This application is based upon and claims the benefit of priority from prior Japanese Patent Applications No. 2007-122737, filed May 7, 2007; and No. 2008-018232, filed Jan. 29, 2008, the entire contents of both of which are incorporated herein by reference.
This application is the parent of copending divisional application Ser. No. 13/107,109 filed May 13, 2011. This application is also related to copending application Ser. Nos. 12/579,500 filed Oct. 15, 2009, and 13/010,042 filed Jan. 20, 2011.
1. Field of the Invention
The present invention relates to a magnetic resonance imaging apparatus that obtains an image of a subject based on a nuclear magnetic resonance (NMR) signal emitted from the subject, and a control method thereof.
2. Description of the Related Art
To image a coronary artery based on the magnetic resonance image (MRI) method, a method of using a three-dimensional (3D) steady-state free precession (SSFP) sequence to perform imaging in a breath holding state or a voluntary breathing state is used. In case of whole heart MR coronary angiography (WH MRCA) where a course of a coronary artery of an entire heart is imaged in particular, holding a breath may lead to an insufficient spatial resolution in some cases.
As a countermeasure, there is used an realtime motion correction (RMC) method of detecting a position of, e.g., a diaphragm based on an nuclear magnetic resonance (NMR) signal under voluntary breathing to perform imaging while monitoring a respiratory level and changing an imaging position in accordance with this respiratory level.
However, a variable amount of the position that enables accurate imaging is restricted more or less, there is adopted a method of providing a fixed threshold value with respect to a movement range obtained by respiration and pausing collection of the NMR signal for imaging when the movement is large beyond this threshold value. That is, for example, a position of the diaphragm in a body axis direction can be detected from a signal (which will be referred to as a monitor signal) obtained by subjecting an NMR signal collected in relation to such a region R as shown in
Performing the operation in this manner enables excellently obtaining a 3D image having a resolution that is high even under voluntary breathing.
However, when the respiratory level is not fixed and gradually lowered or gradually increased and a portion of the signal obtained by subjecting the NMR signal to one-dimensional Fourier transformation that corresponds to a position of the diaphragm deviates from the allowable range as shown in, e.g.,
Therefore, as shown in, e.g.,
However, even if the abdominal belt 500 is used to fix the abdominal, the respiratory motion cannot be completely suppressed, and the respiratory level may fluctuate to prolong an examination time in long-time imaging. Furthermore, when fixing strength of the abdominal belt 500 is increased to reduce the respiratory motion, a burden on a subject may be enlarged. When the examination is prolonged, the subject may start moving because of discomfort caused by fixing. Moreover, when the subject has a large body, even the abdominal belt cannot be used.
On the other hand, there is a multi breath holding method of repeating breath holding rather than voluntary breathing for a plurality of times to image three-dimensional data.
As shown in
On the other hand, as shown in
As explained above, according to the voluntary breathing method, a fluctuation in the respiratory level and the long-term variation of the respiratory level degrade an efficiency of data collection based on a navigator echo method.
Further, when a combination of the multi breath holding method and the single slab method is applied, blurring occurs due to each-time variation of the breath holding position.
Where the multi breath holding method and the multi slab method are applied in combination, the breath holding position varies each time data is collected from one imaging region. However, the allowable range changes in accordance therewith, data is collected from different positions. Therefore, there is an inconvenience that a registration error is produced in a finally obtained 3D image and discontinuity of data occurs in this 3D image. Thus, to reduce such discontinuity, the respective slabs must be positioned in, e.g., image processing. However, since data positions included in the respective slabs are different from each other during data collection, appropriate positioning is difficult.
It is to be noted that relevant technologies are known from, e.g., JP-A 2000-041970 (KOKAI), JP-A 2000-157507 (KOKAI), or JP-A 2004-057226.
Under the circumstances, appropriately giving aid so that the subject can readily adapt his/her respiratory level to the allowable range has been demanded.
Further, suppressing occurrence of a registration error or blurring in each slab has been also demanded.
According to a first aspect of the present invention, there is provided a magnetic resonance imaging apparatus comprising: a collection unit which applies a uniform static magnetic field to a subject and also applies a radio-frequency magnetic field and a gradient magnetic field to the subject in accordance with a predetermined pulse sequence to collect a magnetic resonance signal from the subject; a imaging unit which images the subject based on the magnetic resonance signal collected by the collection unit; a detection unit which detects a respiratory level of the subject; an informing unit which informs the subject of whether the detected respiratory level falls within an allowable range; and a unit which controls the collection unit and the imaging unit in such a manner that the magnetic resonance signal for imaging is collected and the subject is imaged based on the thus collected magnetic resonance signal for imaging when the detected respiratory level falls within the allowable range.
