1 |
7199975 | Pan | Apr 2007 | B1 |
7206166 | Notsuke et al. | Apr 2007 | B2 |
7211339 | Seagle et al. | May 2007 | B1 |
7212379 | Hsu et al. | May 2007 | B2 |
7212384 | Stoev et al. | May 2007 | B1 |
7238292 | He et al. | Jul 2007 | B1 |
7239478 | Sin et al. | Jul 2007 | B1 |
7245454 | Aoki et al. | Jul 2007 | B2 |
7248431 | Liu et al. | Jul 2007 | B1 |
7248433 | Stoev et al. | Jul 2007 | B1 |
7248449 | Seagle | Jul 2007 | B1 |
7251878 | Le et al. | Aug 2007 | B2 |
7253992 | Chen et al. | Aug 2007 | B2 |
7280325 | Pan | Oct 2007 | B1 |
7283327 | Liu et al. | Oct 2007 | B1 |
7284316 | Huai et al. | Oct 2007 | B1 |
7286329 | Chen et al. | Oct 2007 | B1 |
7289303 | Sin et al. | Oct 2007 | B1 |
7292409 | Stoev et al. | Nov 2007 | B1 |
7296338 | Le et al. | Nov 2007 | B2 |
7296339 | Yang et al. | Nov 2007 | B1 |
7307814 | Seagle et al. | Dec 2007 | B1 |
7307818 | Park et al. | Dec 2007 | B1 |
7310204 | Stoev et al. | Dec 2007 | B1 |
7318947 | Park et al. | Jan 2008 | B1 |
7324304 | Benakli et al. | Jan 2008 | B1 |
7333295 | Medina et al. | Feb 2008 | B1 |
7337530 | Stoev et al. | Mar 2008 | B1 |
7342752 | Zhang et al. | Mar 2008 | B1 |
7349170 | Rudman et al. | Mar 2008 | B1 |
7349179 | He et al. | Mar 2008 | B1 |
7354664 | Jiang et al. | Apr 2008 | B1 |
7363697 | Dunn et al. | Apr 2008 | B1 |
7369359 | Fujita et al. | May 2008 | B2 |
7371152 | Newman | May 2008 | B1 |
7372665 | Stoev et al. | May 2008 | B1 |
7375926 | Stoev et al. | May 2008 | B1 |
7379269 | Krounbi et al. | May 2008 | B1 |
7386933 | Krounbi et al. | Jun 2008 | B1 |
7389577 | Shang et al. | Jun 2008 | B1 |
7392577 | Yazawa et al. | Jul 2008 | B2 |
7417832 | Erickson et al. | Aug 2008 | B1 |
7419891 | Chen et al. | Sep 2008 | B1 |
7428124 | Song et al. | Sep 2008 | B1 |
7430095 | Benakli et al. | Sep 2008 | B2 |
7430098 | Song et al. | Sep 2008 | B1 |
7436620 | Kang et al. | Oct 2008 | B1 |
7436638 | Pan | Oct 2008 | B1 |
7440220 | Kang et al. | Oct 2008 | B1 |
7441325 | Gao et al. | Oct 2008 | B2 |
7443632 | Stoev et al. | Oct 2008 | B1 |
7444740 | Chung et al. | Nov 2008 | B1 |
7464457 | Le et al. | Dec 2008 | B2 |
7469467 | Gao et al. | Dec 2008 | B2 |
7493688 | Wang et al. | Feb 2009 | B1 |
7508626 | Ichihara et al. | Mar 2009 | B2 |
7508627 | Zhang et al. | Mar 2009 | B1 |
7522377 | Jiang et al. | Apr 2009 | B1 |
7522379 | Krounbi et al. | Apr 2009 | B1 |
7522382 | Pan | Apr 2009 | B1 |
7535675 | Kimura et al. | May 2009 | B2 |
7542246 | Song et al. | Jun 2009 | B1 |
7551406 | Thomas et al. | Jun 2009 | B1 |
7552523 | He et al. | Jun 2009 | B1 |
7554767 | Hu et al. | Jun 2009 | B1 |
7558019 | Le et al. | Jul 2009 | B2 |
7580222 | Sasaki et al. | Aug 2009 | B2 |
7583466 | Kermiche et al. | Sep 2009 | B2 |
7595967 | Moon et al. | Sep 2009 | B1 |
7639451 | Yatsu et al. | Dec 2009 | B2 |
7639452 | Mochizuki et al. | Dec 2009 | B2 |
7639457 | Chen et al. | Dec 2009 | B1 |
