Magnetic tape, magnetic tape cartridge, and magnetic tape apparatus

Information

  • Patent Grant
  • 11430478
  • Patent Number
    11,430,478
  • Date Filed
    Thursday, December 26, 2019
    4 years ago
  • Date Issued
    Tuesday, August 30, 2022
    a year ago
Abstract
Provided are a magnetic tape including: a non-magnetic support; a magnetic layer including ferromagnetic powder and a binding agent on one surface side of the non-magnetic support; and a back coating layer including non-magnetic powder and a binding agent on the other surface side of the non-magnetic support, in which an isoelectric point of a surface zeta potential of the magnetic layer is equal to or greater than 5.5, and an isoelectric point of a surface zeta potential of the back coating layer is equal to or greater than 4.5, a magnetic tape cartridge, and a magnetic tape apparatus including this magnetic tape.
Description
CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims priority under 35 U.S.C 119 to Japanese Patent Application No. 2018-246873 filed on Dec. 28, 2018. The above application is hereby expressly incorporated by reference, in its entirety, into the present application.


BACKGROUND OF THE INVENTION
1. Field of the Invention

The present invention relates to a magnetic tape, a magnetic tape cartridge, and a magnetic tape apparatus.


2. Description of the Related Art

Magnetic recording media are divided into tape-shaped magnetic recording media and disk-shaped magnetic recording media, and tape-shaped magnetic recording media, that is, magnetic tapes are mainly used for storage such as data back-up.


As the magnetic tapes, a magnetic tape including a back coating layer on a surface side of a non-magnetic support opposite to a surface side provided with a magnetic layer has been disclosed in JP1997-190623A (JP-H09-190623A).


SUMMARY OF THE INVENTION

A magnetic tape is generally accommodated in a magnetic tape cartridge in a state of being wound around a reel. The recording of information on the magnetic tape and the reproducing thereof are generally performed by setting a magnetic tape cartridge in a magnetic tape apparatus called a drive, and causing the magnetic tape to run in the magnetic tape apparatus, and causing a surface of the magnetic tape (surface of a magnetic layer) and a magnetic head to come into contact with each other for sliding.


The magnetic tape is used in a data center in which a temperature and humidity are controlled. In addition, a temperature and humidity of a storage environment before shipping of the magnetic tape cartridge accommodating the magnetic tape are also controlled.


Meanwhile, in the data center, power saving is required for cost reduction. In order to realize the power saving, it is desirable to further alleviate the controlling conditions of a usage environment of the magnetic tape in the data center than current conditions or make the control unnecessary. This viewpoint applies to the storage environment of the magnetic tape cartridge.


However, it is assumed that, in a case where the controlling conditions of the usage environment and/or the storage environment are alleviated or the controlling thereof is not performed, the magnetic tape is exposed to an environmental change due to a change in the weather, a change of the season, and the like. As an aspect of such an environmental change, a temperature change from a high temperature to a low temperature under low humidity is considered. However, from the studies of the inventor, it is determined that, in a magnetic tape including a back coating layer on a surface side of a non-magnetic support opposite to a surface side provided with a magnetic layer, in a case where sliding between a surface of the magnetic tape and a magnetic head is repeated after a temperature change from a high temperature to a low temperature under low humidity, a phenomenon in which electromagnetic conversion characteristics deteriorate occurs.


An aspect of the invention provides for a magnetic tape including a back coating layer on a surface side of a non-magnetic support opposite to a surface side provided with a magnetic layer, in which deterioration of electromagnetic conversion characteristics is hardly caused, even in a case where sliding between a surface of the magnetic tape and a magnetic head is repeated after a temperature change from a high temperature to a low temperature under low humidity.


According to an aspect of the invention, there is provided a magnetic tape comprising: a non-magnetic support; a magnetic layer including ferromagnetic powder and a binding agent on one surface side of the non-magnetic support; and a back coating layer including non-magnetic powder and a binding agent on the other surface side of the non-magnetic support, in which an isoelectric point of a surface zeta potential of the magnetic layer is equal to or greater than 5.5, and an isoelectric point of a surface zeta potential of the back coating layer is equal to or greater than 4.5.


In an aspect, the isoelectric point of the surface zeta potential of the magnetic layer may be 5.5 to 7.0.


In an aspect, the isoelectric point of the surface zeta potential of the back coating layer may be 4.5 to 6.0.


In an aspect, the binding agent of the magnetic layer may be a binding agent including an acidic group.


In an aspect, the binding agent of the back coating layer may be a binding agent including an acidic group.


In an aspect, the acidic group may include at least one kind of acidic group selected from the group consisting of a sulfonic acid group and a salt thereof.


In an aspect, the magnetic tape may further comprise a non-magnetic layer including non-magnetic powder and a binding agent between the non-magnetic support and the magnetic layer.


According to another aspect of the invention, there is provided a magnetic tape cartridge comprising: the magnetic tape described above.


According to still another aspect of the invention, there is provided a magnetic tape apparatus comprising: the magnetic tape described above; and a magnetic head.


According to an aspect of the invention, it is possible to provide a magnetic tape including a non-magnetic support, a magnetic layer on one surface side of the non-magnetic support, and a back coating layer on the other surface side of the non-magnetic support, in which deterioration of electromagnetic conversion characteristics is hardly caused, even in a case where sliding between a surface of the magnetic tape and a magnetic head is repeated after a temperature change from a high temperature to a low temperature under low humidity, a magnetic tape cartridge, and a magnetic tape apparatus including this magnetic tape.







DESCRIPTION OF THE PREFERRED EMBODIMENTS

Magnetic Tape


According to an aspect of the invention, there is provided a magnetic tape comprising: a non-magnetic support; a magnetic layer including ferromagnetic powder and a binding agent on one surface side of the non-magnetic support; and a back coating layer including non-magnetic powder and a binding agent on the other surface side of the non-magnetic support, in which an isoelectric point of a surface zeta potential of the magnetic layer is equal to or greater than 5.5, and an isoelectric point of a surface zeta potential of the back coating layer is equal to or greater than 4.5.


