1. Technical Field
The disclosure relates to switches, and more particularly, to a switch which can stably engage in two positions such as an ON position or an OFF position.
2. Description of Related Art
Rotary switches are commonly used to selectably make or cut an electrical connection of an electric circuit. A rotary switch generally includes a rotary member rotably engaged with a stator. The stator includes a couple of positioning members, corresponding to “on” and “off” positions of the rotary member. Each positioning member has a concavity defined therein. The rotary member includes a locating bump protruding therefrom. When the rotary member is rotated, the locating bump is received in a selected one of the concavities, thereby precisely positioning the rotary member at the desired positioning member. However, the locating bump of the rotary member is liable to become worn or damaged after repeated use.
Therefore, what is needed is to provide a snapping switch in which the above-mentioned problems are eliminated or at least alleviated.
Referring to
Referring also to
The knob 20 is a circular and generally disk-shaped. The knob 20 includes a top surface 20a and a bottom surface 20b at opposite sides thereof, a handle 21, a pair of holding members 23, a pair of support walls 25, a pair of inner walls 27, and a positioning plate 29. The handle 21 extends upward from a middle portion of the top surface 20a. The support walls 25 perpendicularly extend downward from a periphery of the bottom surface 20b. In the illustrated embodiment, the support walls 25 have slightly different sizes. Nevertheless, the support walls 25 are positioned generally symmetrically opposite each other across the bottom surface 20b. The pair of inner walls 27 are integrally connected to first ends 25a of the support walls 25, respectively. The pair of holding members 23 are integrally connected to second ends 25b of the support walls 25, respectively. Each holding member 23 and each inner wall 27 radially extends toward the center of the bottom surface 20b of the knob 20. Each holding member 23 defines a compartment 23a for housing a corresponding one of the snapping members 40. The positioning plate 29 extends downward from the bottom surface 20b adjacent to one of the inner walls 27, and thereby a gap 28 is defined between the positioning plate 29 and the inner wall 27.
The ring 30 includes an inner peripheral surface 30a and an outer peripheral surface 30b, a top surface 30c, a bottom surface 30d, an annular flange 32, a cutout 34, and a pair of parallel slots 36. The top surface 30c interconnects the inner and outer peripheral surfaces 30a, 30b. The bottom surface 30d is parallel to the top surface 30c, and also interconnects the inner peripheral surface 30a and the outer peripheral surface 30b. A diameter of an aperture (not labeled) surrounded by the inner peripheral surface 30a is slightly larger than that of the knob 20. The annular flange 32 is formed at the top surface 30c. An inner diameter of the annular flange 32 is greater than a diameter of the knob 20. The cutout 34 is formed at the inner peripheral surface 30a, and is exposed at the bottom surface 30d. The pair of slots 36 is defined in the inner peripheral surface 30a, opposite to the cutout 34. The ring 30 further includes a number of threaded holes 38 evenly distributed on the bottom surface 30d, and corresponding to the through holes 16 of the base 10.
The snapping members 40 comprise a first snapping member 42, a second snapping member 44, and a third snapping member 46. Preferably, all of the first, second and third snapping members 42, 44, 46 are made of magnetic material, and are configured in a way such that they attract each other when the distances between them are short enough. The first snapping member 42 is housed in the cutout 34 of the ring 30, and the second and third snapping members 44, 46 are separately housed in the compartments 23a of the knob 20 correspondingly. Alternatively, the second and third snapping members 44, 46 can be made of iron, nickel, or alloy of iron and nickel instead of magnetic material. In such case, the second and third snapping members 44, 46 are attracted to the first snapping member 42 when the respective distances between the second and third snapping members 44, 46 and the first snapping member 42 are short enough. In another alternative embodiment, the first snapping member 42 can be made of iron, nickel, or alloy of iron and nickel instead of magnetic material. In such case, the second and third snapping members 44, 46 are attracted to the first snapping member 42 when the respective distances between the second and third snapping members 44, 46 and the first snapping member 42 are short enough.
The pair of contact pads 50 can function as electrodes. In such case, the contact pads 50 are correspondingly coupled to one or more circuits of a device in which the snapping switch 100 is installed, for selectively opening or closing the circuits. The pair of contact pads 50 are designated as a contact pad 50a and a contact pad 50b. The contact pad 50a is curved, and is deformably and tightly engaged in the slots 36 of the ring 30. The contact pad 50b is generally hook-shaped, and a main body of the contact pad 50b is nested in the gap 28 between the positioning plate 29 and the corresponding inner wall 27. A middle portion of the contact pad 50a is convex, and protrudes from the inner peripheral surface 30a of the ring 30. The middle portion of the contact pad 50a is capable of electrically contacting a hook portion of the contact pad 50b when the knob 20 is rotated to a certain position. In summary, the contact pad 50a is mounted at the inner peripheral surface 30a of the ring 30, and is always spaced apart from all three snapping members 40 by certain predetermined distances and/or by certain predetermined angles. The contact pad 50b is mounted on the bottom surface 20b, and is also always spaced apart from all three snapping members 40 by certain predetermined distances and/or by certain predetermined angles. When the knob 20 is rotated, the snapping members 40 distributed on the knob 20 and the ring 30 can attract each other to help ensure that switching on and switching off of a circuit that includes the contact pads 50 is reliably achieved.
Referring also to
From the forgoing description, it will be appreciated that, in an exemplary embodiment, the knob 20 can be manually set to either an “OFF” position as shown in
In alternative embodiments, the first snapping member 42 can be provided on the knob 20, and the second and third snapping members 44, 46 can be provided on the ring 30 correspondingly. In other words, the position of the first snapping member 42 and the positions of the second and third snapping member 44, 46 can in essence be exchanged.
In summary, the three snapping members 40 of the snapping switch 100 can attract each other as described above, thereby enhancing the reliability of the snapping switch 100.
It is believed that the present embodiments and their advantages will be understood from the foregoing description, and it will be apparent that various changes may be made thereto without departing from the spirit and scope of the disclosure or sacrificing all of its material advantages, the examples hereinbefore described merely being preferred or exemplary embodiments of the disclosure.
Number | Date | Country | Kind |
---|---|---|---|
2008 1 0304597 | Sep 2008 | CN | national |
Number | Name | Date | Kind |
---|---|---|---|
4162468 | Thornley | Jul 1979 | A |
4868530 | Ahs | Sep 1989 | A |
6864679 | Yokoji et al. | Mar 2005 | B2 |
7741938 | Kramlich | Jun 2010 | B2 |
Number | Date | Country | |
---|---|---|---|
20100072051 A1 | Mar 2010 | US |