This invention relates to magnetic separator conveyors. More particularly, this invention relates to such conveyors which incorporate at the conveyor's output end, a high intensity magnetic roller.
Input materials which are commonly processed and separated by high intensity magnetic separating conveyors commonly comprise a random mixture or conglomeration of non-ferrous parts, pieces, and fragments, along with stainless steel items, parts, and pieces. The intermixed stainless steel items often include nickel within their metal alloys, in addition to chromium, for enhancement of the alloy's corrosion resistance. Such nickel additives within the stainless steel alloy substantially nullifies the metal's paramagnetic character and causes the metal to have a very low level of magnetic susceptibility. Though such nickel and chromium stainless steel alloys are dominantly ferrous, they are commonly described as non-magnetic.
In many circumstances, materials which are to be processed by a high magnetic strength separator conveyor are preliminarily passed through a conventional low magnetic intensity separation process in order to initially remove the material's paramagnetic or magnetically susceptible ferrous parts, fragments, and pieces. As a result of performance of such preliminary low intensity magnetic separator, the less magnetically susceptible stainless steel parts and fragments within the mixture are made amenable to separate separation via higher strength magnets. A high intensity magnetic separating conveyors are known to be utilized in the performance of such subsequent separating step.
The effectiveness of such high intensity magnetic separating conveyors in performing such second phase separation of the stainless steel parts and pieces is commonly degraded by the continued presence within the parts mixture of non-magnetic plastic debris and fibrous material which is impregnated or coated with ferrous dust and filings or microscopic bits of tramp iron. Such ferrous dust coated non-ferrous debris particles often remain within the parts mixture following the initial low magnetic intensity magnetic separation step, and such debris remains susceptible to unwanted subsequent extraction and separation along with the stainless steel parts during the subsequent conveyor actuated high intensity magnetic separation step. Concurrent final phase separations of the stainless steel and the ferrous dust coated non-ferrous debris undesirably fouls and contaminates the stainless steel output of the conveyor based high magnetic intensity separation step.
The instant inventive magnetic separating conveyor solves or ameliorates such stainless steel output contamination problem by mechanically integrating within the separator conveyor a reverse air flow generating apparatus which is capable of forwardly winnowing the ferrous dust coated non-ferrous debris at the point of magnetic release of the stainless steel parts and pieces.
A first structural component of the instant inventive magnetic separating conveyor comprises a rigid frame which incorporates left and right rails or side walls which extend along the longitudinal length of the conveyor. In a suitable embodiment, the rigid frame is substantially configured as a ladder frame structure or chassis.
Further structural components of the instant inventive magnetic separator comprise longitudinal and oppositely longitudinal rollers which function as pulleys for guiding and driving a thin and preferably magnetically transparent continuous loop belt. The invention's longitudinal and oppositely longitudinal rollers are preferably rotatably mounted respectively to the longitudinal and oppositely longitudinal ends of the rigid frame. In a preferred embodiment, the longitudinal end of the conveyor is its output end, and the longitudinal roller mounted at that end constitutes an idler or free turning roller. The invention's oppositely longitudinal roller at the conveyor's input end preferably constitutes an axle driven roller to which a rotary output of an electric motor is preferably operatively connected.
In the preferred embodiment, the invention's longitudinal roller defines a hollow interior cylindrical space within which a multiplicity of magnets are fixedly mounted. In a preferred embodiment, the longitudinal rollers' interior mounted magnets are permanent magnets which are configured in accordance with the high intensity magnetic roller disclosed in US Patent Application Publication No. 2016/0310962; published Oct. 27, 2016; inventor, Donald A. Suderman. Such configuration of the magnets within the invention's longitudinal roller advantageously causes high intensity magnetic flux to emanate outwardly from the roller, and through the longitudinal end of the continuous belt loop.
A further structural component of the instant inventive magnetic separator comprises an air plenum which is preferably fixedly mounted between the rails of the conveyor's rigid frame, and is positioned beneath the belt's lower flight. In a preferred embodiment, the invention's plenum component is configured as a laminar air flow generating air knife. Suitably, the plenum component may alternatively comprise a box configured air conduit mounted beneath the conveyor's lower flight, or may comprise a conduit which functionally incorporates the conveyor's lower flight and side walls or rails.
In the preferred embodiment, the plenum component has an air output port positioned and oriented to direct a laminar or coordinated sheet configured stream of air in the longitudinal direction at or immediately below the continuously oppositely longitudinally moving juncture of the lower end of the longitudinal roller and the longitudinal end of the belt's lower flight. Ferrous dust coated non-ferrous debris which is securely magnetically attached to the belt's moving outer surface as the belt passes in a semi-circular arc over the longitudinal roller's longitudinal aspect, and such debris is effectively released from the magnetic attachment as the lower belt flight cycles tangentially away from such juncture.
The longitudinally traveling air stream is preferably provided by compressor or blower impelled air which is channeled into and through the plenum. Longitudinal emissions of such air advantageously winnow the iron dust bearing non-ferrous debris, causing such debris to separate from the heavier stainless steel items which normally fall oppositely longitudinally into a collection bin. Instead of constituting contaminating debris which is co-separated with the stainless steel output, the winnowing function which the inventive conveyor performs causes such non-ferrous debris to harmlessly fall forwardly into a separate bin along with other separated non-ferrous parts and pieces. Accordingly, the instant invention prevents undesirable contamination of the stainless steel output with the iron particle coated non-ferrous debris.
