Not Applicable.
This invention relates to scaffolds and scaffold anchor points. Scaffolds are used, inter alia, in the industrial, commercial, petro-chemical, power source, general industry and residential construction markets.
Tube and coupler scaffolds are so-named because they are built from tubing connected by coupling devices, Due to their strength they are frequently used where heavy loads need to be carried or where multiple platforms must reach several stones high. Components of scaffolds include vertical standards having coupling rings or rosettes. horizontal components such as ledgers and guardrails coupled to the coupling rings or rosettes, footings, decks/platforms and diagonal braces. Their versatility, which enables them to be assembled in multiple directions in a variety of settings, also makes them difficult to build correctly.
Conventional scaffolding systems have various components.
Rare-earth magnets are strong permanent magnets made from alloys of rare earth elements. Rare-earth magnets are the strongest type of permanent magnets made, producing significantly stronger magnetic fields than other types such as ferrite or alnico magnets. The magnetic field typically produced by rare-earth magnets can be in excess of 1.4 teslas, whereas ferrite or ceramic magnets typically exhibit fields of 0.5 to 1 tesla. There are two types: neodymium magnets and samarium-cobalt magnets. Rare earth magnets are extremely brittle and also vulnerable to corrosion, so they are usually plated or coated to protect them from breaking and chipping.
The rare earth (lanthanide) elements are metals that are ferromagnetic, meaning that like iron they can be permanently magnetized, but their Curie temperatures are below room temperature, so in pure form their magnetism only appears at low temperatures. However, they form compounds with the transition metals such as iron, nickel, and cobalt, and some of these have Curie temperatures well above room temperature. Rare earth magnets are made from these compounds.
The advantage of the rare earth compounds over other magnets is that their crystalline structures have very high magnetic anisotropy. This means that a crystal of the material is easy to magnetize in one particular direction, but resists being magnetized in any other direction.
Atoms of rare earth elements can retain high magnetic moments in the solid state. This is a consequence of incomplete filling of the f-shell, which can contain up to 7 unpaired electrons with aligned spins. Electrons in such orbitals are strongly localized and therefore easily retain their magnetic moments and function as paramagnetic centers. Magnetic moments in other orbitals are often lost due to the strong overlap with their neighboring electrons; for example, electrons participating in covalent bonds form pairs with zero net spin. High magnetic moments at the atomic level in combination with a stable alignment (high anisotropy) of those atoms results in a high magnetic field strength.
Some important properties used to compare permanent magnets are: remanence (Br), which measures the strength of the magnetic field; coercively (Hci), the material's resistance to becoming demagnetized; energy product (BHmax), the density of magnetic energy; and Curie temperature (Tc), the temperature at which the material loses its magnetism. Rare earth magnets have higher remanence, much higher coercively and energy product, but (for neodymium) lower Curie temperature than other types.
Samarium-cobalt magnets (chemical formula: SmCo5), the first family of rare earth magnets invented, are less used than neodymium magnets because of their higher cost and weaker magnetic field strength. However, samarium-cobalt has a higher Curie temperature, creating a niche for these magnets in applications where high field strength is needed at high operating temperatures. They are highly resistant to oxidation, but sintered samarium-cobalt magnets are brittle and prone to chipping and cracking and may fracture when subjected to thermal shock.
Neodymium magnets, invented in the 1980s, are the strongest and most affordable type of rare-earth magnet. They are made of an alloy of neodymium, iron and boron: (Nd2Fe14B) Neodymium magnets are used in numerous applications requiring strong, compact permanent magnets, such as electric motors for cordless tools, hard drives, and magnetic holddowns and jewelry clasps. They have the highest magnetic field strength and have a higher coercively (which makes them magnetically stable), but have lower Curie temperature and are more vulnerable to oxidation than samarium-cobalt magnets. Use of protective surface treatments such as gold, nickel, zinc and tin plating and epoxy resin coating can provide corrosion protection where required.
The greater force exerted by rare earth magnets creates hazards that are not seen with other types of magnet. Magnets larger than a few centimeters are strong enough to cause injuries to body parts pinched between two magnets or a magnet and a metal surface
What is desired is a mechanism using the properties of magnets to couple and secure a scaffold structure in unconventional locations such as inside boilers, metal tanks or proximate steel or metal beams, including l-beams for use in power plants, boilers, on bridges, offshore platforms, petrochemical plants, tank farms, heavy industrial complexes and construction sites.
