The following relates to the magnetic resonance arts. It finds particular application in surface coils and surface coil arrays used in magnetic resonance imaging, and will be described with particular reference thereto. However, it also finds application in other types of radio frequency coils used for transmitting radio frequency excitation pulses and for receiving magnetic resonance signals.
Surface receive coils are used in magnetic resonance imaging to obtain good radio frequency coupling with a region of interest. For larger regions of interest, more than one surface coil can be used to provide greater coverage. Moreover, in applications such as sensitivity encoding (SENSE), the coils are used in parallel to image a common region of interest at an increased data acquisition rate.
A problem arises in that radio frequency current induced in one surface coil can couple to neighboring surface coils, producing artifacts or other degradation of the resulting reconstructed image. To address this problem, a pre-amplifier with matching circuitry is commonly used to provide a high output impedance as seen by the coil. Moreover, radio frequency baluns, traps, or the like can be incorporated to further suppress induced currents. Detuning circuitry is generally provided for each coil to detune the coil from the magnetic resonance frequency during the transmit phase of magnetic resonance imaging. Additional monitoring circuitry, safety interlock circuitry, or the like is also optionally coupled to each surface coil. The overall electronics package including, for example, the pre-amplifier and matching circuitry, radio frequency trap, detuning circuitry, monitoring and safety circuitry is commonly arranged in an electronic module.
For optimal operation, the electronic module should be close to the surface coil. However, the electronic module can adversely affect the imaging. For example, some electronic components may produce substantial radio frequency noise or interference. Moreover, ground planes, radio frequency shields, and the like can produce magnetic field flux expulsion effects that can distort the magnetic field in the vicinity of the electronic module and change the coil sensitivity to the magnetic resonance signal. Because of these and other concerns, the electronic module is generally positioned displaced outside a periphery of the surface coil.
While such displaced positioning of the electronic module improves image quality, it complicates design of surface coil arrays. Lead lines between the coils and their associated electronics provide additional opportunity for coupling and cross-talk. Large surface coil arrays provide large volume coverage. For parallel imaging techniques such as SENSE, a large array of coils can enable higher SENSE factors or otherwise increased data acquisition rates. Large arrays, for example rectangular arrays of N×M coils where N>2 and M>2, have interior coils that are completely surrounded by other surface coils. In such arrays, the interior coils are not readily connected with electronics arranged at the coil periphery.
The present invention contemplates an improved apparatus and method that overcomes the aforementioned limitations and others.
According to one aspect, a radio frequency coil is disclosed. A radio frequency antenna is disposed on a substrate. An electronics module is disposed on the substrate and is electrically connected with the radio frequency antenna.
According to another aspect, a radio frequency coils array is disclosed. A plurality of radio frequency coils are arranged such that the radio frequency antennae of the plurality of radio frequency coils span a coils array surface. Each radio frequency coil includes a substrate, a radio frequency antenna disposed on the substrate, and an electronics module disposed on a central region of the substrate and electrically connected with the radio frequency antenna. The radio frequency antenna includes a conductor disposed on the substrate outside of and at least partially surrounding the central region of the substrate.
According to yet another aspect, a magnetic resonance imaging system is disclosed. A main magnet produces a substantially spatially and temporally constant main magnetic field within a field of view. Magnetic field gradient coils impose selected magnetic field gradients on the main magnetic field within the field of view. A means is provided for applying a radio frequency pulse to the field of view. At least one radio frequency coil is arranged to detect a magnetic resonance signal induced by the applied radio frequency pulse. The at least one radio frequency coil includes a radio frequency antenna disposed on a substrate and an electronics module disposed on the substrate. The electronics module is electrically connected with the radio frequency antenna.
According to still yet another aspect, a magnetic resonance imaging method is provided. Magnetic resonance is excited in an imaging subject. A magnetic resonance signal is received using one or more radio frequency coils each including a radio frequency antenna disposed on a substrate and an electronics module disposed on the substrate and electrically connected with the radio frequency antenna. The radio frequency antenna of each coil is in proximity to the imaging subject.
One advantage resides in improved compactness of a surface coil for magnetic resonance imaging.
Another advantage resides in reduced external electrical wiring in a surface coil array.
Yet another advantage resides in more adaptable and configurable three-dimensional surface coils array construction.
Numerous additional advantages and benefits will become apparent to those of ordinary skill in the art upon reading the following detailed description of the preferred embodiments.
The invention may take form in various components and arrangements of components, and in various process operations and arrangements of process operations. The drawings are only for the purpose of illustrating preferred embodiments and are not to be construed as limiting the invention.
With reference to
A surface coil array 40 disposed inside the bore 14 includes a plurality of surface coils 44. The surface coil array 40 can be used as a phased array of receivers for parallel imaging, as a sensitivity encoding (SENSE) coil for SENSE imaging, or the like. In another approach, the coils 44 image different areas of the imaging subject 16. The main magnetic field coils 20 produce a main B0 magnetic field. A magnetic resonance imaging controller 50 operates magnetic field gradient controllers 52 to selectively energize the magnetic field gradient coils 30, and operates a radio frequency transmitter 54 coupled to the radio frequency coil 32 or the surface coil array 40 to selectively inject radio frequency excitation pulses into the subject 16.
By selectively operating the magnetic field gradient coils 30 and the radio frequency coil 32 magnetic resonance is generated and spatially encoded in at least a portion of a region of interest of the imaging subject 16. By applying selected magnetic field gradients via the gradient coils 30, a selected k-space trajectory is traversed, such as a Cartesian trajectory, a plurality of radial trajectories, or a spiral trajectory. Alternatively, imaging data can be acquired as projections along selected magnetic field gradient directions. During imaging data acquisition, the magnetic resonance imaging controller 50 operates a radio frequency receiver 56 coupled to the coils array 40 to acquire magnetic resonance samples that are stored in a magnetic resonance data memory 60.