7643246 | Yazawa et al. | Jan 2010 | B2 |
7660080 | Liu et al. | Feb 2010 | B1 |
7663839 | Sasaki et al. | Feb 2010 | B2 |
7672079 | Li et al. | Mar 2010 | B2 |
7672080 | Tang et al. | Mar 2010 | B1 |
7672086 | Jiang | Mar 2010 | B1 |
7684160 | Erickson et al. | Mar 2010 | B1 |
7688546 | Bai et al. | Mar 2010 | B1 |
7691434 | Zhang et al. | Apr 2010 | B1 |
7695761 | Shen et al. | Apr 2010 | B1 |
7719795 | Hu et al. | May 2010 | B2 |
7726009 | Liu et al. | Jun 2010 | B1 |
7729086 | Song et al. | Jun 2010 | B1 |
7729087 | Stoev et al. | Jun 2010 | B1 |
7736823 | Wang et al. | Jun 2010 | B1 |
7748104 | Bonhote et al. | Jul 2010 | B2 |
7785666 | Sun et al. | Aug 2010 | B1 |
7796356 | Fowler et al. | Sep 2010 | B1 |
7796360 | Im et al. | Sep 2010 | B2 |
7796361 | Sasaki et al. | Sep 2010 | B2 |
7800858 | Bajikar et al. | Sep 2010 | B1 |
7819979 | Chen et al. | Oct 2010 | B1 |
7829264 | Wang et al. | Nov 2010 | B1 |
7841068 | Chen et al. | Nov 2010 | B2 |
7846643 | Sun et al. | Dec 2010 | B1 |
7855854 | Hu et al. | Dec 2010 | B2 |
7869160 | Pan et al. | Jan 2011 | B1 |
7872824 | Macchioni et al. | Jan 2011 | B1 |
7872833 | Hu et al. | Jan 2011 | B2 |
7910267 | Zeng et al. | Mar 2011 | B1 |
7911735 | Sin et al. | Mar 2011 | B1 |
7911737 | Jiang et al. | Mar 2011 | B1 |
7916425 | Sasaki et al. | Mar 2011 | B2 |
7916426 | Hu et al. | Mar 2011 | B2 |
7918013 | Dunn et al. | Apr 2011 | B1 |
7924528 | Sasaki et al. | Apr 2011 | B2 |
7968219 | Jiang et al. | Jun 2011 | B1 |
7982989 | Shi et al. | Jul 2011 | B1 |
8008912 | Shang | Aug 2011 | B1 |
8012804 | Wang et al. | Sep 2011 | B1 |
8015692 | Zhang et al. | Sep 2011 | B1 |
8018677 | Chung et al. | Sep 2011 | B1 |
8018678 | Zhang et al. | Sep 2011 | B1 |
8024748 | Moravec et al. | Sep 2011 | B1 |
8027125 | Lee et al. | Sep 2011 | B2 |
8059367 | Lee et al. | Nov 2011 | B2 |
8072705 | Wang et al. | Dec 2011 | B1 |
8074345 | Anguelouch et al. | Dec 2011 | B1 |
8077418 | Hu et al. | Dec 2011 | B1 |
8077434 | Shen et al. | Dec 2011 | B1 |
8077435 | Liu et al. | Dec 2011 | B1 |
8077557 | Hu et al. | Dec 2011 | B1 |
8079135 | Shen et al. | Dec 2011 | B1 |
8081403 | Chen et al. | Dec 2011 | B1 |
8091210 | Sasaki et al. | Jan 2012 | B1 |
8097846 | Anguelouch et al. | Jan 2012 | B1 |
8104166 | Zhang et al. | Jan 2012 | B1 |
8116033 | Kameda et al. | Feb 2012 | B2 |
8116043 | Leng et al. | Feb 2012 | B2 |
8116171 | Lee | Feb 2012 | B1 |
8125732 | Bai et al. | Feb 2012 | B2 |
8125856 | Li et al. | Feb 2012 | B1 |
8134794 | Wang | Mar 2012 | B1 |
8136224 | Sun et al. | Mar 2012 | B1 |
8136225 | Zhang et al. | Mar 2012 | B1 |
8136805 | Lee | Mar 2012 | B1 |
8141235 | Zhang | Mar 2012 | B1 |
8146236 | Luo et al. | Apr 2012 | B1 |
8149536 | Yang et al. | Apr 2012 | B1 |
8151441 | Rudy et al. | Apr 2012 | B1 |
8163185 | Sun et al. | Apr 2012 | B1 |
8164760 | Willis | Apr 2012 | B2 |
8164855 | Gibbons et al. | Apr 2012 | B1 |
