Information
-
Patent Grant
-
6402212
-
Patent Number
6,402,212
-
Date Filed
Wednesday, November 1, 200024 years ago
-
Date Issued
Tuesday, June 11, 200222 years ago
-
Inventors
-
-
Examiners
Agents
-
CPC
-
US Classifications
Field of Search
US
- 294 655
- 209 215
- 209 228
- 209 229
- 414 439
- 414 440
- 335 285
- 335 291
- 335 293
-
International Classifications
-
Abstract
A magnetic sweeper includes a mounting frame with left and right side walls, a rotating shaft with ends journalled in the left and right side walls, and a cylindrical body rotated with and surrounding the rotating shaft. A plurality of permanent magnets are disposed in a circumferential wall of the cylindrical body and define uppermost and lowermost magnetic linear limits. A guiding member, formed from a non-magnetic material, is secured to the left and right side walls, and includes a major wall with leading and tailing ends that are respectively spaced non-equidistantly from the uppermost and lowermost magnetic linear limits. A collecting member is disposed downstream of and below the uppermost magnetic linear limit for receiving magnetic metal objects captured by means of the permanent magnets. A mounting axle is disposed on the mounting frame and is spaced apart from the rotating shaft for mounting of a wheel member. A coupling member is provided to transmit rolling movement of the wheel member to the rotating shaft for rotating the cylindrical body.
Description
BACKGROUND OF THE INVENTION
1. Field of the Invention
The invention relates to a magnetic sweeper for picking up magnetic metal objects scattered on a surface, more particularly to a magnetic sweeper that is simple in construction, and that is easy to operate.
2. Description of the Related Art
Magnetic metal objects, such as nails, nuts, screws, springs, studs, clips, etc., are likely to drop to the floor when in use. In a clean and small space, they can be picked up with bare hands with relative ease. However, it is troublesome to remove such metal objects from a spacious area, such as a yard, a lawn, a work site, and the beach, or small and narrow spaces, such as the ground beneath a car's chassis. There is available a type of magnetic sweeper, such as that shown in
FIG. 1
, for removing magnetic metal objects from a surface. The magnetic sweeper as shown includes a suction disk
1
, a magnet
2
adhered to a bottom side of the suction disk
1
, and a handle
3
extending upwardly from a top side of the suction disk
1
. In use, the magnetic sweeper is moved along the surface by means of the handle
3
, and magnetic metal objects on the surface will be captured by means of the magnetic force of the magnet
2
.
A major drawback associated with the above-described magnetic sweeper is that, after a certain amount of metal objects are captured by the magnet
2
, the user has to remove them from the magnet
2
one by one, which is very troublesome. Moreover, the user may be pricked by pointed ends of the captured metal objects. In addition, due to the length of the handle
3
, the above-described magnetic sweeper cannot access places of a small height. Besides, the magnetic sweeper is bulky and is hence inconvenient to maneuver.
U.S. Pat. No. 4,407,038 discloses a magnetic sweeper that includes a main body member having end walls
16
on which wheels
26
are pivotally mounted. The magnetic sweeper disclosed therein permits relatively easy operation. However, it is inconvenient to remove metallic objects captured by magnets
42
.
U.S. Pat. No. 5,285,904 teaches a magnetic sweeper including a catcher member
34
which is manually removable to permit metallic objects picked up by magnetic attraction and held against the catcher member
34
to fall away and into a receptacle for discard. However, the user's hand maybe pricked or cut by pointed ends of the metallic objects when removing the catcher member
34
.
SUMMARY OF THE INVENTION
Therefore, the main object of the present invention is to provide a magnetic sweeper that is simple and easy to construct and assemble, and that overcomes the drawbacks associated with the prior art.