Other and further objects, benefits, and advantages of the instant invention will become known to those skilled in the art upon review of the Detailed Description which follows, and upon review of the appended drawings.
Referring now to the drawings, and in particular to Drawing
A longitudinal roller or pulley 16 spans laterally between the longitudinal ends 4 and 8 of the rail components 2 and 6, the axial ends of such roller 16 being supported by rotary bearings 20. In the preferred embodiment, the longitudinal roller 16 constitutes an idler or free turning roller, while the invention's oppositely longitudinal roller (which is similarly rotatably mounted at the oppositely longitudinal ends of rails 2 and 6) constitutes a motor driven roller.
A continuous loop belt 24 having upper and lower flights 26 and 28 is mounted over a slide floor 22 and about the longitudinal and oppositely longitudinal rollers in the manner depicted in
A cylindrical annulus of permanent magnets 18 is preferably fixedly mounted within the interior space of the longitudinal roller 16. In the preferred embodiment, and for purposes of enhancement of magnetic strength, the permanent magnets 18 are preferably configured arranged in the manner described in US Patent Application Publication No. 2016/0310962 published Oct. 27, 2016; inventor, Donald A. Suderman.
The instant inventive magnetic separator conveyor further comprises an air plenum which is fixedly mounted and operatively positioned beneath the lower flight 28 of the continuous loop belt 24. In a preferred embodiment, the plenum component comprises an laminar air flow producing air knife 42 which is laterally opened by an air inlet port 48 and is longitudinally opened by laterally oblongated air outlet port 41. In the preferred embodiment, the laterally oblongated air outlet port 41 is co-extensive with the lateral width of the continuous loop belt 24. An air tube or conduit 54 communicates with the plenum's air inlet port 48, and such conduit 54 is preferably supplied with air by a source of compressed or driven air, such as a fan, an air blower, or an air compressor. Such air impelling components are represented in
In operation of the instant inventive magnetic separator conveyor, and assuming that the air impeller 52 comprises an air compressor, such compressor may be actuated to drive compressed air through conduit 54 to emit from port 48 into the interior 44 of the air knife configured plenum 42. Such air next emits longitudinally from port 41 to flow toward and to impinge against portions of the longitudinal end 64 of the continuous loop belt's lower flight 28 which immediately underlie the lower end 62 of the roller 16. Upon cycling rotation of the continuous loop belt over the floor 22 and over the longitudinal and oppositely longitudinal rollers, the air emitting from the air knife 42 continually washes over such lower roller end, such air emitting in the direction of the dashed line arrow drawn upon
The upper flight 26 of the continuous loop belt 24 continuously travels longitudinally and slidably over conveyor belt floor 22, and during active material separating use such flight 26 commonly carries a mixed assemblage of non-ferrous parts and fragments 56, stainless steel parts and fragments 58, and smaller fragments of non-ferrous scrap and debris 60 which is commonly coated or impregnated with ferrous or iron containing dust. As the larger non-ferrous parts and pieces 56 approach the longitudinal end of the upper flight 26, such parts experience little or no magnetic attraction at and around the magnetic roller 16, and such pieces fall longitudinally and downwardly against a sloped longitudinal face 36 of “V” separator 32, and thence further fall downwardly into a forward collection bin 66. In contrast, stainless steel parts and pieces 58 which are carried along the upper flight 26, travel semi-circularly about roller 16 as a result of the roller's intense magnetic field. Such stainless steel parts and pieces are released at the lower end 62 of the roller 24 to fall downwardly and oppositely longitudinally against the sloped oppositely longitudinal face 38 of the “V” separator 32, and further fall into a longitudinally rearward separation bin 68. The longitudinal position of the “V” separator may be positioned along adjustment slots 40 to assure that such separator accurately discriminates between the falling paths of the non-ferrous parts 56 and the stainless steel parts 58.
Iron dust impregnated or coated non-ferrous debris 60 is, similarly with the stainless steel parts and pieces 58, magnetically attracted and released at the lower end 62 of the roller 16. However, as a result of the longitudinal emission of air from the plenum/air knife 42, such falling debris is advantageously forwardly or longitudinally winnowed to fall forwardly and downwardly against separation face 36, and to further fall downwardly into the longitudinal bin 66. Accordingly, the instant invention's incorporation of the air knife configured plenum 42 advantageously prevents such debris 60 from being deposited into the oppositely longitudinal collection bin 36. Thus, the instant invention prevents the separated stainless steel within bin 68 from becoming fouled or contaminated with the non-ferrous debris 60.
Referring simultaneously to
Referring simultaneously to
While the principles of the invention have been made clear in the above illustrative embodiment, those skilled in the art may make modifications to the structure, arrangement, portions and components of the invention without departing from those principles. Accordingly, it is intended that the description and drawings be interpreted as illustrative and not in the limiting sense, and that the invention be given a scope commensurate with the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
3922219 | Lee | Nov 1975 | A |
4451360 | Salmi | May 1984 | A |
4867866 | Mayberry | Sep 1989 | A |
5148921 | White | Sep 1992 | A |
6250474 | Howell | Jun 2001 | B1 |
8158902 | Valerio | Apr 2012 | B2 |
20060096894 | Brandner | May 2006 | A1 |
20070187299 | Valerio | Aug 2007 | A1 |
20130313167 | Vandemierden | Nov 2013 | A1 |
20140014560 | Rhodes | Jan 2014 | A1 |
20140102955 | Viny | Apr 2014 | A1 |
Number | Date | Country | |
---|---|---|---|
20170232449 A1 | Aug 2017 | US |