8164864 | Kaiser et al. | Apr 2012 | B2 |
8165709 | Rudy | Apr 2012 | B1 |
8166631 | Tran et al. | May 2012 | B1 |
8166632 | Zhang et al. | May 2012 | B1 |
8169473 | Yu et al. | May 2012 | B1 |
8171618 | Wang et al. | May 2012 | B1 |
8179636 | Bai et al. | May 2012 | B1 |
8184399 | Wu et al. | May 2012 | B2 |
8191237 | Luo et al. | Jun 2012 | B1 |
8194365 | Leng et al. | Jun 2012 | B1 |
8194366 | Li et al. | Jun 2012 | B1 |
8196285 | Zhang et al. | Jun 2012 | B1 |
8200054 | Li et al. | Jun 2012 | B1 |
8203800 | Li et al. | Jun 2012 | B2 |
8208350 | Hu et al. | Jun 2012 | B1 |
8220140 | Wang et al. | Jul 2012 | B1 |
8222599 | Chien | Jul 2012 | B1 |
8225488 | Zhang et al. | Jul 2012 | B1 |
8227023 | Liu et al. | Jul 2012 | B1 |
8228633 | Tran et al. | Jul 2012 | B1 |
8231796 | Li et al. | Jul 2012 | B1 |
8233233 | Shen et al. | Jul 2012 | B1 |
8233234 | Hsiao et al. | Jul 2012 | B2 |
8233235 | Chen et al. | Jul 2012 | B2 |
8233248 | Li et al. | Jul 2012 | B1 |
8248728 | Yamaguchi et al. | Aug 2012 | B2 |
8248896 | Yuan et al. | Aug 2012 | B1 |
8254060 | Shi et al. | Aug 2012 | B1 |
8257597 | Guan et al. | Sep 2012 | B1 |
8259410 | Bai et al. | Sep 2012 | B1 |
8259539 | Hu et al. | Sep 2012 | B1 |
8262918 | Li et al. | Sep 2012 | B1 |
8262919 | Luo et al. | Sep 2012 | B1 |
8264792 | Bai et al. | Sep 2012 | B2 |
8264797 | Emley | Sep 2012 | B2 |
8264798 | Guan et al. | Sep 2012 | B1 |
8270109 | Ohtsu | Sep 2012 | B2 |
8270126 | Roy et al. | Sep 2012 | B1 |
8276258 | Tran et al. | Oct 2012 | B1 |
8277669 | Chen et al. | Oct 2012 | B1 |
8279719 | Hu et al. | Oct 2012 | B1 |
8284517 | Sun et al. | Oct 2012 | B1 |
8288204 | Wang et al. | Oct 2012 | B1 |
8289649 | Sasaki et al. | Oct 2012 | B2 |
8289821 | Huber | Oct 2012 | B1 |
8291743 | Shi et al. | Oct 2012 | B1 |
8305711 | Li et al. | Nov 2012 | B2 |
8307539 | Rudy et al. | Nov 2012 | B1 |
8307540 | Tran et al. | Nov 2012 | B1 |
8308921 | Hiner et al. | Nov 2012 | B1 |
8310785 | Zhang et al. | Nov 2012 | B1 |
8310901 | Batra et al. | Nov 2012 | B1 |
8315019 | Mao et al. | Nov 2012 | B1 |
8316527 | Hong et al. | Nov 2012 | B2 |
8320076 | Shen et al. | Nov 2012 | B1 |
8320077 | Tang et al. | Nov 2012 | B1 |
8320219 | Wolf et al. | Nov 2012 | B1 |
8320220 | Yuan et al. | Nov 2012 | B1 |
8320722 | Yuan et al. | Nov 2012 | B1 |
8322022 | Yi et al. | Dec 2012 | B1 |
8322023 | Zeng et al. | Dec 2012 | B1 |
8325569 | Shi et al. | Dec 2012 | B1 |
8333008 | Sin et al. | Dec 2012 | B1 |
8334093 | Zhang et al. | Dec 2012 | B2 |
8336194 | Yuan et al. | Dec 2012 | B2 |
8339738 | Tran et al. | Dec 2012 | B1 |
8341826 | Jiang et al. | Jan 2013 | B1 |
8343319 | Li et al. | Jan 2013 | B1 |
8343364 | Gao et al. | Jan 2013 | B1 |
8347488 | Hong et al. | Jan 2013 | B2 |
8349195 | Si et al. | Jan 2013 | B1 |
8351307 | Wolf et al. | Jan 2013 | B1 |
8357244 | Zhao et al. | Jan 2013 | B1 |
8373945 | Luo et al. | Feb 2013 | B1 |