Hereinafter, the magnetic tape will be described more specifically. In the invention and the specification, a “surface of the magnetic layer” is identical to the surface of the magnetic tape on the magnetic layer side, and a “surface of the back coating layer” is identical to the surface of the magnetic tape on the back coating layer side.


Isoelectric Point of Surface Zeta Potential


In the magnetic tape, the isoelectric point of the surface zeta potential of the magnetic layer is equal to or greater than 5.5, and the isoelectric point of the surface zeta potential of the back coating layer is equal to or greater than 4.5. In the invention and the specification, the isoelectric point of the surface zeta potential of each layer is a value of pH, in a case where a surface zeta potential measured by a flow potential method (also referred to as a flow current method) becomes zero. A sample is cut out from the magnetic tape which is a measurement target, and the sample is disposed in a measurement cell so that the surface of a layer which is a target for obtaining the surface zeta potential (that is, surface of magnetic layer or back coating layer) comes into contact with an electrolyte. Pressure in the measurement cell is changed to flow the electrolyte and a flow potential at each pressure is measured, and then, the surface zeta potential is obtained by the following calculation expression.


Calculation Expression






ζ
=


dI
dp

×

η


ɛɛ
0









L
A






[ζ: surface zeta potential, p: pressure, I: flow potential, η: viscosity of electrolyte, ε: relative dielectric constant of electrolyte, ε0: dielectric constant in a vacuum state, L: length of channel (flow path between two electrodes), A: area of cross section of channel]


The pressure is changed in a range of 0 to 400,000 Pa (0 to 400 mbar). The calculation of the surface zeta potential by flowing the electrolyte to the measurement cell and measuring a flow potential is performed by using electrolytes having different pH (from pH of 9 to pH of 3 at interval of approximately 0.5). A total number of measurement points is 13 from the measurement point of pH 9 to the 13th measurement points of pH 3. By doing so, the surface zeta potential of each measurement point of pH is obtained. As pH decreases, the surface zeta potential decreases. Thus, two measurement points at which polarity of the surface zeta potential changes (a change from a positive value to a negative value) may appear, while pH decreases from 9 to 3. In a case where such two measurement points appear, pH, in a case where the surface zeta potential is zero, is obtained by interpolation by using a straight line (linear function) showing a relationship between the surface zeta potential and pH of each of the two measurement points. Meanwhile, in a case where all of the surface zeta potentials obtained during the decrease of pH from 9 to 3 is positive value, pH, in a case where the surface zeta potential is zero, is obtained by extrapolation by using a straight line (linear function) showing a relationship between the surface zeta potential and pH of the 13th measurement point (pH of 3) which is the final measurement point and the 12th measurement point. On the other hand, in a case where all of the surface zeta potentials obtained during the decrease of pH from 9 to 3 is negative value, pH, in a case where the surface zeta potential is zero, is obtained by extrapolation by using a straight line (linear function) showing a relationship between the surface zeta potential and pH of the first measurement point (pH of 9) which is the initial measurement point and the 12th measurement point. By doing so, the value of pH, in a case where the surface zeta potential measured by the flow potential method is zero, is obtained.


The above measurement is performed three times in total at room temperature by using different samples cut out from the same magnetic tape (magnetic tape which is a measurement target), and pH, in a case where the surface zeta potential in each measurement is zero, is obtained. For the viscosity and the relative dielectric constant of the electrolyte, a measurement value at room temperature is used. The room temperature is set as 20° C. to 27° C. Regarding the magnetic layer, an arithmetic mean of three pHs obtained as described above is an isoelectric point of the surface zeta potential of the magnetic layer of the magnetic tape which is a measurement target. In addition, regarding the back coating layer, an arithmetic mean of three pHs obtained as described above is an isoelectric point of the surface zeta potential of the back coating layer of the magnetic tape which is a measurement target. As the electrolyte having pH of 9, an electrolyte obtained by adjusting pH of a KCl aqueous solution having a concentration of 1 mmol/L to 9 by using a KOH aqueous solution having a concentration of 0.1 mol/L is used. As the electrolyte having other pH, an electrolyte obtained by adjusting pH of the electrolyte having pH of 9, which is adjusted as described above, by using an HCl aqueous solution having a concentration of 0.1 mol/L is used.


The isoelectric point of the surface zeta potential measured by the method described above is an isoelectric point obtained regarding the surface of the magnetic layer or the back coating layer. As a result of the intensive studies, the inventor has newly found that, in the magnetic tape including the magnetic layer and the back coating layer, by setting the isoelectric point of the surface zeta potential of the magnetic layer to be equal to or greater than 5.5 and setting the isoelectric point of the surface zeta potential of the back coating layer to be equal to or greater than 4.5, it is possible to suppress deterioration of electromagnetic conversion characteristics caused by repeated sliding between the surface of the magnetic tape and the magnetic head after a temperature change from a high temperature to a low temperature under low humidity. The inventor has surmised that a reason is that the isoelectric point of the surface zeta potential of each of the magnetic layer and the back coating layer being in a region of nearly neutral to basic pH, that is, the isoelectric point of the surface zeta potential of each of the magnetic layer and the back coating layer being in the above range contributes to a reduction of an influence of a precipitate precipitated on the surface of the magnetic layer and/or the surface of the back coating layer by a temperature change from a high temperature to a low temperature under low humidity on electromagnetic conversion characteristics. However, it is merely a surmise.


The isoelectric point of the surface zeta potential of the magnetic layer is equal to or greater than 5.5, from a viewpoint of further suppressing deterioration of the electromagnetic conversion characteristics, is preferably equal to or greater than 5.7, and more preferably equal to or greater than 6.0. As will be described later in detail, the isoelectric point of the surface zeta potential of the magnetic layer can be controlled by the kind of a component used for forming the magnetic layer, a formation step of the magnetic layer, and the like. From a viewpoint of availability of the controlling, the isoelectric point of the surface zeta potential of the magnetic layer is preferably equal to or smaller than 7.0, more preferably equal to or smaller than 6.7, and even more preferably equal to or smaller than 6.5.


