Magnetic stripe track signal having multiple communications channels

Information

  • Patent Grant
  • 12282819
  • Patent Number
    12,282,819
  • Date Filed
    Wednesday, April 2, 2014
    11 years ago
  • Date Issued
    Tuesday, April 22, 2025
    a month ago
Abstract
An electronic card (e.g., an electronic payment card) or another device (e.g., a wireless telephonic device) is provided that may communicate dynamic magnetic stripe data to a magnetic stripe reader. Information may be embedded into a magnetic track of data representative of additional information such as, for example, a unique identification number or an additional track of magnetic stripe data.
Description
BACKGROUND OF THE INVENTION

This invention relates to magnetic cards and devices and associated payment systems.


SUMMARY OF THE INVENTION

A card may include a dynamic magnetic communications device. Such a dynamic magnetic communications device may take the form of a magnetic encoder or a magnetic emulator. A magnetic encoder may change the information located on a magnetic medium such that a magnetic stripe reader may read changed magnetic information from the magnetic medium. A magnetic emulator may generate electromagnetic fields that directly communicate data to a magnetic stripe reader. Such a magnetic emulator may communicate data serially to a read-head of the magnetic stripe reader.


All, or substantially all, of the front as well as the back of a card may be a display (e.g., bi-stable, non bi-stable, LCD, LED, or electrochromic display). Electrodes of a display may be coupled to one or more capacitive touch sensors such that a display may be provided as a touch-screen display. Any type of touch-screen display may be utilized. Such touch-screen displays may be operable of determining multiple points of touch. Accordingly, a barcode may be displayed across all, or substantially all, of a surface of a card. In doing so, computer vision equipment such as barcode readers may be less susceptible to errors in reading a displayed barcode.


A card may include a number of output devices to output dynamic information. For example, a card may include one or more RFIDs or IC chips to communicate to one or more RFID readers or IC chip readers, respectively. A card may include devices to receive information. For example, an RFID and IC chip may both receive information and communicate information to an RFID and IC chip reader, respectively. A device for receiving wireless information signals may be provided. A light sensing device or sound sensing device may be utilized to receive information wirelessly. A card may include a central processor that communicates data through one or more output devices simultaneously (e.g., an RFID, IC chip, and a dynamic magnetic stripe communications device). The central processor may receive information from one or more input devices simultaneously (e.g., an RFID, IC chip, dynamic magnetic stripe devices, light sensing device, and a sound sensing device). A processor may be coupled to surface contacts such that the processor may perform the processing capabilities of, for example, an EMV chip. The processor may be laminated over and not exposed such that such a processor is not exposed on the surface of the card.


A magnetic stripe reader is provided that is operable to extract bit information from flux transversals. Such a magnetic stripe reader may do so, for example, by utilizing frequency/double-frequency decoding of a signal provided by a magnetic stripe. The reader may extract additional information from such a magnetic stripe signal. For example, the reader may utilize differences in magnitude of flux transversals to discern additional data. Accordingly, a card may include a dynamic magnetic stripe communications device operable to communicate magnetic stripe data by communicating data through a frequency/double-frequency encoding scheme and also by changing the magnitude of such a signal to various levels for particular flux transversals of the signal. Additional data may be provided in such a signal (e.g., a magnetic stripe track signal). For example, the slope that a particular signal increases and decreases may be controlled by a dynamic magnetic stripe communications device such that, for example, a magnetic stripe reader operable to discern such varying slopes as particular data may be operable to extract such varying slopes as particular data. In this manner, a magnetic stripe reader is provided that is operable to discern data from a magnetic stripe signal other than just the timing between flux transversals and use this discerned data as additional information. Similarly, an electronic payment card is provided that is operable to communicate a stream of magnetic data with embedded information.


A remote facility is provided that is operable to receive an enhanced data packet from a magnetic stripe reader and utilize this additional data to perform additional functions. Particularly, the remote facility may receive data indicative of a magnetic stripe track as well as data representative of additional, embedded information. Such a remote facility may receive, for example, information and embedded information from multiple tracks (e.g., two or three tracks).