8375564 | Luo et al. | Feb 2013 | B1 |
8375565 | Hu et al. | Feb 2013 | B2 |
8381391 | Park et al. | Feb 2013 | B2 |
8385157 | Champion et al. | Feb 2013 | B1 |
8385158 | Hu et al. | Feb 2013 | B1 |
8394280 | Wan et al. | Mar 2013 | B1 |
8400731 | Li et al. | Mar 2013 | B1 |
8404128 | Zhang et al. | Mar 2013 | B1 |
8404129 | Luo et al. | Mar 2013 | B1 |
8405930 | Li et al. | Mar 2013 | B1 |
8409453 | Jiang et al. | Apr 2013 | B1 |
8413317 | Wan et al. | Apr 2013 | B1 |
8416540 | Li et al. | Apr 2013 | B1 |
8419953 | Su et al. | Apr 2013 | B1 |
8419954 | Chen et al. | Apr 2013 | B1 |
8422176 | Leng et al. | Apr 2013 | B1 |
8422342 | Lee | Apr 2013 | B1 |
8422841 | Shi et al. | Apr 2013 | B1 |
8424192 | Yang et al. | Apr 2013 | B1 |
8441756 | Sun et al. | May 2013 | B1 |
8443510 | Shi et al. | May 2013 | B1 |
8444866 | Guan et al. | May 2013 | B1 |
8449948 | Medina et al. | May 2013 | B2 |
8451556 | Wang et al. | May 2013 | B1 |
8451563 | Zhang et al. | May 2013 | B1 |
8454846 | Zhou et al. | Jun 2013 | B1 |
8455119 | Jiang et al. | Jun 2013 | B1 |
8456961 | Wang et al. | Jun 2013 | B1 |
8456963 | Hu et al. | Jun 2013 | B1 |
8456964 | Yuan et al. | Jun 2013 | B1 |
8456966 | Shi et al. | Jun 2013 | B1 |
8456967 | Mallary | Jun 2013 | B1 |
8458892 | Si et al. | Jun 2013 | B2 |
8462592 | Wolf et al. | Jun 2013 | B1 |
8468682 | Zhang | Jun 2013 | B1 |
8472288 | Wolf et al. | Jun 2013 | B1 |
8480911 | Osugi et al. | Jul 2013 | B1 |
8486285 | Zhou et al. | Jul 2013 | B2 |
8486286 | Gao et al. | Jul 2013 | B1 |
8488272 | Tran et al. | Jul 2013 | B1 |
8491801 | Tanner et al. | Jul 2013 | B1 |
8491802 | Gao et al. | Jul 2013 | B1 |
8493693 | Zheng et al. | Jul 2013 | B1 |
8493695 | Kaiser et al. | Jul 2013 | B1 |
8495813 | Hu et al. | Jul 2013 | B1 |
8498084 | Leng et al. | Jul 2013 | B1 |
8506828 | Osugi et al. | Aug 2013 | B1 |
8514517 | Batra et al. | Aug 2013 | B1 |
8518279 | Wang et al. | Aug 2013 | B1 |
8518832 | Yang et al. | Aug 2013 | B1 |
8520336 | Liu et al. | Aug 2013 | B1 |
8520337 | Liu et al. | Aug 2013 | B1 |
8524068 | Medina et al. | Sep 2013 | B2 |
8526275 | Yuan et al. | Sep 2013 | B1 |
8531801 | Xiao et al. | Sep 2013 | B1 |
8532450 | Wang et al. | Sep 2013 | B1 |
8533937 | Wang et al. | Sep 2013 | B1 |
8537494 | Pan et al. | Sep 2013 | B1 |
8537495 | Luo et al. | Sep 2013 | B1 |
8537502 | Park et al. | Sep 2013 | B1 |
8545999 | Leng et al. | Oct 2013 | B1 |
8547659 | Bai et al. | Oct 2013 | B1 |
8547667 | Roy et al. | Oct 2013 | B1 |
8547730 | Shen et al. | Oct 2013 | B1 |
8555486 | Medina et al. | Oct 2013 | B1 |
8559141 | Pakala et al. | Oct 2013 | B1 |
8563146 | Zhang et al. | Oct 2013 | B1 |
8565049 | Tanner et al. | Oct 2013 | B1 |
8576517 | Tran et al. | Nov 2013 | B1 |
8578594 | Jiang et al. | Nov 2013 | B2 |
8582238 | Liu et al. | Nov 2013 | B1 |
8582241 | Yu et al. | Nov 2013 | B1 |
8582253 | Zheng et al. | Nov 2013 | B1 |