The isoelectric point of the surface zeta potential of the back coating layer is equal to or greater than 4.5, from a viewpoint of further suppressing deterioration of the electromagnetic conversion characteristics, is preferably equal to or greater than 4.7, and more preferably equal to or greater than 5.0. In addition, as will be described later in detail, the isoelectric point of the surface zeta potential of the back coating layer can be controlled by the kind of a component used for forming the back coating layer, a formation step of the back coating layer, and the like. From a viewpoint of availability of the controlling, the isoelectric point of the surface zeta potential of the back coating layer is preferably equal to or smaller than 6.0, more preferably equal to or smaller than 5.8, and even more preferably equal to or smaller than 5.5.


Next, the magnetic layer, the back coating layer, and the like of the magnetic tape will be described more specifically.


Magnetic Layer


Ferromagnetic Powder


As the ferromagnetic powder included in the magnetic layer, ferromagnetic powder normally used in the magnetic layer of various magnetic recording media can be used. It is preferable to use ferromagnetic powder having a small average particle size, from a viewpoint of improvement of recording density of the magnetic tape. From this viewpoint, ferromagnetic powder having an average particle size equal to or smaller than 50 nm is preferably used, and ferromagnetic powder having an average particle size equal to or smaller than 40 nm is more preferably used, as the ferromagnetic powder. Meanwhile, the average particle size of the ferromagnetic powder is preferably equal to or greater than 5 nm, more preferably equal to or greater than 10 nm, even more preferably equal to or greater than 15 nm, and still preferably equal to or greater than 20 nm, from a viewpoint of stability of magnetization.


As a preferred specific example of the ferromagnetic powder, hexagonal ferrite powder can be used. The hexagonal ferrite powder may be barium ferrite, strontium ferrite, calcium ferrite, lead ferrite, or the like, or may be a mixed crystal of two or more kinds of these. For details of the hexagonal ferrite powder, descriptions disclosed in paragraphs 0012 to 0030 of JP2011-225417A, paragraphs 0134 to 0136 of JP2011-216149A, paragraphs 0013 to 0030 of JP2012-204726A, and paragraphs 0029 to 0084 of JP2015-127985A can be referred to, for example.


As a preferred specific example of the ferromagnetic powder, metal powder can also be used. For details of the metal powder, descriptions disclosed in paragraphs 0137 to 0141 of JP2011-216149A and paragraphs 0009 to 0023 of JP2005-251351A can be referred to, for example.


As a preferable specific example of the ferromagnetic powder, ε-iron oxide powder can also be used. As a manufacturing method of the ε-iron oxide powder, a manufacturing method from a goethite, a reverse micelle method, and the like are known. All of the manufacturing methods are well known. In addition, regarding a method of manufacturing the ε-iron oxide powder in which a part of Fe is substituted with substitutional atoms such as Ga, Co, Ti, Al, or Rh, a description disclosed in J. Jpn. Soc. Powder Metallurgy Vol. 61 Supplement, No. S1, pp. S280 to S284, J. Mater. Chem. C, 2013, 1, pp. 5200 to 5206 can be referred, for example. However, the manufacturing method of the ε-iron oxide powder capable of being used as the ferromagnetic powder in the magnetic layer is not limited.


In the invention and the specification, average particle sizes of various powder such as the ferromagnetic powder are values measured by the following method with a transmission electron microscope, unless otherwise noted.


The powder is imaged at a magnification ratio of 100,000 with a transmission electron microscope, the image is printed on photographic printing paper so as to have the total magnification of 500,000 to obtain an image of particles configuring the powder. A target particle is selected from the obtained image of particles, an outline of the particle is traced with a digitizer, and a size of the particle (primary particle) is measured. The primary particle is an independent particle which is not aggregated.


The measurement described above is performed regarding 500 particles randomly extracted. An arithmetic mean of the particle size of 500 particles obtained as described above is an average particle size of the powder. As the transmission electron microscope, a transmission electron microscope H-9000 manufactured by Hitachi, Ltd. can be used, for example. In addition, the measurement of the particle size can be performed by well-known image analysis software, for example, image analysis software KS-400 manufactured by Carl Zeiss. The average particle size shown in examples which will be described later is a value measured by using transmission electron microscope H-9000 manufactured by Hitachi, Ltd. as the transmission electron microscope, and image analysis software KS-400 manufactured by Carl Zeiss as the image analysis software, unless otherwise noted. In the invention and the specification, the powder means an aggregate of a plurality of particles. For example, the ferromagnetic powder means an aggregate of a plurality of ferromagnetic particles. The aggregate of the plurality of particles not only includes an aspect in which particles configuring the aggregate are directly in contact with each other, but also includes an aspect in which a binding agent or an additive which will be described later is interposed between the particles. A term “particles” is also used for describing the powder.


As a method of collecting sample powder from the magnetic tape in order to measure the particle size, a method disclosed in a paragraph 0015 of JP2011-048878A can be used, for example.


In the invention and the specification, unless otherwise noted, (1) in a case where the shape of the particle observed in the particle image described above is a needle shape, a fusiform shape, or a columnar shape (here, a height is greater than a maximum long diameter of a bottom surface), the size (particle size) of the particles configuring the powder is shown as a length of a long axis configuring the particle, that is, a long axis length, (2) in a case where the shape of the particle is a planar shape or a columnar shape (here, a thickness or a height is smaller than a maximum long diameter of a plate surface or a bottom surface), the particle size is shown as a maximum long diameter of the plate surface or the bottom surface, and (3) in a case where the shape of the particle is a sphere shape, a polyhedron shape, or an unspecified shape, and the long axis configuring the particles cannot be specified from the shape, the particle size is shown as an equivalent circle diameter. The equivalent circle diameter is a value obtained by a circle projection method.


