The present invention relates to a magnetic resonance imaging apparatus for use in obtaining a tomogram of a desired region of an object to be examined, by utilizing a nuclear magnetic resonance (hereinafter referred to as NMR) phenomenon; and, more particularly the invention relates to a magnetic resonance imaging apparatus for guiding a device that is inserted in the body of the object for performing therapy on the body while observing an image of the body, and to a magnetic resonance imaging apparatus for displaying a moving image representing a time-sequential change of a region of the body with sufficient time resolution so as to monitor the therapeutic effect of the therapy.
A magnetic resonance imaging apparatus is designed to measure the density distribution, the distribution of the relaxation time and the like of nuclear spins (hereinafter referred to as spins) in a desired region of an object to be examined, utilizing a NMR phenomenon, and to display an image of any cross-section of the object according to measurement data obtained as a result thereof. Such a magnetic resonance imaging apparatus has been increasingly used in surgery and for other therapies.
For use in surgery or other therapies, there is a magnetic resonance imaging apparatus of the open type, which is constituted of magnets of the vertical magnetic field type (opposing type). The magnets of the vertical magnetic field type do not make the object feel trapped or closed in, in comparison with magnets of the horizontal magnetic field type, that is, magnets having a cylindrical shape. Further, it also gives a released feeling to the operator of the apparatus. Therefore, a magnet of the vertical magnetic field type is employed.
However, sufficient consideration has not been given to the operator performing the operation or therapy while observing the image of a lesion in real time in a magnetic resonance imaging in apparatus having the above-described structure.
The object of the present invention is to provide a magnetic resonance imaging apparatus which can perform imaging, to detect a signal, and to perform reconstruction, display, and updating of an image, without deteriorating the real-time nature of the display, even in the case where a magnetic resonance imaging apparatus is used in an operation or the therapy.
To achieve the above-described object, a magnetic resonance imaging apparatus according to the present invention is constituted of a magnetic circuit having an open structure for applying a static magnetic field to an object to be examined; gradient magnetic field generating means for applying a gradient magnetic field to the object; a sequencer for repeatedly applying the gradient magnetic field and a radio-frequency magnetic field in a predetermined pulse sequence; a transmission system for irradiating the radio-frequency magnetic field so as to generate nucleic magnetic resonance in atomic nuclei in tissue of the object; a reception system for detecting echo signals that are generated due to the nuclear magnetic resonance; a signal processing system for creating one image using the echo signals detected by said reception system; and means for displaying the image that is obtained.
In this apparatus, nuclear magnetic resonance echo signals are repeatedly measured to obtain an image. The reception system has a receiving coil, which is composed of a plurality of overlapped coils, and this receiving coil detects plural series of echo signals. The signal processing system divides the echo signals into plurality regions, performs an image reconstruction operation in parallel using the plural series of echo signals, and combines the images of these plural regions into one image. The sequencer executes an ultra-fast imaging sequence, and, at the same time, reduces the number of phase encoding operations used in the measurement. This sequencer further includes image renewal means for renewing the cross-section corresponding to positional information relevant to a desirable angle and direction.
Further, this magnetic resonance imaging apparatus includes an insertion device which is inserted into the interior of the object, and the image renewal means renews the cross-section in correspondence with the positional information provided by the insertion device.
Further, in this magnetic resonance imaging apparatus, the cross-section is renewed in correspondence with the positional information provided by a three-dimensional mouse.
Further, in this magnetic resonance imaging apparatus, plural markers are provided on the insertion device, and the image renewal means renews the cross-section corresponding to the positional information, which are signals acquired on the basis of information received from plural cameras provided for tracking the movement of these markers.
Further, in this magnetic resonance imaging apparatus, the magnetic circuit is constructed by magnets placed above and below with respect to the object to be examined and by two or less supporting means for supporting these magnets.
Further, in this magnetic resonance imaging apparatus, the sequencer performs a measurement in which the number of phase encoding operations used in the measurement is reduced so as to be in correspondence with the plural coils of the reception system.