According to a second aspect of the present invention, there is provided a magnetic resonance imaging apparatus comprising: a collection unit which applies a uniform static magnetic field to a subject and also applies a radio-frequency magnetic field and a gradient magnetic field to the subject in accordance with a predetermined pulse sequence to individually collect each magnetic resonance signal from the subject in relation to each of a plurality of slabs; a imaging unit which images an imaging region containing the plurality of slabs based on the collected magnetic resonance signals; a unit which detects a respiratory level of the subject; a unit which controls the collection unit to collect the magnetic resonance signal when the detected respiratory level falls within an allowable range that is set with respect to each of the plurality of slabs; and a unit which sets the single allowable range that is applied in common to each of the plurality of slabs based on the respiratory level detected before the collection in relation to the first slab in the plurality of slabs begins.
According to a third aspect of the present invention, there is provided a display apparatus that is used with a magnetic resonance imaging apparatus that visualizes a subject based on a magnetic resonance signal collected from the subject when a respiratory level of the subject falls within an allowable range, comprising: a generation unit which generates an image indicating whether the respiratory level of the subject falls within the allowable range; and a display unit which displays the image to the subject.
According to a fourth aspect of the present invention, there is provided a A control method of a magnetic resonance imaging apparatus, the apparatus comprising: a collection unit which applies a uniform static magnetic field to a subject and also applies a radio-frequency magnetic field and a gradient magnetic field to the subject in accordance with a predetermined sequence to collect a magnetic resonance signal from the subject; and a imaging unit which images the subject based on the magnetic resonance signal collected by the collection unit, wherein the method comprises: informing the subject of whether the detected respiratory levels falls within the allowable range; and controlling the collection unit and the imaging unit to collect the magnetic resonance signal and visualize the subject based on the thus collected magnetic resonance signal when the detected respiratory level falls within the allowable range.
According to a fifth aspect of the present invention, there is provided a control method of a magnetic resonance imaging apparatus, the apparatus comprising: a collection unit which applies a uniform static magnetic field to a subject and also applies a radio-frequency magnetic field and a gradient magnetic field to the subject in accordance with a predetermined sequence to individually collect each magnetic resonance signal from the subject in relation to each of a plurality of slabs; and a imaging unit which visualizes an imaging region containing the plurality of slabs based on the collected magnetic resonance signal, wherein the method comprises: detecting a respiratory level of the subject; controlling the collection unit to collect the magnetic resonance signal when the detected respiratory level falls within an allowable range that is set with respect to each of the plurality of slabs; and setting the single allowable range that is applied in common to each of the plurality of slabs based on the respiratory level detected before the collection with respect to the first slab in the plurality of slabs begins.
Additional objects and advantages of the invention will be set forth in the description which follows, and in part will be obvious from the description, or may be learned by practice of the invention. The objects and advantages of the invention may be realized and obtained by means of the instrumentalities and combinations particularly pointed out hereinafter.
The accompanying drawings, which are incorporated in and constitute a part of the specification, illustrate embodiments of the invention, and together with the general description given above and the detailed description of the embodiments given below, serve to explain the principles of the invention.
Embodiments according to the present invention will now be explained hereinafter with reference to the accompanying drawings.
<First Embodiment>
The static field magnet 1 is formed in the shape of a hollow cylinder and adapted to generate a uniform static magnetic field within its inside shape. As the static field magnet 1 use is made of a permanent magnet, a superconducting magnet, or the like.
The gradient coil 2 is formed in the shape of a hollow cylinder and placed inside the static field magnet 1. The gradient coil 2 is a combination of three coils each corresponding to a respective one of the three mutually orthogonal X, Y and Z axes. When the three coils are individually supplied with current from the gradient power supply 3, the gradient coil 2 generates gradient magnetic fields each of which has its strength varied along a corresponding one of the X, Y and Z axes. Suppose that the Z-axis direction coincides with the direction of the static magnetic field. The gradient magnetic fields in the X, Y and Z-axis directions are used as a slice selecting gradient field Gs, a phase encoding gradient magnetic field Ge, and a readout gradient magnetic field Gr, respectively. The slice selecting gradient magnetic field Gs is used to arbitrarily determine an imaging plane section. The phase encoding gradient magnetic field Ge is used to change the phase of NMR signals according to spatial location. The readout gradient magnetic field Gr is used to change the frequency of the NMR signals according to spatial location.