In addition, regarding an average acicular ratio of the powder, a length of a short axis, that is, a short axis length of the particles is measured in the measurement described above, a value of (long axis length/short axis length) of each particle is obtained, and an arithmetic mean of the values obtained regarding 500 particles is calculated. Here, unless otherwise noted, in a case of (1), the short axis length as the definition of the particle size is a length of a short axis configuring the particle, in a case of (2), the short axis length is a thickness or a height, and in a case of (3), the long axis and the short axis are not distinguished, thus, the value of (long axis length/short axis length) is assumed as 1, for convenience.


In addition, unless otherwise noted, in a case where the shape of the particle is specified, for example, in a case of definition of the particle size (1), the average particle size is an average long axis length, and in a case of the definition (2), the average particle size is an average plate diameter. In a case of the definition (3), the average particle size is an average diameter (also referred to as an average particle diameter).


The content (filling percentage) of the ferromagnetic powder of the magnetic layer is preferably 50% to 90% by mass and more preferably 60% to 90% by mass. The components other than the ferromagnetic powder of the magnetic layer are at least a binding agent and one or more kinds of additives may be further randomly included. A high filling percentage of the ferromagnetic powder in the magnetic layer is preferable from a viewpoint of improvement recording density.


Binding Agent and Curing Agent


The magnetic tape is a coating type magnetic tape and includes a binding agent in the magnetic layer. The binding agent is one or more kinds of resin. As the binding agent, various resins normally used as a binding agent of a coating type magnetic recording medium can be used. For example, as the binding agent, a resin selected from a polyurethane resin, a polyester resin, a polyamide resin, a vinyl chloride resin, an acrylic resin obtained by copolymerizing styrene, acrylonitrile, or methyl methacrylate, a cellulose resin such as nitrocellulose, an epoxy resin, a phenoxy resin, and a polyvinylalkylal resin such as polyvinyl acetal or polyvinyl butyral can be used alone or a plurality of resins can be mixed with each other to be used. Among these, a polyurethane resin, an acrylic resin, a cellulose resin, and a vinyl chloride resin are preferable. These resins may be homopolymers or copolymers. These resins can be used as the binding agent even in the non-magnetic layer and/or a back coating layer which will be described later.


For the binding agent described above, description disclosed in paragraphs 0028 to 0031 of JP2010-024113A can be referred to. An average molecular weight of the resin used as the binding agent can be, for example, 10,000 to 200,000 as a weight-average molecular weight. The weight-average molecular weight of the invention and the specification is a value obtained by performing polystyrene conversion of a value measured by gel permeation chromatography (GPC) under the following measurement conditions. The weight-average molecular weight of the binding agent shown in examples which will be described later is a value obtained by performing polystyrene conversion of a value measured under the following measurement conditions.


GPC device: HLC-8120 (manufactured by Tosoh Corporation)


Column: TSK gel Multipore HXL-M (manufactured by Tosoh Corporation, 7.8 mmID (inner diameter)×30.0 cm)


Eluent: Tetrahydrofuran (THF)


In an aspect, as the binding agent, a binding agent including an acidic group can be used. The acidic group of the invention and the specification is used as a meaning including a form of a group capable of emitting H+ in water or a solvent including water (aqueous solvent) to be dissociated into anions and a salt thereof. As specific examples of the acidic group, a form of a sulfonic acid group, a sulfate group, a carboxyl group, a phosphate group, and a salt thereof can be used. For example, a form of a salt of a sulfonic acid group (—SO3H) means a group represented by —SO3M, where M represents a group representing an atom (for example, alkali metal atom or the like) which may be cations in water or in an aqueous solvent. The same applies to the form of each of salts of the various groups described above. As an example of the binding agent including the acidic group, a resin including at least one kind of acidic group selected from the group consisting of a sulfonic acid group and a salt thereof (for example, a polyurethane resin or a vinyl chloride resin) can be used. However, the resin included in the magnetic layer is not limited to these resins. In addition, in the binding agent including the acidic group, a content of the acidic group can be, for example, 0.03 to 0.50 meq/g. The unit “eq” represents equivalent, and is a unit that cannot be converted into an SI unit. The content of various functional groups such as the acidic group included in the resin can be obtained by a well-known method in accordance with the kind of the functional group. The amount of the binding agent used in a magnetic layer forming composition can be, for example, 1.0 to 30.0 parts by mass with respect to 100.0 parts by mass of the ferromagnetic powder.


In regards to the controlling of the isoelectric point of the surface zeta potential of the magnetic layer, the inventor has surmised that formation of the magnetic layer so as to decrease the amount of an acidic component present in a surface portion of the magnetic layer contributes to an increase in value of the isoelectric point. In addition, the inventor has surmised that increasing the amount of a basic component present in the surface portion of the magnetic layer also contributes to an increase in value of the isoelectric point. The acidic component is used as a meaning including a form of a component capable of emitting H+ in water or an aqueous solvent to be dissociated into anions and a salt thereof. The basic component is used as a meaning including a form of a component capable of emitting OH in water or an aqueous solvent to be dissociated into cations and a salt thereof. For example, it is considered that, in a case of using the acidic component, a process of, after unevenly distributing the acidic component in a surface portion of a coating layer of the magnetic layer forming composition, decreasing the amount of the acidic component of the surface portion leads to an increase in value of the isoelectric point of the surface zeta potential of the magnetic layer to control the isoelectric point to be equal to or greater than 5.5. For example, the inventor has considered that, in a step of applying a magnetic layer forming composition onto a non-magnetic support directly or through a non-magnetic layer, the applying which is performed in an alternating magnetic field by applying an alternating magnetic field leads to uneven distribution of the acidic component in the surface portion of the coating layer of the magnetic layer forming composition. Furthermore, the inventor has surmised that performing a burnish treatment thereafter contributes to a removal of at least a part of the unevenly distributed acidic component. The burnish treatment is a treatment of rubbing a surface to be treated with a member (for example, an abrasive tape or a grinding tool such as a grinding blade or a grinding wheel). Details of a magnetic layer forming step including the burnish treatment will be described later. As the acidic component, for example, a binding agent including an acidic group can be used.