8588039 | Shi et al. | Nov 2013 | B1 |
8593914 | Wang et al. | Nov 2013 | B2 |
8597528 | Roy et al. | Dec 2013 | B1 |
8599520 | Liu et al. | Dec 2013 | B1 |
8599657 | Lee | Dec 2013 | B1 |
8603593 | Roy et al. | Dec 2013 | B1 |
8607438 | Gao et al. | Dec 2013 | B1 |
8607439 | Wang et al. | Dec 2013 | B1 |
8611035 | Bajikar et al. | Dec 2013 | B1 |
8611054 | Shang et al. | Dec 2013 | B1 |
8611055 | Pakala et al. | Dec 2013 | B1 |
8614864 | Hong et al. | Dec 2013 | B1 |
8619512 | Yuan et al. | Dec 2013 | B1 |
8625233 | Ji et al. | Jan 2014 | B1 |
8625941 | Shi et al. | Jan 2014 | B1 |
8628672 | Si et al. | Jan 2014 | B1 |
8630068 | Mauri et al. | Jan 2014 | B1 |
8634280 | Wang et al. | Jan 2014 | B1 |
8638529 | Leng et al. | Jan 2014 | B1 |
8643980 | Fowler et al. | Feb 2014 | B1 |
8649123 | Zhang et al. | Feb 2014 | B1 |
8665561 | Knutson et al. | Mar 2014 | B1 |
8670211 | Sun et al. | Mar 2014 | B1 |
8670213 | Zeng et al. | Mar 2014 | B1 |
8670214 | Knutson et al. | Mar 2014 | B1 |
8670294 | Shi et al. | Mar 2014 | B1 |
8670295 | Hu et al. | Mar 2014 | B1 |
8675318 | Ho et al. | Mar 2014 | B1 |
8675455 | Krichevsky et al. | Mar 2014 | B1 |
8681594 | Shi et al. | Mar 2014 | B1 |
8689430 | Chen et al. | Apr 2014 | B1 |
8693141 | Elliott et al. | Apr 2014 | B1 |
8703397 | Zeng et al. | Apr 2014 | B1 |
8705205 | Li et al. | Apr 2014 | B1 |
20030076630 | Sato et al. | Apr 2003 | A1 |
20040061988 | Matono et al. | Apr 2004 | A1 |
20040184191 | Ichihara et al. | Sep 2004 | A1 |
20050117251 | Matono et al. | Jun 2005 | A1 |
20060044677 | Li et al. | Mar 2006 | A1 |
20060158779 | Ota et al. | Jul 2006 | A1 |
20060174474 | Le | Aug 2006 | A1 |
20060225268 | Le et al. | Oct 2006 | A1 |
20060288565 | Le et al. | Dec 2006 | A1 |
20070211380 | Akimoto et al. | Sep 2007 | A1 |
20070236834 | Toma et al. | Oct 2007 | A1 |
20070247746 | Kim et al. | Oct 2007 | A1 |
20070258167 | Allen et al. | Nov 2007 | A1 |
20070263324 | Allen et al. | Nov 2007 | A1 |
20070283557 | Chen et al. | Dec 2007 | A1 |
20080002309 | Hsu et al. | Jan 2008 | A1 |
20080151437 | Chen et al. | Jun 2008 | A1 |
20090279206 | Yang et al. | Nov 2009 | A1 |
20100146773 | Li et al. | Jun 2010 | A1 |
20100277832 | Bai et al. | Nov 2010 | A1 |
20100290157 | Zhang et al. | Nov 2010 | A1 |
20110051293 | Bai et al. | Mar 2011 | A1 |
20110086240 | Xiang et al. | Apr 2011 | A1 |
20110222188 | Etoh et al. | Sep 2011 | A1 |
20120111826 | Chen et al. | May 2012 | A1 |
20120216378 | Emley et al. | Aug 2012 | A1 |
20120237878 | Zeng et al. | Sep 2012 | A1 |
20120268845 | Sahoo et al. | Oct 2012 | A1 |
20120298621 | Gao | Nov 2012 | A1 |
20130216702 | Kaiser et al. | Aug 2013 | A1 |
20130216863 | Li et al. | Aug 2013 | A1 |
20130257421 | Shang et al. | Oct 2013 | A1 |
Entry |
---|
U.S. Appl. No. 13/631,808, filed Sep. 28, 2012, to Liu et al., 16 pages. |
Number | Date | Country | |
---|---|---|---|
61876340 | Sep 2013 | US |