This application claims the benefit of Chinese Patent Application No. 200910005996.4 filed Jan. 24, 2009, which is hereby incorporated by reference in its entirety.
The embodiments described herein relate to a Magnetic Resonance Imaging (MRI) technique, in particular to the heating of magnet and cooling of electrical parts.
An MRI system is a system which obtains the magnetic resonance signals of a human body under a magnetic field based on the nuclear magnetic resonance principle and reconstructs an image based on said magnetic resonance signals. An MRI system usually comprises a main magnet, a gradient coil, an electrical part, a radio frequency (RF) coil, which are used for the generation, detection and encoding of the MR signals. The main magnet is generally a permanent magnet, an electromagnetic or a superconducting magnet, and it is a permanent magnet in this application. An MRI system further comprises an analog converter, a computer, a magnetic disk, a magnetic tape drive, etc., which are used for data processing and image reconstruction, display and storing. The main magnet is used for generating a highly uniform and stable static magnetic field (which is also called main magnetic field, and for short, magnetic field), and it directly affects the strength, uniformity and stability of the magnetic field and thus the image quality of MRI. The gradient coil is used for modifying the main magnetic field to generate a gradient magnetic field. Although the strength of the gradient magnetic field is only one several-hundredth of that of the main magnetic field, the gradient magnetic field makes it possible to perform three-dimensional spatial encoding of the MR signals of a human body. The gradient coil may consist of three gradient magnetic field coils of X, Y and Z and have a drive to rapidly change the direction and strength of the magnetic field during scan so as to quickly finish the three-dimensional encoding. The RF coil is used to emit the RF pulse that excites the spin of the hydrogen atomic nucleus within a subject and to receive the MR signals generated from the subject.
In the MRI system, generating and maintaining a highly stable and uniform magnetic field is a key technique for guaranteeing good MRI image quality. However, the main magnet will manifest different characteristics in different time and environment. The temperature change of the permanent magnet will influence the stability of the strength of the magnetic field generated thereby, so the permanent magnet usually operates in a temperature higher than the room temperature in order to prevent it from being influenced by the change in the room temperature.
Various methods have been proposed in the prior art to heat the permanent magnet and to keep it in a constant temperature. For example, one of the methods places a surface heater at the outer surface of the permanent magnet and uses a temperature controller and a temperature sensor to monitor and control the temperature of the permanent magnet, so that the permanent magnet could operate within a prescribed range of temperature.
In addition, the electrical parts and gradient coil, etc. in the MRI system will produce a lot of heat during operation. In order to prevent the operating performance of the electrical parts and the permanent magnet from being affected by the high temperature, a cooling system, such as a cooling system formed by air or liquid (e.g. water) is usually provided for them in the prior art, so that heat could be dissipated from the MRI system.
Therefore, in a current open MRI system, the permanent magnet and the electrical parts are usually separated from each other. In order to keep the temperature of the permanent magnet stable, a heating system has to be provided thereto. And in order to dissipate the heat produced during operation of the electrical parts, a cooling system has to be provided thereto. As a result, there are both a heating system and a cooling system in the MRI system, which not only wastes energy but also increases the complexity of the whole system.
Embodiments described herein provide a magnetic resonance imaging system and a method for stabilizing the main magnet temperature in the magnetic resonance imaging system. According to one aspect of the present invention, a magnetic resonance imaging system is provided, which comprises a host and a display device. The host comprises a power cabinet and a magnetic field generating device. The power cabinet comprises a gradient driver including a gradient controller and a gradient amplifier and a RF driver including a RF controller and a RF amplifier. The magnetic field generating device comprises a pair of main magnets with opposite polarities that face each other and are spaced apart from each other, a magnet column that forms a magnetic circuit for the main magnets and a gradient coil unit. The power cabinet is provided adjacent to the outside of the magnet column of the magnetic field generating device, and can be used as a heating device of the main magnets by transferring the heat produced therein to the main magnets.
In the MRI system according to the present invention, such components as the gradient controller, the RF controller, etc. in the power cabinet that are sensitive to the magnetic field are arranged far away from the magnetic field generating device, while such high power, magnetic field non-sensitive components as the gradient amplifier, the RF amplifier, etc. are arranged close to the outside of the magnet column.
In the MRI system according to the present invention, the power cabinet further comprises a heat sink for transferring the heat produced in the power cabinet to the main magnets.
In the MRI system according to the present invention, one end of the heat sink can be arranged at a side of the high power, magnetic field non-sensitive components (e.g. the gradient amplifier, RF amplifier) in the power cabinet that is close to the magnetic field generating device, so that the heat produced by the operation of said component can be transferred to the main magnets through the heat sink. In addition, the other end of the heat sink can be arranged close to the outside surface of the magnet column.