In addition, a curing agent can also be used together with the resin which can be used as the binding agent. As the curing agent, in an aspect, a thermosetting compound which is a compound in which a curing reaction (crosslinking reaction) proceeds due to heating can be used, and in another aspect, a photocurable compound in which a curing reaction (crosslinking reaction) proceeds due to light irradiation can be used. At least a part of the curing agent is included in the magnetic layer in a state of being reacted (crosslinked) with other components such as the binding agent, by proceeding the curing reaction in the magnetic layer forming step. This point also applies to a layer formed by using a composition, in a case where the composition used for forming the other layer includes the curing agent. The preferred curing agent is a thermosetting compound, polyisocyanate is suitable. For details of the polyisocyanate, descriptions disclosed in paragraphs 0124 and 0125 of JP2011-216149A can be referred to, for example. The amount of the curing agent can be, for example, 0 to 80.0 parts by mass with respect to 100.0 parts by mass of the binding agent in the magnetic layer forming composition, and is preferably 50.0 to 80.0 parts by mass, from a viewpoint of improvement of hardness of the magnetic layer.


Additives


The magnetic layer includes ferromagnetic powder and the binding agent, and may include one or more kinds of additives, if necessary. As the additives, the curing agent described above is used as an example. In addition, examples of the additive included in the magnetic layer include non-magnetic powder (for example, inorganic powder or carbon black), a lubricant, a dispersing agent, a dispersing assistant, an antibacterial agent, an antistatic agent, and an antioxidant. As the non-magnetic powder, non-magnetic powder which can function as an abrasive, non-magnetic powder (for example, non-magnetic colloid particles) which can function as a projection formation agent which forms projections suitably protruded from the surface of the magnetic layer, and the like can be used. An average particle size of colloidal silica (silica colloid particles) shown in the examples which will be described later is a value obtained by a method disclosed in a measurement method of an average particle diameter in a paragraph 0015 of JP2011-048878A. As the additives, a commercially available product can be suitably selected according to the desired properties or manufactured by a well-known method, and can be used with any amount. As an example of the additive which can be used in the magnetic layer including the abrasive, a dispersing agent disclosed in paragraphs 0012 to 0022 of JP2013-131285A can be used as a dispersing agent for improving dispersibility of the abrasive. For example, for the lubricant, descriptions disclosed in paragraphs 0030 to 0033, 0035, and 0036 of JP2016-126817A can be referred to. The non-magnetic layer may include a lubricant. For the lubricant which may be included in the non-magnetic layer, descriptions disclosed in paragraphs 0030, 0031, 0034, 0035, and 0036 of JP2016-126817A can be referred to. For the dispersing agent, a description disclosed in paragraphs 0061 and 0071 of JP2012-133837A can be referred to. The dispersing agent may be included in the non-magnetic layer. For the dispersing agent which can be included in the non-magnetic layer, a description disclosed in a paragraph 0061 of JP2012-133837A can be referred to.


The magnetic layer described above can be provided on the surface of the non-magnetic support directly or indirectly through the non-magnetic layer.


Back Coating Layer


The back coating layer at least includes non-magnetic powder and a binding agent. As the non-magnetic powder included in the back coating layer, any one or both of carbon black and non-magnetic powder other than carbon black can be used. As the non-magnetic powder other than carbon black, powder of an inorganic substance (inorganic powder) can be used. Specific examples thereof include inorganic powder of iron oxide such as α-iron oxide, titanium oxide such as titanium dioxide, cerium oxide, tin oxide, tungsten oxide, ZnO, ZrO2, SiO2, Cr2O3, α-alumina, β-alumina, γ-alumina, goethite, corundum, silicon nitride, titanium carbide, magnesium oxide, boron nitride, molybdenum disulfide, copper oxide, MgCO3, CaCO3, BaCO3, SrCO3, BaSO4, and silicon carbide. For the non-magnetic powder included in the back coating layer, the description regarding the non-magnetic powder included in the non-magnetic layer which will be described later can also be referred to.


A shape of the non-magnetic powder other than carbon black may be any of a needle shape, a sphere shape, a polyhedron shape, and a planar shape. An average particle size of the non-magnetic powder is preferably 0.01 to 0.20 μm and more preferably 0.01 to 0.15 μm. In addition, a specific surface area of the non-magnetic powder obtained by a Brunauer-Emmett-Teller (BET) method (BET specific surface area) is preferably 1 to 100 m2/g, more preferably 5 to 70 m2/g, and even more preferably 10 to 65 m2/g. Meanwhile, an average particle size of carbon black is, for example, 5 to 80 nm, preferably 10 to 50 nm, and more preferably 10 to 40 nm. For the content (filling percentage) of the non-magnetic powder in the back coating layer, the description regarding the non-magnetic powder of the non-magnetic layer which will be described later can be referred to.


The back coating layer further includes a binding agent and can randomly include well-known additives. The amount of the binding agent used in a back coating layer forming composition can be, for example, 1.0 to 30.0 parts by mass with respect to 100.0 parts by mass of the non-magnetic powder.


In an aspect, as the binding agent of the back coating layer, a binding agent including an acidic group can be used. For details of the binding agent including the acidic group, the above description can be referred to.


For other details of the binding agent, additives, and the like of the back coating layer, a well-known technique regarding the back coating layer can be applied, and a well-known technique regarding the magnetic layer and/or the non-magnetic layer can be applied. For example, for the back coating layer, descriptions disclosed in paragraphs 0018 to 0020 of JP2006-331625A and page 4, line 65, to page 5, line 38, of U.S. Pat. No. 7,029,774B can be referred to.