A magnetic stripe reader is provided that is operable to extract information from characteristics of a magnetic stripe signal in addition to the timing between flux transversals. For example, a magnetic stripe reader may determine levels of the amplitude of magnetic-based signals at particular data points (e.g., the 10th bit of data) and utilize this additional information to discern an additional bit of information. The reader may then send such additional information from a stripe signal to a remote server in addition to the information extracted from the timing of the flux transversals themselves. This additional information may be utilized, for example, to verify the authenticity of a card for a particular account number (e.g., a card-controlled “signature” for the stripe), to transmit information associated with the status of the card (e.g., voltage of a battery or tamper status of tamper detecting hardware/software), to transmit information associated with the card's environment (e.g., the number of swipes of a card in a predetermined time such as the 60 seconds prior to data transmission), or to transmit any additional information (e.g., a second or a second and third magnetic stripe track of data). Accordingly, for example, a single track of magnetic stripe data may include enough embedded information to provide a total of three tracks of magnetic stripe data.


A dynamic magnetic stripe reader communications device is provided. Such a communications device may take the form of a magnetic encoder operable to write data to a magnetic medium. Such a communications device may take the form of a magnetic emulator operable to transmit data directly to a read-head of a read-head housing of a magnetic stripe reader without the presence of a magnetic stripe.


A magnetic stripe may be provided over a magnetic emulator. A magnetic stripe may include a magnetic signature. A reader may determine the magnetic signature from this magnetic stripe by reading, for example, variations in amplitude of magnetic-based signals at particular data points/ranges. The reader may then communicate an additional field of data with a number corresponding to this signature. A remote server may, for example, check an account number transmitted in the base information to determine whether the card is in a registry of cards that opted-in for signature authentication and, if so, the remote server may check the value of the extended data to determine whether it is in a range of values stored for that particular card. If so, the transaction may be verified. If not, the transaction may be refused.


A magnetic stripe emulator may be provided without a magnetic stripe. A magnetic stripe emulator may include one or more coils that correspond to one or more tracks of data. Accordingly, three coils may be provided to send a separate track of data to a separate read-head of a single read-head housing. A processor of a card may, for example, determine additional information to communicate (e.g., a dynamic signature or additional information). The processor may change the amount of current provided through a particular coil at a particular time (e.g., when a particular bit is being transmitted) such that additional data is communicated to the reader. For example, a reader may look at the amplitude of received signals for particular bits (or groups of bits) and discern information depending on the amplitude received. For example, a bit may be discerned from a determination that a particular part of the signal is HI or LOW. More information may be discerned from a determination that a particular part of the signal is HI, MEDIUM, or LOW.


Information may also be transmitted, for example, by comparing characteristics of different tracks to each other. For example, two coils may be provided. If the processor communicates each track at the same frequency, then one bit of information may be discerned. If the processor communicates each track at different frequencies, then another bit of information may be discerned. Accordingly, a track of information may be utilized as a base frequency and the frequencies of the other tracks, compared to this base track, may be utilized to discern additional information. For example, if twenty frequencies can be discerned by a reader then, for example, twenty additional states of information may be discerned by the reader if two tracks are communicated.


Such techniques may allow, for example, for one track of data to be embedded into another track of data without extending the length of that other track of data. For example, track 2 data may be embedded into track 1 data. In doing so, a multi-track signal may be provided within a single track. Accordingly, a magnetic stripe emulator may be provided that is operable to wirelessly communicate a track of magnetic stripe data to a reader. Accordingly, a remote server may receive a track of base data with an extended data field and utilize this extended data field as an additional track of data. Accordingly, the remote server may parse the second track of data and send portions of that track of data to different remote servers (e.g., one portion may be communicated to a remote processing facility controlled by a card association and another portion may be communicated to a remote processing facility controlled by a card issuer). Accordingly, embedding information into a magnetic stripe track signal may, for example, allow additional information to be communicated without extending the length of the magnetic stripe track signal.





BRIEF DESCRIPTION OF THE DRAWINGS

The principles and advantages of the present invention can be more clearly understood from the following detailed description considered in conjunction with the following drawings, in which the same reference numerals denote the same structural elements throughout, and in which:



FIG. 1 is an illustration of cards constructed in accordance with the principles of the present invention;



FIG. 2 is an illustration of communication signals constructed in accordance with the principles of the present invention;



FIG. 3 is an illustration of communication signals constructed in accordance with the principles of the present invention;



FIG. 4 is an illustration of communication signals constructed in accordance with the principles of the present invention;



FIG. 5 is an illustration of a magnetic stripe reader and card constructed in accordance with the principles of the present invention; and



FIG. 6 is an illustration of processes constructed in accordance with the principles of the present invention.