The present invention provides another magnetic resonance imaging apparatus which is constituted of: a magnetic circuit having an open structure for applying a static magnetic field to an object to be examined; gradient magnetic field generating means for applying a gradient magnetic field to the object; a sequencer for repeatedly applying the gradient magnetic field and a radio-frequency magnetic field in a predetermined pulse sequence; a transmission system for irradiating the radio-frequency magnetic field so as to generate nuclear magnetic resonance in atomic nuclei in tissue of the object; a reception system for detecting echo signals that are generated due to the nuclear magnetic resonance; a signal processing system for creating one image using the echo signals detected by said reception system; means for displaying the image that is obtained; and control means for controlling said sequencer, said transmission system, said reception system, and said signal processing system, so as to execute said pulse sequence, to repeatedly execute imaging processing for obtaining the echo signals a predetermined number of times, to repeatedly perform image reconstruction processing for reconstructing the echo signals obtained in each imaging processing, and to repeatedly perform display processing for displaying the reconstructed images.
In this magnetic resonance imaging apparatus, the reception system has a receiving coil, which is composed of a plurality of overlapped coils, and the receiving coil detects plural series of echo signals. The signal processing system divides these echo signals into plural regions, performs an image reconstruction operation in parallel using the plural series of echo signals, and combines images of the plural regions into one image. The sequencer executes an ultra-rapid imaging sequence, and, at the same time, it reduces the number of phase encoding operations used in the measurement. This sequencer further includes image renewal means for renewing the cross-section to be imaged in response to positional information corresponding to a desired angle and direction.
Further, this magnetic resonance imaging apparatus includes a insertion device which is inserted into the interior of the object to be examined, and the image renewal means renews the cross-section corresponding to positional information provided by the insertion device.
Further, in this magnetic resonance imaging apparatus, the image renewal means renews the cross-section corresponding to the positional information provided by the signals from a three-dimensional mouse.
Further, in this magnetic resonance imaging apparatus, the insertion device is provided with plural markers, and the image renewal means renews the cross-section corresponding to the positional information, which is a signal acquired on the basis of information received from plural cameras that are provided for detecting the movement of these markers.
Further, in this magnetic resonance imaging apparatus, the magnetic circuit is formed of magnets placed above and below the object to be examined and has two or less supporting means for supporting these magnets.
Further, in this magnetic resonance imaging apparatus, the sequencer performs a measurement in which the number of phase encoding operations used in the measurement is reduced in correspondence with the plural number of coils of said reception system.
Further, in this magnetic resonance imaging apparatus, the control means performs imaging processing for plural cross-sections to be imaged during one period of imaging processing and image reconstructing processing for plural cross-sections during one period of image reconstruction processing, and it displays a plurality of sections during one period of display processing.
Further, in this magnetic resonance imaging apparatus, the control means determines the first cross-section to be imaged, corresponding to the positional information received from the image renewal means, and determines other cross-sections that are parallel to the first cross-section.
Alternately, in this magnetic resonance imaging apparatus, the control means determines the first cross-section to be imaged corresponding to the positional information received from the image renewal means, and it determines another cross-section which is perpendicular to the first imaged cross-section.
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
First, the overall structure of a magnetic resonance imaging apparatus to which the present invention is applied, will be described with reference to FIG. 2. This magnetic resonance imaging apparatus is designed to obtain a tomogram of an object to be examined, utilizing the NMR phenomenon. This apparatus is constituted of a static magnetic field generating magnetic circuit 2, a magnetic field gradient generating system 3, a transmission system 4, a reception system 5, a signal processing system 6, a sequencer 7, and a central processing unit (CPU) 8.
In the static magnetic field generating magnetic circuit 2, which is designed to generate a uniform static magnetic field around an object 1 to be examined. magnetic field generating means of the permanent magnet type, resistive magnet type, or superconductive magnet type is placed within a space which is expanded to some extent. This static magnetic field generating magnet employs an open structure, in which a wide opening is provided, so that an operator can easily access the object. In this open structure, access to the object becomes easy when supporting means 301 for supporting the upper and lower static magnetic field generating magnets 2a and 2b is, for example, constructed with two columns, which are asymmetrically located, as shown in FIG. 3A. Further, when supporting means 302 is constructed with one column, as shown in
The magnetic field gradient generating system 3 is constituted of gradient field coils 9 wound in the directions of X-, Y-, and Z-axes, and a gradient magnetic field power supply 10 for driving these gradient magnetic field coils. In this magnetic field gradient generating system 3, the gradient magnetic fields Gx, Gy and Gz are applied to the object 1 by driving the gradient magnetic field power supply 10 for the gradient magnetic field coils on the X-, Y-, and Z-axes in accordance with signals received from the sequencer 7, which will be described later. The slice plane of the object can be determined by the manner of application of the gradient magnetic fields to the object 1.