In regards to the controlling of the isoelectric point of the surface zeta potential of the back coating layer, the inventor has surmised that formation of the back coating layer so as to decrease amount of an acidic component present in a surface portion of the back coating layer contributes to an increase in value of the isoelectric point. In addition, the inventor has surmised that increasing the amount of a basic component present in the surface portion of the back coating layer also contributes to an increase in value of the isoelectric point. For example, it is considered that, in a case of using the acidic component, a process of, after unevenly distributing the acidic component in a surface portion of a coating layer of a back coating layer forming composition, decreasing the amount of the acidic component of the surface portion leads to an increase in value of the isoelectric point of the surface zeta potential of the back coating layer to control the isoelectric point to be equal to or greater than 4.5. For example, the inventor has considered that, in a step of applying a back coating layer forming composition onto a non-magnetic support, the applying which is performed in an alternating magnetic field by applying an alternating magnetic field leads to uneven distribution of the acidic component in the surface portion of the coating layer of the back coating layer forming composition. Furthermore, the inventor has surmised that performing a burnish treatment thereafter contributes to a removal of at least a part of the unevenly distributed acidic component. Details of a back coating layer forming step including the burnish treatment will be described later. As the acidic component, for example, a binding agent including an acidic group can be used.


Non-Magnetic Layer


Next, the non-magnetic layer will be described. The magnetic tape may include a magnetic layer directly on the surface of the non-magnetic support or may include a magnetic layer on the surface of the non-magnetic support directly or indirectly through the non-magnetic layer including the non-magnetic powder and the binding agent. The non-magnetic powder used in the non-magnetic layer may be inorganic powder or organic powder. In addition, carbon black and the like can be used. Examples of the inorganic powder include powder of metal, metal oxide, metal carbonate, metal sulfate, metal nitride, metal carbide, and metal sulfide. These non-magnetic powder can be purchased as a commercially available product or can be manufactured by a well-known method. For details thereof, descriptions disclosed in paragraphs 0146 to 0150 of JP2011-216149A can be referred to. For carbon black which can be used in the non-magnetic layer, descriptions disclosed in paragraphs 0040 and 0041 of JP2010-024113A can be referred to. The content (filling percentage) of the non-magnetic powder of the non-magnetic layer is preferably 50% to 90% by mass and more preferably 60% to 90% by mass.


In regards to other details of a binding agent or additives of the non-magnetic layer, the well-known technique regarding the non-magnetic layer can be applied. In addition, in regards to the type and the content of the binding agent, and the type and the content of the additive, for example, the well-known technique regarding the magnetic layer can be applied.


In the invention and the specification, the non-magnetic layer also includes a substantially non-magnetic layer including a small amount of ferromagnetic powder as impurities or intentionally, together with the non-magnetic powder. Here, the substantially non-magnetic layer is a layer having a residual magnetic flux density equal to or smaller than 10 mT, a layer having coercivity equal to or smaller than 7.96 kA/m (100 Oe), or a layer having a residual magnetic flux density equal to or smaller than 10 mT and coercivity equal to or smaller than 7.96 kA/m (100 Oe). It is preferable that the non-magnetic layer does not have a residual magnetic flux density and coercivity.


Non-Magnetic Support


Next, the non-magnetic support (hereinafter, also simply referred to as a “support”) will be described. As the non-magnetic support, well-known components such as polyethylene terephthalate, polyethylene naphthalate, polyamide, polyamide imide, and aromatic polyamide subjected to biaxial stretching are used. Among these, polyethylene terephthalate, polyethylene naphthalate, and polyamide are preferable. Corona discharge, plasma treatment, easy-bonding treatment, or heat treatment may be performed with respect to these supports in advance.


Various Thicknesses


A thickness of the non-magnetic support is preferably 3.00 to 20.00 μm, more preferably 3.00 to 10.00 μm, and even more preferably 3.00 to 6.00 μm.


A thickness of the magnetic layer can be optimized according to a saturation magnetization amount of a magnetic head used, a head gap length, a recording signal band, and the like. The thickness of the magnetic layer is normally 0.01 μm to 0.15 μm, and is preferably 0.02 μm to 0.12 μm and more preferably 0.03 μm to 0.10 μm from a viewpoint of realization of high-density recording. The magnetic layer may be at least one layer, or the magnetic layer can be separated into two or more layers having different magnetic properties, and a configuration regarding a well-known multilayered magnetic layer can be applied. A thickness of the magnetic layer which is separated into two or more layers is a total thickness of these layers.


A thickness of the non-magnetic layer is, for example, 0.10 to 1.50 μm and is preferably 0.10 to 1.00 μm.


A thickness of the back coating layer is preferably equal to or smaller than 0.90 μm and more preferably 0.10 to 0.70 μm.


The thicknesses of various layers of the magnetic tape and the non-magnetic support can be acquired by a well-known film thickness measurement method. As an example, a cross section of the magnetic tape in a thickness direction is, for example, exposed by a well-known method of ion beams or microtome, and the exposed cross section is observed with a scanning electron microscope. In the cross section observation, various thicknesses can be acquired as a thickness acquired at one portion of the cross section, or an arithmetic mean of thicknesses acquired at a plurality of portions of two or more portions, for example, two portions which are randomly extracted. In addition, the thickness of each layer may be acquired as a designed thickness calculated according to the manufacturing conditions.


Manufacturing Method of Magnetic Tape


Each composition for forming the magnetic layer, the back coating layer, and the non-magnetic layer which is randomly provided, normally includes a solvent, together with various components described above. As the solvent, various organic solvents generally used for manufacturing a coating type magnetic recording medium can be used. The amount of the solvent in each layer forming composition is not particularly limited, and can be set to be the same as that of each layer forming composition of a typical coating type magnetic recording medium. Steps of preparing the composition for forming each layer generally includes at least a kneading step, a dispersing step, and a mixing step provided before and after these steps, if necessary. Each step may be divided into two or more stages. The components used in the preparation of each layer forming composition may be added at an initial stage or in a middle stage of any step. In addition, each raw material may be separately added in two or more steps.


In order to prepare each layer forming composition, a well-known technique can be used. In the kneading step, an open kneader, a continuous kneader, a pressure kneader, or a kneader having a strong kneading force such as an extruder is preferably used. The details of the kneading processes of these kneaders are disclosed in JP1989-106338A (JP-H01-106338A) and JP1989-079274A (JP-1101-079274A). In addition, in order to disperse each layer forming composition, as a dispersion medium, at least one or more kinds of dispersion beads selected from the group consisting of glass beads and other dispersion beads can be used. As such dispersion beads, zirconia beads, titania beads, and steel beads which are dispersion beads having high specific gravity are suitable. These dispersion beads can be used by optimizing a particle diameter (bead diameter) and a filling percentage. As a disperser, a well-known disperser can be used. Each layer forming composition may be filtered by a well-known method before performing the coating step. The filtering can be performed by using a filter, for example. As the filter used in the filtering, a filter having a hole diameter of 0.01 to 3 μm (for example, filter made of glass fiber or filter made of polypropylene) can be used, for example.