A subject 200 under examination is laid down on a top board 4a of the bed 4 and moved into the space of the gradient coil 2. The top board 4a is driven by the bed controller 5 to move in its lengthwise direction and in an up-and-down direction. Usually, the bed 4 is installed so that its lengthwise direction is parallel to the central axis of the static field magnet 1.
The transmitting RF coil 6 is placed inside the gradient coil 2 and generates a radio-frequency magnetic field in response to application thereto of a radio-frequency pulse from the transmitter 7.
The transmitter 7 has an oscillator, a phase selector, a frequency converter, an amplitude modulator, a radio-frequency power amplifier, etc., built in and transmits radio-frequency pulses corresponding to Larmor frequency to the transmitting RF coil 6.
The receiving RF coil 8 is placed inside the gradient coil 2 and adapted to receive NMR signals emitted from the subject under examination subjected to the radio-frequency magnetic field. The output signal from the receiving RF coil 8 is applied to the receiver 9.
The receiver 9 produces NMR signal data on the basis of the output signal of the receiving RF coil 8.
The computer system 10 includes an interface unit 10a, a data collection unit 10b, a reconstruction unit 10c, a memory unit 10d, a display unit 10e, an input unit 10f, and a main controller 10g.
The interface unit 10a is connected to the gradient power supply 3, the bed controller 5, the transmitter 7, the receiving RF coil 8, and the receiver 9 and allows signals to be transferred between each of these components and the computer system 10.
The data collection unit 10b collects via the interface unit 10a digital signals output from the receiver 9 and then stores the collected digital signals, i.e., the NMR signal data, into the memory unit 10d.
The reconstruction unit 10c performs postprocessing, i.e., reconstruction, such as Fourier transforms, on NMR signals data stored in the storage unit 10d to obtain spectrum data of desired nuclear spins within the subject 200 or image data.
The memory unit 10d stores NMR signal data and spectrum data or image data for each subject.
The display unit 10e displays a variety of information, such as spectrum data, image data, etc., under the control of the main controller 10g. As the display unit 10e there is available a display device, such as a liquid crystal display.
The input unit 10f receives a variety of commands and information inputs from an operator. As the input unit 10f there is available a pointing device, such as a mouse or trackball, a selection device, such as a mode changeover switch, or an input device, such as a keyboard. Further, the input unit 10f accepts a specification from the operator of an excitation slice or an excitation slice or an excitation slab including an imaging region of, e.g., an entire heart or a target part such as a diaphragm.
The main controller 10g has a non-illustrated CPU, a memory, and others, and collectively controls the MRI apparatus 100. Furthermore, the main controller 10g generates an image signal of an image indicating whether a respiratory level falls within the allowable range. This image signal is, e.g., an NTSC (national television system committee) signal.
The image transmission system 11 optically transmits the image signal generated by the main controller 10a.
The display system 12 displays an image based on the image signal so that a subject 200 set in an imaging state can visually recognize the image.
The image transmission system 11 includes an electric-optical signal converter 11a, an optical cable (an optical fiber cable) 11b, and an optical-electrical signal converter 11c. The display system 12 includes an display device 12a and a mirror 12b.
Reference number 20 in
The gantry 20 and the bed 4 are arranged in a magnetically shielded shield room R1. The computer system 10 is arranged in an operation room R2 different from the shield room R1.
The electric-optical signal converter 11a is arranged outside the shield room R1, i.e., in the operation room R2 in this example. The electric-optical signal converter 11a converts an image signal output as an electrical signal from the interface unit 10a into an optical signal.
The optical cable 11b transmits an image signal output as the optical signal from the electric-optical signal converter 11a to the optical-electric signal converter 11c.
The optical-electric signal converter 11c is arranged in the shield room R1. The optical-electric signal converter 11c converts an image signal transmitted as the optical signal through the optical cable 11b into an electrical signal.
Thus, the image transmission system 11 transmits the image signal as the optical signal to the shield room R1.
The display device 12a is arranged in the shield room R1. The display device 12a displays an image indicated by the image signal output as the electric signal from the optical-electric signal converter 11c. The display device 12a is arranged on the contra-bed-side opening 20c side in a posture that a display plane thereof becomes substantially orthogonal to the central axis of the imaging space 20a and also faces the imaging space 20a. As the display device 12a, a known display device, e.g., a liquid crystal monitor can be utilized. However, the display device 12a includes, e.g., an electromagnetic shield to prevent noise produced therein from leaking into the shield room R1.