In the MRI system according to the present invention, in order to reduce the influence to the electronic parts in the power cabinet by the magnetic field of the main magnets, the magnetic field strength at the rear end of the main magnets is limited within an acceptable range.
In the MRI system according to the present invention, the magnetic field generating device further comprises a temperature monitoring means for detecting the temperature of the main magnet. The power cabinet further comprises a temperature controller and a cooling device. Said temperature controller is used to control the activation and deactivation of the cooling device according to the temperature provided by the temperature monitoring means. When the main magnets do not need to be heated, the cooling device is activated to dissipate the heat produced by the power cabinet and the magnetic field generating device out of the host. When the main magnets need to be heated, the cooling device is deactivated. The temperature monitoring means can be a temperature sensor inserted into the main magnet.
In the MRI system according to the present invention, the temperature controller is also connected to the gradient amplifier to control the activation and deactivation of the gradient amplifier according to the temperature provided by the temperature monitoring means when the MRI system is in a non-operating state. When the main magnets need to be heated, the temperature controller activates the gradient amplifier, so that the heat generated by the operation of the gradient amplifier is transferred to the main magnet. Meanwhile, the gradient amplifier supplies electric current to the gradient coil unit to make it operate so that the heat produced by operation of the gradient coil unit is also used to heat the main magnets. When the main magnets do not need to be heated, the temperature controller controls the gradient amplifier to stop operating.
In the MRI system according to the present invention, during the operation of the MRI system, when the temperature controller determines that the main magnets need to be heated according to the temperature transferred from the temperature monitoring means, the heat produced by operation of the gradient amplifier and the RF amplifier is transferred to the main magnet; when the temperature controller determines that the main magnets do not need to be heated, the cooling device dissipates the heat produced by operation of the gradient amplifier and the RF amplifier as well as the heat in the magnetic field generating device out of the host.
According to a second aspect of the present invention, a method for stabilizing the main magnet temperature in the MRI system is provided. The MRI system comprises a power cabinet and a magnetic field generating device. The power cabinet comprises a gradient driver including a gradient controller and a gradient amplifier, and a RF driver including a RF controller and a RF amplifier. The magnetic field generating device comprises a pair of main magnets with opposite polarities that face each other and are spaced apart from each other, a magnet column that forms a magnetic circuit for the main magnets and a gradient coil unit. Said method comprises arranging the power cabinet to be adjacent to the outside of the magnet column of the magnetic field generating device, so that the heat produced in the power cabinet is transferred to the main magnets.
In said method according to the present invention, such components as the gradient controller, the RF controller, etc. in the power cabinet that are sensitive to the magnetic field are arranged far away from the magnetic field generating device, while such high power, magnetic field non-sensitive components as the gradient amplifier, the RF amplifier, etc. are arranged close to the outside of the magnet column.
In said method according to the present invention, the heat produced in the power cabinet can be transferred to the main magnet through a heat sink. Said heat sink can be arranged at a side of the high power, magnetic field non-sensitive components in the power cabinet that is close to the magnetic field generating device, so that the heat produced by operation of said components can be transferred to the main magnets through the heat sink. In addition, the heat sink can be arranged close to the outside surface of the magnet column. Moreover, the arrangement of the heat sink can meet both of the above-mentioned conditions.
In said method according to the present invention, the magnetic field strength at the rear end of the main magnets is limited within an acceptable range so as to reduce the influence to the electronic parts in the power cabinet by the magnetic field.
In said method according to the present invention, the temperature of the main magnets is monitored when the MRI system is in a non-operating state. And when the main magnets need to be heated, the gradient amplifier is activated, so that the heat produced thereby is transferred to the main magnet. Meanwhile, the gradient amplifier supplies electric current to the gradient coil unit, so that the heat produced by operation of the gradient coil unit is also used to heat the main magnet. When the main magnets do not need to be heated, the gradient amplifier is deactivated. Alternatively, when the temperature in the power cabinet or the temperature in the magnetic generating device is too high, the heat therein can be dissipated out of the host by the cooling system formed by air or water.
In said method according to the present invention, during the operation of the MRI system, the heat produced by operation of the gradient amplifier and the RF amplifier is transferred to the main magnet when the main magnets need to be heated, and the heat produced by operation of the gradient amplifier and the RF amplifier as well as the heat in the magnetic field generating device is dissipated out of the MRI system when the main magnets do not need to be heated. The present invention integrates the separated power cabinet and magnetic field generating device in the existing MRI system together, uses the heat produced by the power cabinet to heat the permanent magnet and thus cools the power cabinet. Meanwhile, the number of cables in the power cabinet is reduced, therefore the MRI system of the present invention has the merits of simplified structure, energy saving and lower system cost, moreover, the reliability of the whole system is improved. In addition, the MRI system according to the present invention is designed to be miniaturized, so it has smaller footprint, consumes less time for installing and is easy to be implemented.