The magnetic layer can be formed by directly applying the magnetic layer forming composition onto the surface of the non-magnetic support and drying or performing multilayer coating with the non-magnetic layer forming composition in order or at the same time and drying. The back coating layer can be formed by applying the back coating layer forming composition onto the surface of the non-magnetic support where the magnetic layer is formed or the surface thereof on a side opposite to the surface where the magnetic layer is to be formed. For details of the coating for forming each layer, a description disclosed in a paragraph 0066 of JP2010-231843A can be referred to.


The coating of the magnetic layer forming composition performed in an alternating magnetic field can contribute to the controlling of the isoelectric point of a surface zeta potential of the magnetic layer to be equal to or greater than 5.5. The inventor has surmised that this is because, an acidic component (for example, the binding agent including an acidic group) is easily unevenly distributed in a surface portion of a coating layer of the magnetic layer forming composition due to the applied alternating magnetic field, and thus, by drying this coating layer, a magnetic layer in which the acidic component is unevenly distributed in the surface portion is obtained. Furthermore, the inventor has surmised that performing a burnish treatment thereafter contributes to a removal of at least a part of the unevenly distributed acidic component to control the isoelectric point of the surface zeta potential of the magnetic layer to be equal to or greater than 5.5.


In addition, the coating of the back coating layer forming composition performed in an alternating magnetic field can contribute to the controlling of the isoelectric point of a surface zeta potential of the back coating layer to be equal to or greater than 4.5. The inventor has surmised that this is because, an acidic component (for example, the binding agent including an acidic group) is easily unevenly distributed in a surface portion of a coating layer of the back coating layer forming composition due to the applied alternating magnetic field, and thus, by drying this coating layer, a back coating layer in which the acidic component is unevenly distributed in the surface portion is obtained. Furthermore, the inventor has surmised that performing a burnish treatment thereafter contributes to a removal of at least a part of the unevenly distributed acidic component to control the isoelectric point of the surface zeta potential of the back coating layer to be equal to or greater than 4.5.


The applying of the alternating magnetic field can be performed by disposing a magnet in a coating device so that the alternating magnetic field is applied vertically to the surface of the coating layer of the magnetic layer forming composition or the back coating layer forming composition. A magnetic field strength of the alternating magnetic field can be, for example, set as approximately 0.05 to 3.00 T. However, there is no limitation to this range. The “vertical” in the invention and the specification does not mean only a vertical direction in the strict sense, but also includes a range of errors allowed in the technical field of the invention. For example, the range of errors means a range of less than ±10° from an exact vertical direction.


The burnish treatment is a treatment of rubbing a surface to be treated with a member (for example, an abrasive tape or a grinding tool such as a grinding blade or a grinding wheel), and can be performed in the same manner as a well-known burnish treatment for manufacturing a coating type magnetic recording medium. The burnish treatment can be preferably carried out by performing one or both of rubbing (polishing) a surface of the coating layer to be treated with an abrasive tape and rubbing (grinding) a surface of the coating layer to be treated with a grinding tool. As the abrasive tape, a commercially available product may be used or an abrasive tape manufactured by a well-known method may be used. As the grinding tool, a well-known grinding blade such as a fixed blade, a diamond wheel, or a rotary blade, a grinding wheel, or the like can be used. In addition, a wiping treatment of wiping off the surface of the coating layer rubbed by the abrasive tape and/or the grinding tool with a wiping material may be performed. For details of the preferred abrasive tape, grinding tool, burnish treatment, and wiping treatment, descriptions disclosed in paragraphs 0034 to 0048 and FIG. 1 of JP1994-052544 (JP-H06-52544A) and examples thereof can be referred to. It is considered that the more the burnish treatment is strengthened, the more the acidic component unevenly distributed in the surface portion of the coating layer of the magnetic layer forming composition or the back coating layer forming composition by performing the applying in an alternating magnetic field can be removed. The burnish treatment can be strengthened as an abrasive having high hardness is used as the abrasive contained in the abrasive tape, and can be strengthened as the amount of the abrasive in the abrasive tape is increased. In addition, the burnish treatment can be strengthened as a grinding tool having high hardness is used as the grinding tool. In regards to the burnish treatment conditions, the burnish treatment can be strengthened as a sliding speed between the surface of the coating layer to be processed and the member (for example, an abrasive tape or a grinding tool) is increased. The sliding speed can be increased by increasing one or both of the speed for moving the member and the speed for moving the magnetic tape to be treated. Although the reason is not clear, the isoelectric point of the surface zeta potential of the magnetic layer may tend to increase after the burnish treatment as the amount of the binding agent containing an acidic group in the coating layer of the magnetic layer forming composition is increased. The same applies to the back coating layer.


In a case where the magnetic layer forming composition contains a curing agent, it is preferable to perform a curing treatment at any stage of the steps for forming the magnetic layer. The burnish treatment is preferably performed at least before the curing treatment. The burnish treatment may be further performed after the curing treatment. The inventor has considered that it is preferable to perform the burnish treatment before the curing treatment in order to increase a removal efficiency for removing the acidic component from the surface portion of the coating layer of the magnetic layer forming composition. The curing treatment can be performed by a treatment such as heat treatment or light irradiation according to the kind of the curing agent contained in the magnetic layer forming composition. The curing treatment conditions are not particularly limited, and may be appropriately set according to the list of the magnetic layer forming composition, the kind of curing agent, the thickness of the coating layer, and the like. For example, in a case where the coating layer is formed using the magnetic layer forming composition containing polyisocyanate as the curing agent, the curing treatment is preferably the heat treatment.