The mirror 12b is arranged in the imaging space 20a. The mirror 12b reflects an image displayed in the display device 12a as shown in
An operation of the thus configured MRI apparatus 100 will now be explained.
In this MRI apparatus 100, at the time of WH MRCA, data collection is carried out based on a multi slab/multi breath holding method. That is, for example, as shown in
However, in the first embodiment, as shown in
This imaging method is usually carried out with electrocardiographic synchronization. Furthermore, after a fixed delay time passes from an R wave, a motion probing pulse (MPP) is collected as the NNR signal to obtain the monitor signal. This collection of the MPP is carried out without applying a phase encoding gradient magnetic field Ge. Moreover, after collecting the MPP, data collection for imaging is performed. In this data collection for imaging, the phase encoding gradient magnetic field Ge is applied.
On the other hand, during execution of WH MRCA in such a conformation, the main controller 10g generates an image indicating whether the respiratory level of the subject 200 falls within the allowable range. The image is, e.g., such an image as depicted in
Therefore, the subject 200 can confirm whether his/her respiratory level at the present time falls within the allowable range by confirming reflection of the image in the mirror 12b. Furthermore, the subject 200 can hold breathing in a state where his/her respiratory level falls within the allowable range.
Thus, in the MRI apparatus 100, data collection can be assuredly performed every time the subject 200 holds breathing, thereby improving an efficiency of data collection. Moreover, since data collected every time breathing is held can be obtained in a respiratory state in the fixed allowable range in each of the plurality of slabs, a 3D image finally obtained based on data collected with respect to each of the plurality of slabs is a high-quality image with less registration error or blurring.
Additionally, in the MRI apparatus 100, the image signal generated outside the shield room R1 is led into the shield room R1 as the optical signal. As a result, noise and others from the shield room R1 can be prevented from affecting collection of the NMR signal.
(Second to Fourth Embodiments)
Meanwhile, in the first embodiment, collection of the NMR signal for acquisition of positional information is performed only once per heart rate. That is, the respiratory level is monitored only once or twice per respiration as shown in
Under such circumstances, it can be considered that adjustment of the respiratory level by the subject based on the monitored respiratory level is similar to a case where the feedback time constant in automatic control is long, and under-control or over-control may possibly occur.
Thus, second to fourth embodiments that avoid such an inconvenience will now be explained hereinafter.
The MRI apparatus 300 includes a static field magnet 1, a gradient coil unit 2, a gradient power supply 3, a bed 4, a bed controller 5, a transmitting RF coil 6, a transmitter 7, a receiving RF coil 8, a receiver 9, a computer system 10, an image transmission system 1, a display system 12, and a respiratory synchronization sensor 13.
That is, the MRI apparatus 300 includes the respiratory synchronization sensor 13 in addition to the respective elements included in the MRI apparatus 100.
The respiratory synchronization sensor 13 is disposed to an abdominal of a subject 200 to detect a respiratory level of the subject 200 based on a physical movement of the abdominal of the subject 200.
(Second Embodiment)
A main controller 10g in the second embodiment includes a plurality of functions mentioned below. It is to be noted that the plurality of functions can be realized by allowing a processor included in the main controller 10g to execute a program.
As one of the functions, each relevant section is controlled to enable a data collection unit 10b to obtain an NMR signal required to detect a respiratory level of the subject 200 (which will be referred to as a monitoring NMR signal hereinafter). As one of the functions, the respiratory level of the subject 200 is detected based on the monitoring NMR signal acquired by the data collection unit 10b. As one of the functions, each relevant section is controlled to enable the data collection unit 10b to collect an NMR signal required to reconstruct an image (which will be referred to as a reconstruction NMR signal hereinafter) when the respiratory level detected based on the monitoring NMR signal falls within an allowable range. As one of the functions, a display image obtained by combining a respiratory waveform representing a change in the respiratory level detected by the respiratory synchronization sensor 13 with an image indicating the respiratory level detected based on the monitoring NMR signal is generated. It is to be noted that the respiratory level detected based on the monitoring NMR signal will be referred to as a first respiratory level and the respiratory level detected by the respiratory synchronization sensor 13 will be referred to as a second respiratory level hereinafter.