DETAILED DESCRIPTION OF THE INVENTION


FIG. 1 shows card 100 that may include, for example, a dynamic number that may be entirely, or partially, displayed via display 112. A dynamic number may include a permanent portion such as, for example, permanent portion 111. Permanent portion 111 may be printed as well as embossed or laser etched on card 100. Multiple displays may be provided on a card. For example, display 113 may be utilized to display a dynamic code such as a dynamic security code. Display 125 may also be provided to display logos, barcodes, as well as multiple lines of information. A display may be a bi-stable display or non bi-stable display. Permanent information 120 may also be included and may include information such as information specific to a user (e.g., a user's name or username) or information specific to a card (e.g., a card issue date and/or a card expiration date). Card 100 may include one or more buttons such as buttons 130-134. Such buttons may be mechanical buttons, capacitive buttons, or a combination of mechanical and capacitive buttons. Card 100 may include button 149. Button 149 may be used, for example, to place card 100 into a programming mode to receive programming (e.g., programming of a user's personal payment card data). A button (e.g., button 149) may be utilized in a variety of ways (e.g., to communicate information through a dynamic magnetic communications device indicative of a user's intent to purchase a particular product with points instead of credit). Button 149 may be provided to, for example, instruct the card to communicate data in a form desired for a wireless transmission through the casing of a magnetic stripe reader instead of, for example, a swiping of the card past a magnetic stripe reader read-head housing. In doing so, for example, multiple tracks of information (e.g., one or two tracks of information) may be embedded into a different track that is communicated. In doing so, for example, a single read-head of a read-head housing may receive the magnetic track signal having embedded information representative of additional magnetic stripe tracks, discern these different tracks, and communicate these different tracks to a remote facility.


Architecture 150 may be utilized with any card. Architecture 150 may include processor 120. Processor 120 may have on-board memory for storing information (e.g., application code). Any number of components may communicate to processor 120 and/or receive communications from processor 120. For example, one or more displays (e.g., display 140) may be coupled to processor 120. Persons skilled in the art will appreciate that components may be placed between particular components and processor 120. For example, a display driver circuit may be coupled between display 140 and processor 120. Memory 142 may be coupled to processor 120. Memory 142 may include data that is unique to a particular card. For example, memory 142 may store discretionary data codes associated with buttons of card 150. Such codes may be recognized by remote servers to effect particular actions. For example, a code may be stored on memory 142 that causes a non-merchant product to be purchased with points during a merchant transaction. Memory 142 may store, for example, data to be embedded into a magnetic stripe track signal.


Any number of reader communication devices may be included in architecture 150. For example, IC chip 152 may be included to communicate information to an IC chip reader. IC chip 152 may be, for example, an EMV chip. As per another example, RFID 151 may be included to communicate information to an RFID reader. A magnetic stripe communications device may also be included to communicate information to a magnetic stripe reader. Such a magnetic stripe communications device may provide electromagnetic signals to a magnetic stripe reader. Different electromagnetic signals may be communicated to a magnetic stripe reader to provide different tracks of data. For example, electromagnetic field generators 170, 180, and 185 may be included to communicate separate tracks of information to a magnetic stripe reader. Such electromagnetic field generators may include a coil wrapped around one or more materials (e.g., a soft-magnetic material and a non-magnetic material). Each electromagnetic field generator may communicate information serially to a receiver of a magnetic stripe reader for a particular magnetic stripe track. Read-head detectors 171 and 172 may be utilized to sense the presence of a magnetic stripe reader (e.g., a read-head housing of a magnetic stripe reader). This sensed information may be communicated to processor 120 to cause processor 120 to communicate information serially from electromagnetic generators 170, 180, and 185 to magnetic stripe track receivers in a read-head housing of a magnetic stripe reader. Accordingly, a magnetic stripe communications device may change the information communicated to a magnetic stripe reader at any time. Processor 120 may, for example, communicate user-specific and card-specific information through RFID 151, IC chip 152, and electromagnetic generators 170, 180, and 185 to card readers coupled to remote information processing servers (e.g., purchase authorization servers). Driving circuitry 141 may be utilized by processor 120, for example, to control electromagnetic generators 170, 180, and 185. Driver circuitry 141 may change characteristics of a magnetic stripe track in order to embed additional information into that track. Similarly, for example, driver circuitry 141 may change characteristics of two, or more, magnetic stripe tracks in order to embed information between characteristics of such magnetic stripe tracks.