The imaging data are reconstructed by a reconstruction processor 62 into an image representation. In the case of k-space sampling data, a Fourier transform-based reconstruction algorithm can be employed. Other reconstruction algorithms, such as a filtered backprojection-based reconstruction, can also be used depending upon the format of the acquired magnetic resonance imaging data. For SENSE imaging data, the reconstruction processor 62 reconstructs folded images from the imaging data acquired by each coil, and then combines the folded images along with coil sensitivity parameters to produce an unfolded reconstructed image.
The reconstructed image generated by the reconstruction processor 62 is stored in an image memory 64, and can be displayed on a user interface 66, stored in non-volatile memory, transmitted over a local intranet or the Internet, viewed, stored, manipulated, or so forth. The user interface 66 can also enable a radiologist, technician, or other operator of the magnetic resonance imaging scanner 10 to communicate with the magnetic resonance imaging controller 50 to select, modify, and execute magnetic resonance imaging sequences.
With continuing reference to
With reference to
The electronics module 78 is disposed on the substrate 72 in a central region 96 of the substrate 72, with the radio frequency antenna loop 90 outside of and at least partially surrounding the central region 96. Ends 100 of the antenna loop 90 extend into the central region 96 to electrically connect the antenna 90 with the electronic module 78. In one embodiment, the electronic module 78 has a width or other lateral dimension (Welec) that is less than or about three-fifths of a width or other lateral dimension (Wcoil) of the radio frequency antenna 90. The electronics module contains various electronic components for operating the surface coil 44, such as a pre-amplifier with matching circuitry, electronic resonance detuning circuitry, monitoring circuitry, safety interlocks circuitry, radio frequency traps or baluns, electric power distribution circuitry, or the like.
The electronics module 78 is separately housed and optionally contains a ground plane and/or a radio frequency shield that produce substantial magnetic flux expulsion. Even if the electronics module 78 does not contain either a radio frequency shield or a ground plane, various radio frequency electronic components contained in the module 78 typically produce some magnetic flux expulsion effects. However, because the antenna loop 90 measures the total radio frequency flux enclosed by the loop 90, magnetic field distortions in the central region 96 have a limited effect on the magnetic resonance signal received by the antenna loop 90. As an example, if the lateral dimension (Welec) of the electronics module 78 is about one-half of the lateral dimension (Wcoil) of the antenna 90, the loop sensitivity to the magnetic resonance signal is reduced by less than 10%. In order to minimize the effect of flux expulsion, the electronics module 78 should be located close to the center of the central region 96 surrounded by the antenna 90. The electronics module 78 should be located close to the center of the antenna loop 90.
In one embodiment, the antenna loop 90 is interrupted by one or more in-line capacitors 104, 106 or other reactive elements, which provide resonance frequency tuning, d.c. current blocking, or other effects. While the single-turn, substantially square antenna loop 90 is illustrated, it will be appreciated that the surface coil can include a multiple-turn antenna loop, a circular or otherwise-shaped antenna loop, or the like. Furthermore, it is contemplated to use a radio frequency antenna topology other than a complete loop, such as one or more electrically conductive fingers extending partway around the central region 96.
With reference to
In the surface coil 44′, the separately housed electronic module is replaced by an electronics module 78′ that is constructed directly on the central region 96 of the substrate 72. The electronic module 78′ includes printed circuit traces 110 that are lithographically defined during the lithographic defining of the antenna loop 90, or by another lithography process. One or more discrete electronic components, such as a toroidal inductor 112, a radio frequency signal processing component 114, and a transmitter circuit 116, are disposed on the central region 96 of the substrate 72 and are interconnected by the printed circuit traces 110. In both electronic modules 78, 78′, it is preferred to use toroidal inductors, solenoidal inductors with balanced turns, or other types of inductors which limit production of stray magnetic fields.
Optionally, one or more components that produce substantial radio frequency noise or interference, such as the radio frequency signal processing component 114, are enclosed in a radio frequency shield 120. Other components, such as the inductor 112 and the transmitter circuit 116, which are “quiet” and do not produce substantial radio frequency noise or interference, are suitably disposed outside of the radio frequency shield 120. This allows the size of the radio frequency shield 120 to be reduced to a size sufficient to house the noisy circuit components, thus reducing magnetic flux expulsion.
However, it is also contemplated to instead enclose the entire electronic module 78′ in a radio frequency shield. For example, in the surface coil 44 of
With reference returning to
With reference to
While the surface coils 44, 44′, 44″ have been described with reference to the specific coils array 40 shown in
With reference to
With reference to
Although lithographically patterned films on the substrate 72 have been described, it is also contemplated to use electroplating or the like to form the electrically conductive films described herein. Moreover, while receive coils have been described, transmit coil arrays can be similarly constructed. Still further, while surface coils have been described, head coils and other coils can similarly be constructed with embedded electronics by arranging the electronics with a small magnetic field flux repulsion cross-section and by arranging the electronics near a center of a receive coil loop of the magnetic resonance receive coil.
The invention has been described with reference to the preferred embodiments. Obviously, modifications and alterations will occur to others upon reading and understanding the preceding detailed description. It is intended that the invention be construed as including all such modifications and alterations insofar as they come within the scope of the appended claims or the equivalents thereof.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/IB2004/052452 | 11/16/2004 | WO | 00 | 5/22/2006 |
Number | Date | Country | |
---|---|---|---|
60524954 | Nov 2003 | US |