In this MRI apparatus 300 according to the second embodiment, WH MRCA is executed based on a known sequence. During such WH MRCA, the main controller 10g generates a display image that informs the subject 200 of whether the respiratory level of the subject 200 falls within the allowable range as follows. It is to be noted that, in WH MRCA, the monitoring NMR signal is acquired. The monitoring NMR signal is an NMR signal collected from an excitation slice or an excitation slab including a target part such as a diaphragm. The monitoring NMR signal can be acquired without applying, e.g., a phase encoding gradient magnetic field. As the monitoring NMR signal, an MPP can be used like the first embodiment, for example.
The main controller 10g acquires the second respiratory level detected by the respiratory synchronization sensor 13 at a rate that is sufficient to reproduce a respiratory waveform. It is to be noted that the respiratory synchronization sensor 13 can continuously detect the respiratory level in an actual time by using, e.g., a bellows.
The main controller 10g detects the first respiratory level once per heart rate in control for WH MRCA. The main controller 10g generates such a first image as shown in
On the other hand, the main controller 10g generates such a second image as shown in
Further, the main controller 10g generates a display image as an image obtained by combining the first image with the second image. At this time, the main controller 10g normalizes respective amplitude scales (a maximum value and a minimum value of each amplitude) of the first respiratory level and the second respiratory level to be combined with each other.
The main controller 10g updates the display image every time the second respiratory level is acquired. Thus, the display image is an image in which the respiratory waveform scrolls with elapse of time.
Meanwhile, since the monitoring NMR signal is acquired and the first respiratory level is obtained based on this monitoring NMR signal, detection of the first respiratory level requires a slight amount of time. Therefore, detection of the first respiratory level has actual time properties lower than those of detection of the second respiratory level. Therefore, as shown in
That is, it is assumed that a display image immediately before the first respiratory level is newly detected is as shown in
The thus generated display image is transmitted to the display system 12 through the interface unit 10a and the image transmission system 11, and this display system 12 displays this display image so that the subject 200 can visually recognize.
As explained above, according to the second embodiment, in the display image, the first respiratory level detected based on the monitoring NMR signal and the second respiratory level detected based on the respiratory synchronization sensor 13 are simultaneously shown. Therefore, the subject 200 can recognize a state of a change in the respiratory level based on the respiratory waveform in this display image and an accurate respiratory level based on display of the second respiratory level. As a result, the subject 200 can accurately grasp an actual state of respiration, thereby appropriately adjusting respiration.
(Third Embodiment)
In the third embodiment, a main controller 10g includes a plurality of functions mentioned below. It is to be noted that the plurality of functions can be realized by allowing a processor included in the main controller 10g to execute a program.
As one of the functions, relevant respective sections are controlled so that a data collection unit 10b can acquire a monitoring NMR signal. As one of the functions, a first respiratory level is detected based on the monitoring NMR signal. As one of the functions, relevant respective sections are controlled so that the data collection unit 10b can collect a reconstruction NMR signal when the respiratory level detected based on the monitoring NMR signal falls within an allowable range. As one of the functions, relevant respective sections are controlled so that the data collection unit 10b can acquire an NMR signal that is used to detect a respiratory level for display (which will be referred to as a display NMR signal hereinafter). As one of the functions, a respiratory level of a subject 200 (which will be referred to as a second respiratory level hereinafter) is detected based on the display NMR signal. As one of the functions, a display image indicating the first respiratory level and the second respiratory level is generated.
In the MRI apparatus 300 according to the third embodiment, when executing WH MRCA, the main controller 10g allows the data collection unit 10b to collect the NMR signal based on such a sequence as depicted in
In the sequence shown in
The main MPP corresponds to the MPP acquired in the sequence depicted in
Furthermore, the main controller 10g detects the first respiratory level for WH MRCA based on the monitoring NMR signal alone. The main controller 10g detects the second respiratory level likewise based on the display NMR signal, though this signal is not used for WH MRCA. Moreover, the main controller 10g generates, e.g., such a display image as depicted in
The thus generated display image is transmitted to a display system 12 through an interface unit 10a and an image transmission system 11, and this display system 12 displays this display image in a state where the subject 200 can visually recognize it.
As explained above, according to the third embodiment, in the display image, many respiratory levels respectively detected in a short period are shown in time-series. Therefore, the subject 200 can recognize a state of a change in the respiratory level from this display image. As a result, the subject 200 can accurately grasp an actual state of respiration, thereby appropriately adjusting respiration.
(Fourth Embodiment)
In the fourth embodiment, a main controller 10g includes a plurality of functions mentioned below. It is to be noted that the plurality of functions can be realized by allowing a processor included in the main controller 10g to execute a program.