FIG. 2 shows signal 210 that may include signal segment 211. A magnetic emulator may, for example, be driven to produce flux transversals operable to be read by a magnetic stripe reader. The magnitude of the signal may, for example, be controlled. Particularly, the magnitude of a signal may be provided between thresholds 212 and 213 to embed one particular information and the magnitude of that signal may be provided between thresholds 213 and 214 to embed different information. Accordingly, for example, a HIGH state and a LOW state may be provided by a dynamic magnetic stripe communications device (e.g., a magnetic emulator) and this HIGH and LOW state may be discerned by a magnetic stripe reader and utilized to communicate additional information. Persons skilled in the art will appreciate that the magnitude of current provided through, for example, a coil of a magnetic emulator may be indicative of the magnitude of the electromagnetic signal provided by that coil.


Signal 220 may also be provided that includes signal segments 221 and 222. A magnetic stripe reader may, for example, receive flux transversals as segments 221 and 222. Signal 210 may be provided at a single polarity. Signal 220 may also be included that includes signal segment 221. For example, segment 221 may be obtained as a result of an increase of signal 210. Signal segment 222 may be obtained as the result of a decrease of signal 210. Signal segment 223 may have, for example, a lower magnitude than signal segment 221 and, as a result, additional information may be communicated through this difference in magnitude.


Persons skilled in the art will appreciate that cards may be pre-set with different magnitudes to communicate different portions of one or more tracks of magnetic stripe data. Such presets may be unique for each card. In doing so, for example, the identity of a card may be obtained regardless of the information that is communicated.


Signal 230 may be provided. Signal 230 may be, for example, a dual polarity drive signal for driving, for example, a magnetic emulator. Segments 231 and 232 may be provided on signal 230. A read-head of a magnetic stripe reader may receive signal 240 from a magnetic emulator driven via signal 230. Accordingly, segment 241 may be provided. Thresholds 242, 243, and 244 may be utilized, for example, to extract additional information from a signal (e.g., a magnetic stripe track signal). For example, thresholds 242, 243, and 244 may be utilized to define LOW, MEDIUM, and HIGH states, where each state may represent different information. For signal segments of the opposite polarity, similar thresholds may be provided to provide additional states of LOW, MEDIUM, and HIGH. Persons skilled in the art will appreciate that any number of thresholds may be utilized to provide any number of states.



FIG. 3 shows signal 310 having signal segment 311. Persons skilled in the art will appreciate that the slope of a signal may be changed. For example, the slope of a signal may be changed from a discrete change to a non-linear slope (e.g., slope 312) on one or more sides of a pulse or a linear slope (e.g., slope 313) on one or more sides of a pulse (or a combination). Such differences in slopes may be determined by a reader and, for example, utilized by the reader to extract additional bits of information. Signal 330 shows signal 331 that also may utilize varying slopes (e.g., slope 332) to embed additional information into an information signal such as a magnetic stripe track signal communicated in a frequency/double-frequency encoding scheme (e.g., F2F encoding).



FIG. 4 shows magnetic stripe data 401 as being read by a magnetic stripe reader having multiple read-heads receiving magnetic stripe track data. As shown, the received data includes magnetic stripe track data 410 and magnetic stripe track data 420. Data may be embedded by changing characteristics of one track data with respect to the other track data. For example, a dynamic magnetic stripe communications device may introduce a delay between when two track signals are communicated. This delay, for example, may be utilized to communicate additional information. Such delays may be included in each pulse of information so that a magnetic stripe reader may notice the delays to extract additional information, but which may be transparent to a frequency/double frequency (e.g., F2F) encoding scheme. Magnetic stripe signal 402 shows additional data being read by a magnetic stripe reader. The additional data can include magnetic stripe track signal 430 and 440. Segments 431 and 432 may be included in signal 430. Segments 441 and 442 may be included in signal 440. Information may be embedded, for example, by changing the overall speed that one track is communicated with respect to the other track.



FIG. 5 shows topology 500. Card 530 may include a dynamic magnetic stripe communications device for communicating one or more tracks of magnetic stripe data to a read-head (e.g., read-head 511) of a magnetic stripe reader (e.g., magnetic stripe reader 510). Card 520 may include magnetic stripe communications device 521 and 522. Device 521 may communicate information via, for example, electromagnetic signal 591. Persons skilled in the art will appreciate that card 520 may determine whether to communicate information outside or inside a reader via, for example, a manual button. Device 521 may, for example, communicate a single track of data if card 520 is swiped. However, device 520 may communicate multiple tracks of information (e.g., one track embedded in another track) if the card is desired to communicate outside of a reader. Device 520 may be included in a wireless telephonic device.