Accordingly, a magnetic sweeper of this invention is adapted to be rolled over a surface to pick up magnetic metal objects scattered thereon. The magnetic sweeper includes a mounting frame, a rotating shaft, a cylindrical body, a plurality of magnetically attracting members, a guiding member, a collecting member, a mounting axle, a wheel member, and a coupling member. The mounting frame has left and right side walls spaced apart from each other in an axial direction. The rotating shaft defines an axis, and has left and right ends that are disposed to be respectively journalled in and to extend outboard to the left and right side walls. The cylindrical body is mounted to be rotated with the rotating shaft, and has an outer circumferential wall which surrounds the rotating shaft and which defines a rotating path when the cylindrical body is rotated with the rotating shaft. The magnetically attracting members are disposed in the outer circumferential wall, and are angularly displaced from one another and around the rotating shaft so as to form uppermost and lowermost magnetic linear limits on the rotating path. The uppermost and lowermost magnetic linear limits are diametrically spaced from each other relative to the axis. The guiding member is made of a nonmagnetic material, and includes left and right lateral edges, and a major wall. The left and right lateral edges are opposite to each other in the axial direction and are secured respectively to the left and right sidewalls. The major wall is interposed between the left and right lateral edges, and extends in a transverse direction relative to the axial direction to define leading and tailing ends and an intermediate portion interposed therebetween. The major wall is configured to have a profile such that the leading and tailing ends are respectively spaced outwardly and non-equidistantly from the uppermost and lowermost magnetic linear limits. As such, the magnetic metal objects captured by means of magnetic force at the lowermost magnetic linear limit and adhered to the tailing end slide over the intermediate portion by rotation of the cylindrical body, and fall down by virtue of their own weight once the magnetic metal objects proceed beyond the uppermost magnetic linear limit where the magnetic force is weaker than gravity. The collecting member is disposed downstream of and below the uppermost magnetic linear limit to receive the magnetic metal objects that drop thereinto. The mounting axle is disposed on the mounting frame to extend in the axial direction, and is spaced apart from the rotating shaft. The wheel member is rotatably mounted on the mounting axle and is adapted to roll over the surface. The coupling member is disposed to transmit rolling movement of the wheel member to one of the left and right ends of the rotating shaft so as to rotate the cylindrical body.
BRIEF DESCRIPTION OF THE DRAWINGS
Other features and advantages of the present invention will become apparent in the following detailed description of the preferred embodiment with reference to the accompanying drawings, of which:
FIG. 1
is a perspective view of a conventional magnetic sweeper;
FIG. 2
is an exploded perspective view of the preferred embodiment of a magnetic sweeper according to the invention;
FIG. 3
is an assembled perspective view of the preferred embodiment;
FIG. 4
is a fragmentary top sectional view of the preferred embodiment;
FIG. 5
is a side sectional view illustrating operation of the preferred embodiment; and
FIG. 6
illustrates a modified embodiment of a magnetic sweeper according to the present invention in a state of use.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
Before the present invention is described in greater detail, it should be noted that like elements are denoted by the same reference numerals throughout the disclosure.
Referring to
FIGS. 2
,
3
and
4
, the preferred embodiment of a magnetic sweeper according to the present invention is adapted to be rolled over a surface to pick up magnetic metal objects scattered thereon. As shown, the magnetic sweeper includes a mounting frame
19
, a rotating shaft
22
, a cylindrical body
20
, a plurality of magnetically attracting members
213
, a guiding member
15
, a collecting member
12
, a mounting axle
30
, a wheel member
40
, and a coupling member.
The mounting frame
19
has left and right side walls
191
spaced apart from each other in an axial direction. Each of the left and right side walls
191
includes an inner peripheral flange
192
that defines an upper notch
193
, and an annular block
194
projecting from an inner side thereof and provided with a through shaft hole
195
.
The rotating shaft
22
defines an axis, and has left and right ends disposed to be respectively journalled in and to extend outboard to the left and right side walls
191
of the mounting frame
19
. In this embodiment, the rotating shaft
22
is a hexagonal cross-sectioned rod formed with a retaining groove at either end thereof.
The cylindrical body
20
is mounted to be rotated with the rotating shaft
22
, and has an outer circumferential wall
211
which surrounds the rotating shaft
22
and which defines a rotating path when the cylindrical body
20
is rotated with the rotating shaft
22
. In this embodiment, the cylindrical body
20
includes a plurality of sections
21
. Each of the sections
21
is provided with a central hexagonal hole
214
for extension of the rotating shaft
22
, and includes a circumferential wall
211
provided with at least one recess
212
. Preferably, the recesses
212
in the sections
21
are angularly displaced from one another.
The magnetically attracting members
213
, preferably permanent magnets, are respectively disposed in the recesses
212
of the sections
21
, and are angularly displaced from one another around the rotating shaft
22
so as to form uppermost and lowermost magnetic linear limits
215
,
216
(see
FIG. 5
) on the rotating path, and to provide a large magnetic surface on the cylindrical body
20
. The uppermost and lowermost magnetic linear limits
215
,
216
are diametrically spaced from each other relative to the axis of the rotating shaft
22
.
The guiding member
15
is made of a nonmagnetic material, such as aluminum or plastic, and includes left and right lateral edges
153
,
152
, and a major wall
151
. The left and right lateral edges
153
,
152
are opposite to each other in the axial direction and are secured respectively to the left and right side walls
191
. The major wall
151
is interposed between the left and right lateral edges
153
,
152
, and extends in a transverse direction relative to the axial direction to form leading and tailing ends
155
,
154
, and an intermediate portion
156
interposed therebetween. The major wall
151
is configured to have a profile such that the leading and tailing ends
155
,
154
are respectively spaced outwardly and non-equidistantly from the uppermost and lowermost magnetic linear limits
215
,
216
(see FIG.