As one of the functions, relevant respective sections are controlled so that a data collection unit 10b can collect a monitoring NMR signal. As one of the functions, a respiratory level of a subject 200 is detected based on the monitoring NMR signal. As one of the functions, relevant respective sections are controlled so that the data collection unit 10b can collect a reconstruction NMR signal when the respiratory level detected based on the monitoring NMR signal falls within an allowable range. As one of the functions, a display image showing the latest detected respiratory level and a maximum value of detection levels detected within a predetermined period is generated.
In the MRI apparatus 300 according to the fourth embodiment, WH MRCA is executed in accordance with a known sequence. During execution of such WH MRCA, the main controller 10g generates a display image that informs the subject 200 of whether the respiratory level of the subject 200 falls within the allowable range as follows.
The main controller 10g detects the respiratory level once per heart rate in control for WH MRCA. The main controller 10g generates a display image indicating a detected respiratory level every time the respiratory level is newly detected.
For example, as shown in
On the other hand, in accordance with detection of such a respiratory level as depicted in
In accordance with detection of such a respiratory level as shown in
Thereafter, display images ID to IF in
In accordance with detection of such a respiratory level as shown in
Thereafter, display images IH to IJ in
The thus generated display images are transmitted to a display system 12 through an interface unit 10a and an image transmission system 11, and this display system 12 sequentially displays these display images in a state where the subject 200 can visually recognize them.
As explained above, according to the fourth embodiment, the latest detected respiratory level and a maximum respiratory level detected in a recent fixed period are shown in the display image. Therefore, the subject 200 can recognize from this display image a relationship between the current respiratory level and the recent maximum level. As a result, the subject 200 can accurately grasp an actual state of respiratory, thereby appropriately adjusting respiration.
Each of the foregoing embodiments can be modified in many ways as follows.
(1) In each embodiment, the image signal may be generated by using, e.g., a CCD (charge-coupled device) camera to image a picture displayed in the display unit 10e.
(2) In each embodiment, as indicated by a broken line in
(3) In each embodiment, a large-screen display (e.g., a liquid crystal or a plasma) 12d may be used in place of the display device 12a as shown in
(4) In each embodiment, a projector 12e may be used in place of the display device 12a as shown in
(5) In each embodiment, the display device 12a my be arranged in the imaging space 20a. In this case, the mirror 12b may be omitted to allow the subject 200 to directly visually observe an image displayed in the display device 12a. Further, in this case, disposing a liquid crystal sheet or an organic electroluminescent (EL) panel on the wall surface of the gantry 20 around the imaging space 20a can be considered.
(6) In each embodiment, an image generated outside the shield room R1 may be led into the shield room R1 to be visually observed by the subject 200.
For example, as shown in
The LED array 11d has many LEDs one-dimensionally or two-dimensionally arranged therein, and reproduces an image indicated by the image signal. The optical cable group 11e is obtained by bundling many optical cables, and transmits the image reproduced by the LED array 11d as it is. The visualization unit 12f allows the subject to visually observe the image transmitted through the optical cable group 11e.
When facets of many optical cables included in the optical cable group 11e are one-dimensionally or two-dimensionally arranged, the visualization unit 12f can be configured to visualize an image by using an alignment of lights emitted from these optical cables.
Alternatively, the visualization unit 12f may be arranged in the imaging space 20a as shown in
Alternatively, such a fiber scope 11f as shown in
Such a semitransparent optical cable array as shown in
The semitransparent optical cable array as the visualization unit 12f may be arranged to match an arrangement direction of the semitransparent optical cable to a circumferential direction of the wall surface of the gantry around the imaging space 20a as depicted in
The visualization unit 12f may be configured like glasses in which end portions of the optical cable groups 11e are arranged in lens portions as shown in
(7) In each embodiment, the image transmission technology explained in (6) may be used to lead an image displayed in the display unit 10e or an image displayed in the display device 12a to the imaging space 20a, thereby allowing the subject 200 to visually observe the image.
In this case, as shown in
Moreover, when using the fiber scope 11f in place of the optical cable group 11e, as shown in
(8) In each embodiment, the display device 12a may be configured like glasses having the LED arrays 12g contained in lens portions as shown in
(9) In the first embodiment, several respiratory patterns may be registered as ideal states in advance, and one of these patterns may be used as a guide pattern to display an image that can show this pattern and a measured actual respiratory pattern in comparison with each other. As a result, the subject 200 can be guided to approximate a respiratory pattern of the subject 20 to the ideal pattern. That is, a so-called external guiding method can be appropriately executed. It is to be noted that the guide pattern and the measured pattern may be displayed in different colors. Additionally, an HR (a heart rate) when the subject 200 is at rest may be measured in advance, and a respiratory pattern that enables stably and rapidly terminating data collection may be selected as a guide pattern by using this HR as a reference.