FIG. 6 shows flow charts 610, 620, and 630. Flow chart 610 includes step 611, in which a determination is made as to whether a magnetic stripe transmission is desired to be communicated outside or inside of a reader. Step 612 may be included, in which data is prepared to be transmitted through one or more coils based on the determination of step 611. In step 613, data may be communicated wirelessly, while the card is positioned outside of a reader, when a button is pressed on the card. Step 614 may be provided, in which multiple tracks (e.g., two) are communicated in a single track via embedded information into a magnetic stripe track signal. The transmission may be repeated, for example, in step 615.


Flow chart 620 may be provided that may include step 621, in which data may be communicated with data embedded in the amplitude of the signal. Such data may be received at a reader in step 622 and the embedded data may be extracted in step 623. The extracted embedded data may be utilized to perform an additional function in step 624 and the transaction may be authorized in step 625.


Flow chart 630 may be provided and may include step 631, in which data may be embedded into track data via frequency differentials between tracks (e.g., speed differentials between tracks). Step 632 may be provided in which data is received at a reader. The reader may extract embedded data in step 633 and this data may be utilized to perform additional functions in step 634. A transaction may be authorized in step 635.


Persons skilled in the art will also appreciate that the present invention is not limited to only the embodiments described. Instead, the present invention more generally involves dynamic information. Persons skilled in the art will also appreciate that the apparatus of the present invention may be implemented in other ways than those described herein. All such modifications are within the scope of the present invention, which is limited only by the claims that follow.

Claims
  • 1. A transaction device comprising: a reader communications device including at least one coil operable to provide a first signal; and a magnetic stripe including a signature, the magnetic stripe arranged over the reader communications device to provide a second signal, the second signal including the first signal embedded with the signature, wherein the transaction device is operable to communicate the second signal to a reader, the second signal including amplitude variations representing the signature.
  • 2. The device of claim 1, wherein the signature is an authentication signature usable to verify a transaction.
  • 3. The device of claim 1, wherein the transaction device is operable to communicate the second signal including base information and the signature.
  • 4. The device of claim 1, wherein the transaction device is operable to communicate the second signal including base information and the signature, and the signature is associated with a field of data.
  • 5. The device of claim 1, wherein the transaction device is operable to communicate the signature and the base information including an account number, and the signature is associated with a field of data.
  • 6. A transaction device comprising: a reader communications device including at least one coil operable to provide a first signal; and a magnetic stripe including a signature, the magnetic stripe arranged over the reader communications device to provide a second signal, the second signal including the first signal embedded with the signature, wherein the transaction device is operable to communicate the second signal to a reader, the second signal including amplitude variations representing the signature, the amplitude variations at particular signal data points or ranges.
  • 7. A reader comprising: A read head operable to receive a signal including base information and a signature, wherein the reader is operable to determine the base information from a first characteristic of the signal and the signature from a second characteristic of the signal, wherein the second characteristic includes amplitude variations at particular data points or ranges;wherein the signal is a magnetic-based signal received from a transaction device including a reader communication device with at least one coil and a magnetic stripe including the signature.
  • 8. The reader of claim 7, wherein the reader is operable to determine the signature from amplitude variations of the signal at particular data points or ranges.
  • 9. The reader of claim 7, wherein the reader is operable to communicate a field of data associated with the signature to a server.
  • 10. The reader of claim 7, wherein the reader is operable to communicate a field of data including a number corresponding to the signature to a server.
  • 11. The reader of claim 7, wherein the reader is operable to communicate a field of data associated with the signature to a transaction verification server.
  • 12. A reader comprising: A read head operable to receive a signal including base information and a signature, wherein the reader is operable to determine the base information from a first characteristic of the signal and the signature from a second characteristic of the signal, wherein the reader is operable to determine the signature from amplitude variations of the signal.
CROSS-REFERENCE TO RELATED APPLICATION

This application is a continuation of U.S. patent application Ser. No. 12/902,254, titled “Magnetic Stripe Track Signal Having Multiple Communications Channels,” filed Oct. 12, 2010 which issued as U.S. Pat. No. 8,727,219, which claims the benefit of U.S. Provisional Patent Application No. 61/250,636, titled “Magnetic Stripe Track Signal Having Multiple Communications Channels,” filed Oct. 12, 2009, each of which is hereby incorporated by reference herein in their entirety.