The sequencer 7 repeatedly applies a radio-frequency magnetic field pulse for generating nuclear magnetic resonance in atomic nuclei constituting the anatomy of the object 1, in accordance with a predetermined pulse sequence. This sequencer 7 is operated under control of the CPU 8 and is programmed to send various kinds of commands necessary for acquisition of data for the tomogram to the transmission system 4, the magnetic field gradient generating system 3, and the reception system 5.
The transmission system 4 is designed to irradiate a radio-frequency magnetic field so as to generate nuclear magnetic resonance in atomic nuclei constituting the anatomy of the object 1 in accordance with a radio-frequency pulse transmitted from the sequencer 7. This system is constituted of a radio-frequency oscillator 11, a modulator 12, a radio-frequency amplifier 13, and a radio-frequency coil 14a for transmission. In the transmission system 4, a radio-frequency pulse output by the radio-frequency oscillator 11 is amplitude-modulated by the modulator 12 according to the control provided by the sequencer 7. This amplitude-modulated radio-frequency pulse is amplified by the radio-frequency amplifier 13, and the pulse is then supplied to the radio frequency coil 14a, which is located near the object 1. In this manner, electromagnetic waves are irradiated to the object 1.
The reception system 5 is designed to detect the echo signals that are generated due to nuclear magnetic resonance in the atomic nuclei of the anatomy of the object 1, and it is constituted of a multi-channel radio-frequency coil (multi-array coil) 14b, in which a plurality of radio-frequency coils are overlapped, an amplifier group 15, a quadrature phase detector 16, and an A/D converter 17. In this reception system 5, the electromagnetic waves (the NMR signals), which are generated from the object 1 In response to the electromagnetic waves irradiated from the radio-frequency coil 14a for transmission, are detected at the multi-channel radio-frequency coil 14b, which is positioned close to the object 1, and the detected signals are input to the A/D converter 17 via the amplifier group 15 and the quadrature phase detector 16, so as to convert the signals into a digital quantity. Further, these signals are formed into two series of data sampled by the quadrature phase detector 16 in accordance with the timing commanded by the sequencer 7, and they are sent to the signal processing system 6.
The signal processing system 6 is constituted of a CPU 8, a recording device, such as a magnetic disk 18 and a magneto-optical disk 19, and a display 20, such as a CRT. In the CPU 8, processing, such as Fourier transformation, correction and the like, is performed on the respective channels of the multi-array coil, so as to produce images of signal strength distributions in the regions allocated to the respective channels. These images are combined and displayed on the display 20 as a tomogram of any cross-section.
Incidentally, in
Next, various means for improving the real-time performance of a magnetic resonance imaging apparatus will be described individually.
The imaging sequence that is used may be a spin echo method of a gradient echo method, which are basic imaging sequences, as well as the echo planer (hereinafter referred to as EPI) method or the fast spin echo (hereinafter referred to as FSE) method, which are fast imaging sequences. As shown in
In accordance with the present invention, this kind of fast sequence is applied to realize fluoroscopy, which is a real-time dynamic imaging method. In fluoroscopy, a short-time imaging performance within a second and real-time image reconstruction are repeatedly performed; and, thus, visualization of the dynamics of tissue in a body, as in fluoroscopy using x-rays, and a grasp of the position of a device inserted into the interior of a body of the object from the outside are enabled. The fluoroscopy is described with reference to FIG. 5. In the fluoroscopy, imaging is continuously performed on a predetermined slice, image reconstruction is performed after each imaging, and the images which have been reconstructed are displayed. Thus, continuous images, that is, moving images, can be obtained.
Fluoroscopy has been increasingly applied to achieve minimally invasive imaging during surgery, which is generally referred to as interventional MRI (hereinafter referred to as IVMR). The fluoroscopy in IVMR is likely to be used as imaging means for guiding a biopsy needle or a catheter (hereinafter referred to as a “device”) to a lesion. Further, after the device reaches the lesion, the therapy can be monitored by creating images of physical or chemical change in the treated tissue in the process of the therapy.