(10) In each embodiment, display of an image indicating whether the respiratory level falls within the allowable range is effective when applied to a situation using a method other than the multi slab/multi breath holding method, i.e., a voluntary breathing method or a single slab/multi breath holding method as long as it is a method of performing data collection when the respiratory level falls within the allowable range.
(11) In each embodiment, a movement correction method of tracing an imaging region of a heart while tracing a movement of a diaphragm may be also used. When this method is used, since a fluctuation in the respiratory level in the allowable range can be corrected by the movement correction method to highly accurately match positions of multi slabs, a registration error or blurring in a 3D image can be further reduced.
(12) In the first embodiment, the image transmission system 11 and the display system 12 can be used to inform the subject 200 of various kinds of information in addition to information indicating whether the respiratory level falls within the allowable range.
(13) In each embodiment, the image transmission system 11 may lead the image signal that is kept as the electrical signal into the shield room R1.
(14) In the second embodiment, normalization or delay correction does not have to be performed.
(15) In the third embodiment, the number of times of acquisition of the sub-MPP per heart rate may be an arbitrary number of times that is equal to or above 1.
(16) In the third embodiment, when acquisition of the sub-MPP is performed more than once per heart rate, the respiratory level judged based on the main MPP does not have to be included in the display image.
(17) In the fourth embodiment, when the maximum level and the respiratory level at the present time are displayed in different conformations so that they can be respectively displayed even though both the levels coincide with each other, the subject 200 can further easily understand that the maximum level and the respiratory level at the present time coincide with each other. This can be realized by a change, e.g., showing the maximum level in the form of a horizontal line.
(18) In each embodiment, specific contents of the display image can be arbitrarily changed.
Additional advantages and modifications will readily occur to those skilled in the art. Therefore, the invention in its broader aspects is not limited to the specific details and representative embodiments shown and described herein. Accordingly, various modifications may be made without departing from the spirit or scope of the general inventive concept as defined by the appended claims and their equivalents.
Number | Date | Country | Kind |
---|---|---|---|
2007-122737 | May 2007 | JP | national |
2008-018232 | Jan 2008 | JP | national |
Number | Name | Date | Kind |
---|---|---|---|
4905699 | Sano et al. | Mar 1990 | A |
5382902 | Taniguchi et al. | Jan 1995 | A |
5545995 | Schneider et al. | Aug 1996 | A |
5842989 | Zur | Dec 1998 | A |
6067465 | Foo et al. | May 2000 | A |
6073041 | Hu et al. | Jun 2000 | A |
6094591 | Foltz et al. | Jul 2000 | A |
6185446 | Carlsen, Jr. | Feb 2001 | B1 |
6185447 | Alley et al. | Feb 2001 | B1 |
6321107 | Derbyshire | Nov 2001 | B1 |
6353752 | Madore et al. | Mar 2002 | B1 |
6381486 | Mistretta et al. | Apr 2002 | B1 |
6466017 | Ganin et al. | Oct 2002 | B1 |
6501979 | Manning et al. | Dec 2002 | B1 |
6535754 | Fishbein et al. | Mar 2003 | B2 |
6587707 | Nehrke et al. | Jul 2003 | B2 |
6631716 | Robinson et al. | Oct 2003 | B1 |
6704593 | Stainsby et al. | Mar 2004 | B2 |