US Referenced Citations (238)
Number Name Date Kind
4353064 Stamm Oct 1982 A
4394654 Hofmann-Cerfontaine Jul 1983 A
4614861 Pavlov et al. Sep 1986 A
4667087 Quintana May 1987 A
4701601 Francini et al. Oct 1987 A
4720860 Weiss Jan 1988 A
4786791 Hodama Nov 1988 A
4791283 Burkhardt Dec 1988 A
4797542 Hara Jan 1989 A
5038251 Sugiyama et al. Aug 1991 A
5168520 Weiss Dec 1992 A
5237614 Weiss Aug 1993 A
5276311 Hennige Jan 1994 A
5347580 Molva et al. Sep 1994 A
5361062 Weiss et al. Nov 1994 A
5412199 Finkelstein et al. May 1995 A
5434398 Goldberg Jul 1995 A
5434405 Finkelstein et al. Jul 1995 A
5478994 Rahman Dec 1995 A
5479512 Weiss Dec 1995 A
5484997 Haynes Jan 1996 A
5485519 Weiss Jan 1996 A
5585787 Wallerstein Dec 1996 A
5591949 Bernstein Jan 1997 A
5608203 Finkelstein et al. Mar 1997 A
5623552 Lane Apr 1997 A
5657388 Weiss Aug 1997 A
5834747 Cooper Nov 1998 A
5834756 Gutman et al. Nov 1998 A
5856661 Finkelstein et al. Jan 1999 A
5864623 Messina et al. Jan 1999 A
5907142 Kelsey May 1999 A
5913203 Wong et al. Jun 1999 A
5937394 Wong et al. Aug 1999 A
5955021 Tiffany, III Sep 1999 A
5956699 Wong et al. Sep 1999 A
6025054 Tiffany, III Feb 2000 A
6045043 Bashan et al. Apr 2000 A
6076163 Hoffstein et al. Jun 2000 A
6085320 Kaliski Jul 2000 A
6095416 Grant et al. Aug 2000 A
6130621 Weiss Oct 2000 A
6145079 Mitty et al. Nov 2000 A
6157920 Jakobsson et al. Dec 2000 A
6161181 Haynes, III et al. Dec 2000 A
6176430 Finkelstein et al. Jan 2001 B1
6182894 Hackett et al. Feb 2001 B1
6189098 Kaliski Feb 2001 B1
6199052 Mitty et al. Mar 2001 B1
6206293 Gutman et al. Mar 2001 B1
6240184 Huynh et al. May 2001 B1
6241153 Tiffany, III Jun 2001 B1
6256873 Tiffany, III Jul 2001 B1
6269163 Rivest et al. Jul 2001 B1
6286022 Kaliski et al. Sep 2001 B1
6308890 Cooper Oct 2001 B1
6313724 Osterweil Nov 2001 B1
6389442 Yin et al. May 2002 B1
6393447 Jakobsson et al. May 2002 B1
6411715 Liskov et al. Jun 2002 B1
6446052 Juels Sep 2002 B1
6460141 Olden Oct 2002 B1
6592044 Wong et al. Jul 2003 B1
6607127 Wong Aug 2003 B2
6609654 Anderson et al. Aug 2003 B1
6631849 Blossom Oct 2003 B2
6655585 Shinn Dec 2003 B2
6681988 Stack et al. Jan 2004 B2
6705520 Pitroda et al. Mar 2004 B1
6755341 Wong et al. Jun 2004 B1
6764005 Cooper Jul 2004 B2
6769618 Finkelstein Aug 2004 B1
6805288 Routhenstein et al. Oct 2004 B2
6811082 Wong Nov 2004 B2
6813354 Jakobsson et al. Nov 2004 B1
6817532 Finkelstein Nov 2004 B2
6873974 Schutzer Mar 2005 B1
6902116 Finkelstein Jun 2005 B2
6970070 Juels et al. Nov 2005 B2
6980969 Tuchler et al. Dec 2005 B1
6985583 Brainard et al. Jan 2006 B1
6991155 Burchette, Jr. Jan 2006 B2
7013030 Wong et al. Mar 2006 B2
7035443 Wong Apr 2006 B2
7039223 Wong May 2006 B2
7044394 Brown May 2006 B2
7051929 Li May 2006 B2
7083094 Cooper Aug 2006 B2
7100049 Gasparini et al. Aug 2006 B2
7100821 Rasti Sep 2006 B2
7111172 Duane et al. Sep 2006 B1
7114652 Moullette et al. Oct 2006 B2
7136514 Wong Nov 2006 B1
7140550 Ramachandran Nov 2006 B2