Aspects of the present invention will be further described in detail below by means of various embodiments, but the invention is not limited to the embodiments described herein.
Embodiments of the present invention change the structure of the MRI system of the prior art, that is, some embodiments position the power cabinet having electrical parts of an MRI system installed therein to be close to the magnetic field generating device that generates a magnetic field, for example, by conventional mechanical connection means (e.g. bolts, etc.), so that the heat produced by the electrical parts in the power cabinet can be used to heat the permanent magnet. Therefore there is no need to provide a cooling device dedicated to the power cabinet in the MRI system and there is no need to provide a heater for the permanent magnet, either. As a result, the object of sufficiently using energy and simplifying the system structure is achieved, meanwhile, the MRI system has a compact structure, simple installation and low cost.
In the above embodiment of the present invention, the influence to the electrical parts in the power cabinet by the magnetic field is considered. One way is to limit the magnetic field strength at the rear end of the main magnet to be within an acceptable range (e.g. within 30 Gauss) so as to reduce the influence to the electronic parts in the power cabinet by the magnetic field. Another way is to arrange the components in the power cabinet that are sensitive to the magnetic field far away from the main magnet, and arrange the high-power, magnetic field non-sensitive components to be close to the outside surface of the magnet column in the magnetic field generating device. In the exemplary embodiment, a combination of the above two ways is adopted.
When the MRI system is in a non-operating state, the temperature of the main magnet is monitored. When the main magnets need to be heated, activating at least one high-power, magnetic field non-sensitive component in the power cabinet, so that the heat produced thereby is transferred to the main magnet; when the main magnets do not need to be heated, deactivating said at least one high-power, magnetic field non-sensitive component in the power cabinet. For instance, when the main magnets need to be heated, the gradient amplifier in the power cabinet can be activated to make it produce heat, meanwhile, the gradient amplifier supplies electric current to the gradient coil unit to make it operate and produce heat, and said two kinds of heat are used to heat the main magnet. Alternatively, a heater can be arranged at the circumferential of the main magnet to heat it. In addition, any combination of the above-mentioned ways can be adopted, or a combination of above-mentioned ways and other ways in the prior art can be adopted.
During the operation of the MRI system, the heat produced by the high-power, magnetic field non-sensitive components is transferred to the main magnet when the main magnets need to be heated, and the heat produced by the high-power, magnetic field non-sensitive components as well as the heat in the magnetic field generating device are dissipated out of the MRI system when the main magnets do not need to be heated. Preferably, the high-power, magnetic field non-sensitive components are a gradient amplifier and a RF amplifier.
Embodiments of the present invention will be described in detail below with reference to the drawings, but these embodiments are not intended to limit the present invention. The same components in different drawings are denoted by the same reference signs.
The power cabinet 110 is immediately adjacent to the outer side surface of the magnet column 123 of the magnetic field generating device 120. The power cabinet 110 can be connected to the magnetic field generating device 120 by a conventional mechanical connection means such as a screw and a nut.
The power cabinet 110 comprises a main controller 111, a gradient controller 112, a gradient amplifier 113, a RF controller 114, a RF amplifier 115, a temperature controller 116, a heat sink 117, a cooling device 118, a spectrometer 119, etc.
The gradient controller 112 and the gradient amplifier 113 form a gradient driver which supplies driving signals to the gradient coil unit 122 so as to generate a gradient magnetic field. The RF controller 114 and the RF amplifier 115 form a RF driver which supplies driving signals to the RF coil unit to emit RF (radio frequency) pulse so as to excite the spin of the hydrogen atomic nucleus in the inspected subject.