6937696 | Mostafavi | Aug 2005 | B1 |
6963199 | Sato | Nov 2005 | B2 |
6980846 | Hardy et al. | Dec 2005 | B2 |
7002342 | Duerk et al. | Feb 2006 | B2 |
7054675 | Ma et al. | May 2006 | B2 |
7164268 | Mugler et al. | Jan 2007 | B2 |
7170289 | Kumai et al. | Jan 2007 | B2 |
7254437 | Miyazaki | Aug 2007 | B2 |
7418288 | Haselhoff et al. | Aug 2008 | B2 |
7432710 | Takei et al. | Oct 2008 | B2 |
7561909 | Pai et al. | Jul 2009 | B1 |
7570050 | Sugiura | Aug 2009 | B2 |
7593558 | Boese et al. | Sep 2009 | B2 |
7689263 | Fung et al. | Mar 2010 | B1 |
7693569 | Brittain et al. | Apr 2010 | B1 |
7747313 | Kiefer et al. | Jun 2010 | B2 |
7945305 | Aggarwal et al. | May 2011 | B2 |
8143888 | Sugiura | Mar 2012 | B2 |
20010025139 | Pearlman | Sep 2001 | A1 |
20020063560 | Debbins et al. | May 2002 | A1 |
20020183611 | Fishbein et al. | Dec 2002 | A1 |
20020188190 | Kassai et al. | Dec 2002 | A1 |
20030036693 | Avinash et al. | Feb 2003 | A1 |
20030160612 | Yablonskiy et al. | Aug 2003 | A1 |
20040051529 | Zhu et al. | Mar 2004 | A1 |
20040059213 | Kassai et al. | Mar 2004 | A1 |
20040092809 | DeCharms | May 2004 | A1 |
20040145367 | Duerk et al. | Jul 2004 | A1 |
20040147832 | Fishbein et al. | Jul 2004 | A1 |
20040254492 | Zhang et al. | Dec 2004 | A1 |
20050001615 | Sato | Jan 2005 | A1 |
20050054910 | Tremblay et al. | Mar 2005 | A1 |
20050197586 | Pearlman | Sep 2005 | A1 |
20050201510 | Mostafavi | Sep 2005 | A1 |
20050215882 | Chenevert et al. | Sep 2005 | A1 |
20050218893 | Kumai et al. | Oct 2005 | A1 |
20060116570 | Duerk et al. | Jun 2006 | A1 |
20060224062 | Aggarwal et al. | Oct 2006 | A1 |
20060253015 | Nezafat et al. | Nov 2006 | A1 |
20070055140 | Kuroda | Mar 2007 | A1 |
20070076846 | Ruchala et al. | Apr 2007 | A1 |
20070080690 | Takei et al. | Apr 2007 | A1 |
20070088211 | Cheng et al. | Apr 2007 | A1 |
20070088212 | Takei et al. | Apr 2007 | A1 |
20070159172 | Sugiura | Jul 2007 | A1 |
20070172029 | Felmlee et al. | Jul 2007 | A1 |
20090112083 | Aulbach et al. | Apr 2009 | A1 |
20100026295 | Sugiura | Feb 2010 | A1 |
20100094121 | Kuhara | Apr 2010 | A1 |
20110178388 | Kuhara et al. | Jul 2011 | A1 |
20110218424 | Kuhara | Sep 2011 | A1 |
Number | Date | Country |
---|---|---|
1432341 | Jul 2003 | CN |
1943510 | Apr 2007 | CN |
1951323 | Apr 2007 | CN |
64-034342 | Feb 1989 | JP |
6-269426 | Sep 1994 | JP |
2000-41970 | Feb 2000 | JP |
2000-157507 | Jun 2000 | JP |
2001-417 | Jan 2001 | JP |
2004-57226 | Feb 2004 | JP |
2005-40416 | Feb 2005 | JP |
2006-158762 | Jun 2006 | JP |
2007-029250 | Feb 2007 | JP |
2007-29250 | Feb 2007 | JP |
2007-185250 | Jul 2007 | JP |
2007-185300 | Jul 2007 | JP |
2008-302214 | Dec 2008 | JP |
2006129516 | Dec 2006 | WO |
Entry |
---|
Carlson et al, “Intermittent Mode CT Fluoroscopy-guided Biopsy of the Lung or Upper Abdomen with Breath-hold Monitoring and Feedback: System Development and Feasibility”, Radiology, 2003, 229: 906-912. |
U.S. Appl. No. 12/032,251, filed Feb. 15, 2008. |
Official Action dated Feb. 5, 2010 in CN200810095660.7 with English translation. |
Chinese Office Action Dec. 11, 2011, issued in corresponding Chinese Application No. 201010260781.X with English translation. |
First Office Action mailed on Apr. 9, 2013 in JP 2008-119264 with English translation. |
Final Office Action mailed on Sep. 3, 2013 in JP 2008-119264 with English translation. |
Japanese Office Action Nov. 27, 2012, with English translation issued in corresponding Japanese Patent Application No. 2008-018232. |
U.S. Office Action mailed Aug. 30, 2012, in U.S. Appl. No. 13/107,109. |
Number | Date | Country | |
---|---|---|---|
20080281186 A1 | Nov 2008 | US |