7163153 Blossom Jan 2007 B2
7195154 Routhenstein Mar 2007 B2
7197639 Juels et al. Mar 2007 B1
7219368 Juels et al. May 2007 B2
7225537 Reed Jun 2007 B2
7225994 Finkelstein Jun 2007 B2
7246752 Brown Jul 2007 B2
7298243 Juels et al. Nov 2007 B2
7334732 Cooper Feb 2008 B2
7337326 Palmer et al. Feb 2008 B2
7346775 Gasparini et al. Mar 2008 B2
7356696 Jakobsson et al. Apr 2008 B1
7357319 Lin et al. Apr 2008 B1
7359507 Kaliski Apr 2008 B2
7360688 Harris Apr 2008 B1
7363494 Brainard et al. Apr 2008 B2
7380710 Brown Jun 2008 B2
7398253 Pinnell Jul 2008 B1
7404087 Teunen Jul 2008 B2
7424570 D'Albore et al. Sep 2008 B2
7427033 Roskind Sep 2008 B1
7454349 Teunen et al. Nov 2008 B2
7461250 Duane et al. Dec 2008 B1
7461399 Juels et al. Dec 2008 B2
7472093 Juels Dec 2008 B2
7472829 Brown Jan 2009 B2
7494055 Fernandes et al. Feb 2009 B2
7502467 Brainard et al. Mar 2009 B2
7502933 Jakobsson et al. Mar 2009 B2
7503485 Routhenstein Mar 2009 B1
7516492 Nisbet et al. Apr 2009 B1
7523301 Nisbet et al. Apr 2009 B2
7530495 Cooper May 2009 B2
7532104 Juels May 2009 B2
7543739 Brown et al. Jun 2009 B2
7559464 Routhenstein Jul 2009 B2
7562221 Nystrom et al. Jul 2009 B2
7562222 Gasparini et al. Jul 2009 B2
7580898 Brown et al. Aug 2009 B2
7584153 Brown et al. Sep 2009 B2
7591426 Osterweil et al. Sep 2009 B2
7591427 Osterweil Sep 2009 B2
7602904 Juels et al. Oct 2009 B2
7631804 Brown Dec 2009 B2
7639537 Sepe et al. Dec 2009 B2
7641124 Brown et al. Jan 2010 B2
7660902 Graham et al. Feb 2010 B2
7828207 Cooper Nov 2010 B2
7954724 Poidomani et al. Jun 2011 B2
8103881 Doughty Jan 2012 B2
8590796 Cloutier Nov 2013 B1
20010034702 Mockett et al. Oct 2001 A1
20010047335 Arndt et al. Nov 2001 A1
20020059114 Cockrill et al. May 2002 A1
20020082989 Fife et al. Jun 2002 A1
20020096570 Wong et al. Jul 2002 A1
20020120583 Keresman, III et al. Aug 2002 A1
20030034388 Routhenstein et al. Feb 2003 A1
20030042307 Prow et al. Mar 2003 A1
20030052168 Wong Mar 2003 A1
20030057278 Wong Mar 2003 A1
20030116635 Taban Jun 2003 A1
20030117734 Yokozawa et al. Jun 2003 A1
20030152253 Wong Aug 2003 A1
20030163287 Vock et al. Aug 2003 A1
20030173409 Vogt et al. Sep 2003 A1
20030179909 Wong et al. Sep 2003 A1
20030179910 Wong Sep 2003 A1
20030226899 Finkelstein Dec 2003 A1
20040035942 Silverman Feb 2004 A1
20040133787 Doughty Jul 2004 A1
20040162732 Rahim et al. Aug 2004 A1
20040172535 Jakobsson Sep 2004 A1
20040177045 Brown Sep 2004 A1
20050043997 Sohata et al. Feb 2005 A1
20050080747 Anderson et al. Apr 2005 A1
20050086160 Wong et al. Apr 2005 A1
20050086177 Anderson et al. Apr 2005 A1
20050116026 Burger et al. Jun 2005 A1
20050119940 Concilio et al. Jun 2005 A1
20050154643 Doan et al. Jul 2005 A1
20050228959 D'Albore et al. Oct 2005 A1
20060000900 Fernandes et al. Jan 2006 A1
20060037073 Juels et al. Feb 2006 A1
20060041759 Kaliski et al. Feb 2006 A1
20060049256 von Mueller Mar 2006 A1
20060085328 Cohen et al. Apr 2006 A1
20060091223 Zellner May 2006 A1