When the main magnets need to be heated, the heat sink 117 is used to transfer the heat produced by the gradient amplifier 113 (when the MRI system is in a non-operating state) or the heat produced by the gradient amplifier 113 and the RF amplifier 115 (when the MRI system is in an operating state) to the main magnets 121. When the main magnets do not need to be heated, the heat sink 117 dissipates the heat produced by the gradient amplifier 113 or the heat produced by the gradient amplifier 113 and the RF amplifier 115 as well as the heat in the magnetic field generating device 120 out of the host 100 through the cooling device 118. The heat sink 117 may be cooling plates which are placed behind each of the gradient amplifier 113 and the RF amplifier 115, or there could be one cooling plate placed behind the gradient amplifier 113 and the RF amplifier 115. The heat sink 117 is arranged to be abut on the outside surface of the magnet column 123. The cooling device 118 may be a ventilating fan or a device that uses air or liquid (e.g. water) to cool and dissipate heat. The cooling device 118 is connected to the temperature controller 116. The temperature controller 116 controls the activation and deactivation of the cooling device 118 according to the sensed temperature of the main magnets 121 as transferred from the temperature monitoring means 124. When the main magnets 121 need to be heated, the cooling device 118 is deactivated, while when the main magnets do not need to be heated, the cooling device 118 is activated. In addition, the temperature controller 116 can also be connected to the gradient amplifier 113 to activate it when the MRI system of the present invention is in a non-operating state (i.e. when no scan is performed) and the main magnets 121 need to be heated, so that the gradient amplifier 113 operates and produces heat. The heat produced by the gradient amplifier 113 is transferred to the main magnet 121 through the heat sink 117. Meanwhile, the gradient amplifier 113 may supply current to the gradient coil unit 122 to make it operate to produce heat. The heat produced by both of the gradient amplifier 113 and the gradient coil unit 122 are used to heat the permanent magnets. When the main magnets 121 that are in a non-operating state do not need to be heated, the temperature controller 116 controls the gradient amplifier 113 to be deactivated, that is, to make it stop operating, and makes the gradient coil unit 122 stop operating at the same time. The main controller 111 is used to control the components in the power cabinet 110 and process the received magnetic resonance signals as generated by the human body so as to reconstruct an image to be displayed on the display unit 200. The spectrometer 119 processes the received magnetic resonance signals as generated by the human body.
Since the power cabinet 110 and the magnetic field generating device 120 are very close to each other, in order to reduce the influence of the magnetic field to the electronic components in the power cabinet 110, one way is to limit the magnetic field strength at the rear end of the permanent magnet within an acceptable range, preferably within 30 Gauss, and this can be realized by making the vertical portion of the magnet column 123 as shown in
Furthermore, to keep the temperature of the main magnets 121 stable, a plurality of heating fins or surface heaters can be arranged on the surface of the main magnets 121. Of course, other heating methods or devices in the prior art can also be used.
In addition, in order to keep the temperature of the main magnets 121 to be not too high, a cooling device can be provided in the magnetic field generating device so that it can be activated when the main magnets 121 need to be cooled. Any methods and devices for cooling the main magnets 121 in the prior art are applicable to the present invention.
The operating mechanisms of the MRI system of the present invention in the operating state and the non-operating state will be described respectively in detail hereinafter so as to make the present invention apparent. However, said ways are merely the preferred ways of implementing the present invention, and the specific components therein are merely preferred components for achieving the present invention which is not limited thereto.
When the MRI system as shown in
Alternatively, a heater can be provided on the outer surface of the permanent magnet 121 instead of heating the permanent magnet by activating the gradient amplifier as shown in
A simple comparison is made between the prior art MRI system and the MRI system according to the present invention by the tables below. Table 1 shows the heating estimation and the operating mechanisms of the prior art MRI system in different operating states. Table 2 shows the heating estimation and the operating mechanisms of the MRI system of the present invention in different operating states.
It can be seen from a comparison between table 1 and table 2 that the heat in the power cabinet is not used in the prior art MRI system, and a plurality of heaters have to be provided on the magnet to heat it. The MRI system according to the present invention makes full use of the heat produced in the power cabinet to heat the permanent magnet by arranging the power cabinet and the magnetic field generating device to be close to each other. Therefore the temperature control unit in the prior art MRI system is simplified, that is, there is no need to provide heaters on the magnet. Meanwhile, the heat produced by the power cabinet is transferred to the permanent magnet so as to cool the power cabinet per se, thus there is no need to provide a cooling system dedicated to the power cabinet and the noise is reduced accordingly. Therefore, compared to the prior art MRI system, the MRI system of the present invention simplifies the system structure, saves energy and improves the stability of the whole system.
It shall be noted that in the above descriptions about
In addition, it shall also be noted that in the above descriptions about
Furthermore,
The above-mentioned embodiments illustrate rather than limit the invention. It shall be noted that those skilled in the art will conceive many improvements, modifications and variations to the present invention, so all such improvements, modifications and variations should be considered as falling within the scope of protection of this application without departing from the spirit of the present invention. The protection scope of the present invention is based on the appended claims. In addition, the present invention does not exclude that the embodiments in the claims can be combined to achieve better technical effect.
Number | Date | Country | Kind |
---|---|---|---|
200910005996.4 | Jan 2009 | CN | national |