When fluoroscopy is used for the monitoring of therapy and the imaging plane in this fluoroscopy is fixed, it may not be possible to image the tip of a biopsy needle or the like if the device moves out of the imaging plane due to movement of the patient. To solve this problem, a method referred to as interactive scanning, which is shown in
Next, another problem will be considered. That is, the time resolution can be improved simply by shortening the repetition time (TR) and reducing the number of phase encoding operations so as to shorten the imaging time for one image; however, in this case, the S/N ratio is lowered and the spatial resolution is deteriorated, with the result that the image quality is deteriorated. To solve this problem, a method referred to as partial phase encoding (partial encoding) is used, in which the time resolution is improved by reusing a part of the measurement data obtained during the imaging, as shown in FIG. 7.
As a typical example of partial encoding, a keyhole measurement as shown in
To shorten the imaging time, a method referred to as a parallel MRI is used. Parallel MRI is a method in which imaging is performed after selectively eliminating data in the phase-encoding direction, using a multi-array coil, which is constructed by overlapping plural coils. More specifically, in this method, a multi-coil array consisting of plural coils that are arranged as shown in
In the above-described method, means for performing imaging at high speed and means for freely changing the cross-section for imaging are improved. However, both of these means are not optimized in this system, and the functions of these means have not been systematically united to each other. On the other hand, the present invention has achieved optimization and a uniting of the functions of these means by constituting an apparatus as described below. That is, the sequencer executes a rapid imaging sequence (100 ms or less in full scan), and the measurement system performs a partial encoding measurement in which the number of phase encoding operations in the measurement is reduced; and, it also performs parallel MRI in which the data obtained at the multi-channel reception system (the multiple coil) is reconstructed into images, and the reconstructed images of the plural regions are combined into one image. Further, the image processing system takes in coordinate information relevant to the cross-section to be imaged from the device at such intervals that the information can be recognized in real time (at intervals of about 0.1 second), whereby the cross-section is renewed in real time. Thus, the display system can display a series of the obtained images at high speed (at a rate of 50 frames/second or more).
The functional structure of the apparatus according to the embodiment of the present invention is shown in FIG. 1. That is, the magnetic resonance imaging apparatus according to the present invention is constituted of:
With the above-described construction, the present invention can provide a real-time MR system capable of performing fluoroscopy with high time resolution and good response to any operation carried out by the operator.
When it is assumed that a desired cross-section will be selected by the operator during fluoroscopy, the apparatus may further include:
In the magnetic resonance imaging apparatus constructed in the above-described manner, a topographic plane, including the biopsy needle and the tissue being examined, can be set according to information of the positional information device 52 provided on the needle, or the pointing device 53 by which the positional information can be freely input. This positional information can be renewed in real time, for instance, each 0.1 second, and the tomographic plane including the needle can thereby be traced at any time, even when the patient moves as the needle proceeds. Further, since a partial encoding and a space-dividing measurement (a parallel measurement) are used at the same time, the number of phase encoding operations performed in every measurement can be reduced to {fraction (1/10)}, and new images can be thus made every 10 ms. Further, by employing a real-time display system, image renewal with a high time resolution can be performed. Thus, such devices as a biopsy needle and the like can be smoothly guided to a lesion.
Since the apparatus according to the present invention is constructed in the above-described manner, a tomographic plane, including the direction of the needle's movement, can be automatically determined as the operator handles the biopsy needle, and the cross-section can be traced even when the patient moves. Further, since the image is renewed with a high time resolution, changes inside the patient due to handling of the biopsy needle can be checked in real time. Also, since the apparatus is optimized in this system, information of the tomographic plane needed for efficient treatment can be obtained, and further, there is no need to increase the cost of the respective functions.
Number | Date | Country | Kind |
---|---|---|---|
2000-274832 | Sep 2000 | JP | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCTJP01/07870 | 9/11/2001 | WO | 00 | 3/11/2003 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO0222012 | 3/21/2002 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
5708359 | Gregory et al. | Jan 1998 | A |
6289233 | Dumoulin et al. | Sep 2001 | B1 |
6400157 | Bonanni et al. | Jun 2002 | B1 |
6680610 | Kyriakos et al. | Jan 2004 | B1 |
Number | Date | Country | |
---|---|---|---|
20040039277 A1 | Feb 2004 | US |