20060161435 Atef et al. Jul 2006 A1
20060163353 Moulette et al. Jul 2006 A1
20060174104 Crichton et al. Aug 2006 A1
20060196931 Holtmanns et al. Sep 2006 A1
20060256961 Brainard et al. Nov 2006 A1
20070034700 Poidomani et al. Feb 2007 A1
20070114274 Gibbs et al. May 2007 A1
20070124321 Szydlo May 2007 A1
20070136211 Brown et al. Jun 2007 A1
20070152070 D'Albore Jul 2007 A1
20070152072 Frallicciardi et al. Jul 2007 A1
20070153487 Frallicciardi et al. Jul 2007 A1
20070174614 Duane et al. Jul 2007 A1
20070192249 Biffle et al. Aug 2007 A1
20070241183 Brown et al. Oct 2007 A1
20070241201 Brown et al. Oct 2007 A1
20070256123 Duane et al. Nov 2007 A1
20070291753 Romano Dec 2007 A1
20080005510 Sepe et al. Jan 2008 A1
20080008322 Fontana et al. Jan 2008 A1
20080010675 Massascusa et al. Jan 2008 A1
20080016351 Fontana et al. Jan 2008 A1
20080019507 Fontana et al. Jan 2008 A1
20080028447 O'Malley et al. Jan 2008 A1
20080040271 Hammad et al. Feb 2008 A1
20080040276 Hammad et al. Feb 2008 A1
20080058016 Di Maggio et al. Mar 2008 A1
20080059379 Ramaci et al. Mar 2008 A1
20080096326 Reed Apr 2008 A1
20080121726 Brady May 2008 A1
20080126398 Cimino May 2008 A1
20080128515 Di Iorio Jun 2008 A1
20080148394 Poidomani et al. Jun 2008 A1
20080201264 Brown et al. Aug 2008 A1
20080209550 Di Iorio Aug 2008 A1
20080288699 Chichierchia Nov 2008 A1
20080294930 Varone et al. Nov 2008 A1
20080302877 Musella et al. Dec 2008 A1
20090013122 Sepe et al. Jan 2009 A1
20090036147 Romano Feb 2009 A1
20090046522 Sepe et al. Feb 2009 A1
20090108064 Fernandes et al. Apr 2009 A1
20090150295 Hatch et al. Jun 2009 A1
20090152365 Li et al. Jun 2009 A1
20090159667 Mullen Jun 2009 A1
20090159708 Mullen et al. Jun 2009 A1
20090159713 Mullen et al. Jun 2009 A1
20090242648 Di Sirio et al. Oct 2009 A1
20090244858 Di Sirio et al. Oct 2009 A1
20090253460 Varone et al. Oct 2009 A1
20090255996 Brown et al. Oct 2009 A1
20090290704 Cimino Nov 2009 A1
20090303885 Longo Dec 2009 A1
20100084476 Zellner et al. Apr 2010 A1
20100270373 Poidomani Oct 2010 A1
20120205443 Routhenstein Aug 2012 A1
Foreign Referenced Citations (8)
Number Date Country
05210770 Aug 1993 JP
WO9852735 Nov 1998 WO
WO0247019 Jun 2002 WO
WO06066322 Jun 2006 WO
WO06080929 Aug 2006 WO
WO06105092 Oct 2006 WO
WO06116772 Nov 2006 WO
WO08064403 Jun 2008 WO
Non-Patent Literature Citations (6)
Entry
U.S. Appl. No. 60/594,300, Poidomani et al.
U.S. Appl. No. 60/675,388, Poidomani et al.
The Bank Credit Card Business. Second Edition, American Bankers Association, Washington, D.C., 1996.
A Day in the Life of a Flux Reversal. http:-- www.phrack-org-issues.html?issue=37&id=6#article. As viewed on Apr. 12, 2010.
Dynamic Virtual Credit Card Nos. http:-- homes.cerias.purdue.edu-˜jtli-paper-fc07.pdf. As viewed on Apr. 12, 2010.
English translation of JP 05210770 A.
Provisional Applications (1)
Number Date Country
61250636 Oct 2009 US
Continuations (1)
Number Date Country
Parent 12902254 Oct 2010 US
Child 14243009 US