5
).
The collecting member
12
is disposed downstream of and below the uppermost magnetic linear limit
215
for receiving the magnetic metal objects that drop from the major wall
152
. In this embodiment, the collecting member
12
includes a bottom wall
121
and an upright wall
122
with a top edge provided with axially extending threaded holes
18
. The collecting member
12
and the guiding member
15
are integrally formed with a barrier wall
13
interposed therebetween. The collecting member
12
and the barrier wall
13
cooperatively define a top opening for access of the magnetic metal objects, and two side openings. The barrier wall
13
and the major wall
151
cooperatively define an inner annular bearing surface
14
, and left and right annular edges at opposite sides thereof. The inner annular bearing surface
14
surrounds the outer circumferential wall
211
and accommodates rotation of the cylindrical body
20
thereon. The barrier wall
13
is of such a dimension as to cut off the magnetic force at the cylindrical body
20
so that the magnetic force cannot affect the magnetic metal objects collected in the collecting member
12
. The barrier wall
13
has a top edge forming a barrier portion
16
that is oriented towards the collecting member
12
, and a lower portion formed with an axially extending axle engaging hole
17
. During assembly, the left and right side walls
191
of the mounting frame
19
are mounted on left and right ends of the collecting member
12
by means of screws extending into the threaded holes
18
so as to close the side openings and to confine a receiving space among the collecting member
12
, the barrier wall
13
, and the mounting frame
19
, with the annular blocks
194
engaging the left and right annular edges.
The mounting axle
30
is disposed on the mounting frame
19
, and extends in the axial direction through corresponding holes in the left and right side walls
191
and the axle engaging hole
17
in the lower portion of the barrier wall
13
such that the mounting axle
30
is spaced apart from the rotating shaft
22
. The mounting axle
30
includes left and right anchored ends, which are journalled in and which extend outboard to the left and right side walls
191
, respectively.
The wheel member
40
is rotatably mounted on the mounting axle
30
, is adapted to roll over the surface, and is disposed to space the tailing end
154
apart from the surface. In this embodiment, the wheel member
40
includes left and right wheel bodies
40
that are respectively and rotatably mounted on the left and right anchored ends of the mounting axle
30
outboard to the left and right side walls
191
of the mounting frame
19
.
The coupling member is disposed to transmit rolling movement of the wheel member
40
to one of the left and right ends of the rotating shaft
22
so as to rotate the cylindrical body
20
. In this embodiment, the coupling member includes two cogwheels
41
and two pinions
23
. Each of the cogwheels
41
is disposed inboard to and is rotated with a respective one of the left and right wheel bodies
40
. Each of the pinions
23
is mounted outboard to one of the left and right side walls
191
to be rotated with a respective one of the left and right ends of the rotating shaft
22
, and is disposed to mesh with the respective one of the cogwheels
41
so as to be driven thereby. In addition, each of the pinions
23
is provided with a hexagonal through hole
231
for extension of the rotating shaft
22
, and is secured on the rotating shaft
22
by means of a retaining ring
24
that engages the retaining groove in the corresponding end of the rotating shaft
22
. An annular portion
232
projects from an inner side of each of the pinions
23
to be sleeved over by an annular ring
233
. The annular ring
233
is fitted in the shaft hole
195
. As the pinions
23
mesh with the cogwheels
41
and are coaxially mounted with the sections
21
on the rotating shaft
22
, when the wheel bodies
40
are rotated in one direction, the pinions
23
will turn in an opposite direction.
Alternatively, the mounting axle
30
can be coaxially mounted to be coaxial with the rotating shaft
22
, and the coupling member is interposed between and is integrally formed with the rotating shaft
22
and the mounting axle
30
in the axial direction so as to transmit rolling movement of the wheel member
40
to one of the left and right ends of the rotating shaft
22
.
The magnetic sweeper further includes a handle
50
secured to the mounting frame
19
for grasping by a user. In this embodiment, the handle
50
includes a generally U-shaped frame
51
and a grip portion
52
. The frame
51
has two ends mounted pivotally and respectively on the left and right anchored ends of the mounting axle
30
outboard to the wheel bodies
40
. In use, the user can grip the handle
50
and move the wheel member
40
along the surface so as to rotate the cylindrical body
20
.