To those skilled in the art to which this invention relates, many changes in construction and widely differing embodiments and applications of the invention will suggest themselves without departing from the scope of the invention as defined herein and in the appended claims. The disclosures and the descriptions herein are purely illustrative and are not intended to be in any sense limiting.
A more complete understanding of the invention may be obtained by reference to the following Detailed Description, when taken in conjunction with the accompanying Drawings. wherein:
The invention is a magnetic scaffold tie that serves as a point to anchor a scaffold which has been erected in unconventional locations. For example, the magnet portion of the magnetic scaffold tie can be used in a tank along an interior perimeter of tank. The invention advantageously allows a scaffold erector to install a perimeter scaffold instead of a large scaffold. A magnetic scaffold tie, when used as an anchor, takes significantly less time to install than welding, gluing, or bolting an anchorage point. Conventionally, a weld is required to anchor a scaffold, however, with use of the invention, such, an anchor point can be install in comparatively little time. The invention can be used in power plants, boilers, around bridges, with offshore platforms, petrochemical complexes, tank farms, heavy industrial areas and in the construction industry. More specifically, the invention can be used as an anchor for a scaffold in a boiler wall or tank wall. Once anchored, an erector can tighten a scaffold coupling mechanism to a scaffold vertical or horizontal member.
Referring now to
The coupling extension 408 can, in an aspect, be extendible and retractable, using, for example, a telescoping mechanism between a first part and a second part of the coupling extension 408, or a turnbuckle operable to be extend or be retract when unscrewed or screwed, respectively. The magnetic scaffold tie 400 further has at the second end of the coupling extension, a scaffold coupling mechanism 409.
Referring to
Referring back to
Release bar 406 further comprises a cam mechanism operable to release the base platform from a surface to which it is magnetically coupled.
A rotatable shaft 412 is coupled between the face of an extension of a first sidewall and the face of an extension of a second sidewall, the second sidewall being parallel to the first sidewall. The rotatable shaft 412 is fixedly coupled to a circular cylinder 413, a longitudinal portion of interior of the circular cylindrical 413 being fixedly coupled to the rotatable shaft 412 to form a lobe. The release bar 40$ has a handle on a first end, the second end being fixedly coupled to the rotatable shaft 412, the circular cylinder 413 or both, thus operable to cause the lobe portion of the combination of rotatable shaft 412 and circular cylinder 413 to be repositioned simultaneously when the release bar is moved from a first position to a second position.
The coupling extension of the magnetic scaffold tie can further comprise a two inch diameter steel pipe, having a length of between eighteen inches and twenty four inches with a turnbuckle welded inside the steel pipe operable to allow for adjustment of the length. In a further aspect, a ground wire is coupled to the magnet operable to be coupled to a scaffold member. The invention is used erecting a scaffold in one selected from the group of power plant, boilers, bridge, offshore platform, petrochemical plant, tank farm, heavy industrial complex and construction industry.
Referring now to
The combination of the coupling extension 808 and shock absorber extension 813 can, in an aspect, be extendible and retractable, using, for example, a telescoping mechanism between a first part and a second part of the coupling extension 808, or a turnbuckle operable to be extend or be retract when unscrewed or screwed, respectively. The magnetic scaffold tie 800 further comprises a scaffold coupling mechanism 809.
Referring to
Bar 818 is transversely welded to inner spring 902, each end of the bar 818 extending through aligned slots 819 in a portion of the side walls of inner pipe 816 and outer pipe 815, operable to allow a user to compress the inner spring 902 and outer spring 901, thus shortening the length of shock absorber extension 813.
Referring to
Referring back to
Release bar 806 further comprises a cam mechanism operable to release the base platform from a surface to which it is magnetically coupled.
Similarly to
As seen in
The embodiments shown and described above are only exemplary. Even though numerous characteristics and advantages of embodiments of the invention have been set forth in the foregoing description together with details of the invention, the disclosure is illustrative only and changes may be made within the principles of the invention to the full extent indicated by the broad general meaning of the terms used herein. Coupling includes, but is not limited to attaching, engaging, mounting, clamping, welding, bolting and components used for coupling include bolts and nuts, rivets, clevis, latches, clamps, welds, screws, rivets and the like.