With reference to
FIG. 5
, when the magnetic sweeper is pulled or pushed along a surface on which magnetic metal objects are scattered so that the wheel bodies
40
rotate in one direction, the rotating shaft
22
and the sections
21
are brought to rotate in an opposite direction. The magnetic metal objects proximate to the lowermost magnetic linear limit
216
are drawn to the tailing end
154
and slide over the intermediate portion
156
by rotation of the sections
21
. The magnetic metal objects will fall into the receiving space of the collecting member
12
by virtue of their own weight once they proceed beyond the uppermost magnetic linear limit
215
and the barrier portion
16
where the magnetic force is weaker than gravity. Due to the thickness of the barrier wall
13
and the arrangement of the barrier portion
16
, magnetic metal objects accumulated in the collecting member
12
will not be affected by the magnetic force of the magnetically attracting members
23
in the sections
21
or drawn upwardly to the uppermost magnetic linear limit
215
even if the magnetic sweeper is thereafter pulled or pushed in an opposite direction. As such, the magnetic sweeper according to this embodiment can be conveniently used to remove unwanted magnetic metal objects from a spacious or small and narrow space. In addition, the configuration of the notches
193
facilitates pouring out of the collected magnetic metal objects from the collecting member
12
.
FIG. 6
shows a modified and miniaturized embodiment of the magnetic sweeper of the present invention. This embodiment is adapted for sweeping a table or desk surface, and is different from the previous embodiment in that the handle
50
in the previous embodiment is substituted by a grip portion
19
′ that extends integrally and outwardly from an upright portion of a collecting member
12
′.
While the present invention has been described in connection with what is considered the most practical and preferred embodiments, it is understood that this invention is not limited to the disclosed embodiments but is intended to cover various arrangements included within the spirit and scope of the broadest interpretation so as to encompass all such modifications and equivalent arrangements.
Claims
- 1. A magnetic sweeper adapted to be rolled over a surface to pick up magnetic metal objects scattered thereon, said magnetic sweeper comprising:a mounting frame having left and right side walls spaced apart from each other in an axial direction; a rotating shaft defining an axis and having left and right ends that are disposed to be respectively journalled in and to extend outboard to said left and right side walls; a cylindrical body mounted to be rotated with said rotating shaft and having an outer circumferential wall which surrounds said rotating shaft and which defines a rotating path when said cylindrical body is rotated with said rotating shaft; a plurality of magnetically attracting members disposed in said outer circumferential wall and angularly displaced from one another and around said rotating shaft so as to form uppermost and lowermost magnetic linear limits on said rotating path, said uppermost and lowermost magnetic linear limits being diametrically spaced from each other relative to said axis; a guiding member made of a nonmagnetic material and including left and right lateral edges opposite to each other in the axial direction and secured respectively to said left and right side walls, and a major wall interposed between said left and right lateral edges, and extending in a transverse direction relative to the axial direction to define leading and tailing ends and an intermediate portion interposed therebetween, said major wall being configured to have a profile such that said leading and tailing ends are respectively spaced outwardly and non-equidistantly from said uppermost and lowermost magnetic linear limits, and such that the magnetic metal objects captured by means of magnetic force at said lowermost magnetic linear limit and adhered to said tailing end slide over said intermediate portion by rotation of said cylindrical body and fall down by virtue of their own weight once the magnetic metal objects proceed beyond said uppermost magnetic linear limit where the magnetic force is weaker than gravity; a collecting member disposed downstream of and below said uppermost magnetic linear limit to receive the magnetic metal objects that drop thereinto; a mounting axle disposed on said mounting frame, extending in the axial direction, and spaced apart from said rotating shaft; a wheel member rotatably mounted on said mounting axle and adapted to roll over the surface; and a coupling member disposed to transmit rolling movement of said wheel member to one of said left and right ends of said rotating shaft so as to rotate said cylindrical body.
- 2. A magnetic sweeper according to claim 1, wherein said wheel member is disposed to space said tailing end apart from the surface.
- 3. A magnetic sweeper according to claim 2, wherein said mounting axle includes left and right anchored ends respectively journalled in and extending outboard to said left and right side walls, said wheel member including left and right wheel bodies respectively and rotatably mounted on said left and right anchored ends.
- 4. A magnetic sweeper according to claim 3, wherein said coupling member includes a cogwheel disposed inboard to and rotated with a respective one of said left and right wheel bodies, and a pinion mounted to be rotated with a respective one of said left and right ends, and disposed to mesh with said cogwheel so as to be driven thereby.
- 5. A magnetic sweeper according to claim 4, wherein said guiding member and said collecting member are integrally formed with a barrier wall interposed therebetween, said barrier wall and said major wall cooperatively defining an inner annular bearing surface that surrounds said outer circumferential wall and that accommodates rotation of said cylindrical body thereon.
- 6. A magnetic sweeper according to claim 5, wherein said barrier wall is of such a dimension as to cut off the magnetic force at said cylindrical body so as not to affect the magnetic metal objects collected in said collecting member.
- 7. A magnetic sweeper according to claim 6, further comprising a handle secured to said mounting frame for facilitating movement of said wheel member across the surface so as to rotate said cylindrical body.
US Referenced Citations (7)