Even in a case where the back coating layer forming composition contains a curing agent, it is preferable to perform a curing treatment at any stage of the steps for forming the back coating layer. The burnish treatment is preferably performed at least before the curing treatment. The burnish treatment may be further performed after the curing treatment. The inventor has considered that it is preferable to perform the burnish treatment before the curing treatment in order to increase a removal efficiency for removing the acidic component from the surface portion of the coating layer of the back coating layer forming composition. The curing treatment can be performed by a treatment such as heat treatment or light irradiation according to the kind of the curing agent contained in the back coating layer forming composition. The curing treatment conditions are not particularly limited, and may be appropriately set according to the list of the back coating layer forming composition, the kind of curing agent, the thickness of the coating layer, and the like. For example, in a case where the coating layer is formed using the back coating layer forming composition containing polyisocyanate as the curing agent, the curing treatment is preferably the heat treatment.


Preferably, a surface smoothing treatment can be performed before the curing treatment. The surface smoothing treatment is a treatment performed for increasing the smoothness of the surface of the magnetic layer and/or the surface of the back coating layer, and is preferably performed by a calender process. For details of the calender process, descriptions disclosed in a paragraph 0026 of JP2010-231843A can be referred to, for example.


For various other steps for manufacturing the magnetic tape, a well-known technique can be applied. For details of the various steps, descriptions disclosed in paragraphs 0067 to 0070 of JP2010-231843A can be referred to, for example. It is preferable that the coating layer of the magnetic layer forming composition is subjected to an alignment process, while this coating layer is wet (not dried). For the alignment process, various well-known techniques such as a description disclosed in a paragraph 0067 of JP2010-231843A can be used. For example, a homeotropic alignment process can be performed by a well-known method such as a method using a polar opposing magnet. In an alignment zone, it is possible to control a drying speed of the coating layer by a temperature of dry air, an air flow, and/or a transportation speed of the magnetic tape in the alignment zone. In addition, the coating layer may be preliminarily dried before being transported to the alignment zone. In a case of performing the alignment process, it is preferable to apply a magnetic field (for example, DC magnetic field) for aligning the ferromagnetic powder with respect to the coating layer of the magnetic layer forming composition applied in the alternating magnetic field.


As described above, it is possible to obtain the magnetic tape according to an aspect of the invention. The magnetic tape is normally accommodated in a magnetic tape cartridge and the magnetic tape cartridge is mounted in a magnetic tape apparatus (generally referred to as a “drive”). A servo pattern can also be formed on the magnetic layer of the magnetic tape by a well-known method, in order to allow head tracking servo to be performed in the drive. For example, the servo pattern can be formed on a direct current (DC) demagnetized magnetic layer. The direction of demagnetization can be a longitudinal direction or a vertical direction of the magnetic tape. In addition, the direction of magnetization in a case of forming the servo pattern (that is, magnetized region) can be a longitudinal direction or a vertical direction of the magnetic tape.


According to the magnetic tape, it is possible to suppress deterioration of electromagnetic conversion characteristics caused by the repeated sliding between the surface of the magnetic tape and the magnetic head after a temperature change from a high temperature to a low temperature under low humidity, it is possible to decrease the generation frequency of the missing pulse. In an aspect, low humidity can be environment of relative humidity of approximately 0% to 30%, for example. A high temperature can be, for example, approximately 30° C. to 50° C., a low temperature can be, for example, approximately higher than 0° C. and equal to or lower than 15° C., and a temperature change from a high temperature to a low temperature can be, for example, a temperature change approximately from 15° C. to 50° C.


Magnetic Tape Cartridge


An aspect of the invention relates to a magnetic tape cartridge including the magnetic tape.


In the magnetic tape cartridge, the magnetic tape is generally accommodated in a cartridge main body in a state of being wound around a reel. The reel is rotatably provided in the cartridge main body. As the magnetic tape cartridge, a single reel type magnetic tape cartridge including one reel in a cartridge main body and a twin reel type magnetic tape cartridge including two reels in a cartridge main body are widely used. In a case where the single reel type magnetic tape cartridge is mounted in the magnetic tape apparatus (drive) in order to record and/or reproduce information (magnetic signals) on the magnetic tape, the magnetic tape is drawn from the magnetic tape cartridge and wound around the reel on the drive side. A magnetic head is disposed on a magnetic tape transportation path from the magnetic tape cartridge to a winding reel. Sending and winding of the magnetic tape are performed between a reel (supply reel) on the magnetic tape cartridge side and a reel (winding reel) on the drive side. In the meantime, the magnetic head comes into contact with and slides on the surface of the magnetic layer of the magnetic tape, and accordingly, the recording and/or reproduction of information is performed. With respect to this, in the twin reel type magnetic tape cartridge, both reels of the supply reel and the winding reel are provided in the magnetic tape cartridge. The magnetic tape cartridge may be any of single reel type magnetic tape cartridge and twin reel type magnetic tape cartridge. The magnetic tape cartridge may include the magnetic tape according to an aspect of the invention, and a well-known technique can be applied for other configurations.


Magnetic Tape Apparatus


An aspect of the invention relates to a magnetic tape apparatus including the magnetic tape and a magnetic head.


In the invention and the specification, the “magnetic tape apparatus” means a device capable of performing at least one of the recording of information on the magnetic tape or the reproducing of information recorded on the magnetic tape. Such an apparatus is generally called a drive. The magnetic tape apparatus can be a sliding type magnetic tape apparatus. The sliding type apparatus is an apparatus in which the surface of the magnetic layer comes into contact with and slides on the magnetic head, in a case of performing the recording of information on the magnetic tape and/or reproducing of the recorded information.


The magnetic head included in the magnetic tape apparatus can be a recording head capable of performing the recording of information on the magnetic tape, or can be a reproducing head capable of performing the reproducing of information recorded on the magnetic tape. In addition, in an aspect, the magnetic tape apparatus can include both of a recording head and a reproducing head as separate magnetic heads. In another aspect, the magnetic head included in the magnetic tape can also have a configuration of comprising both of a recording element and a reproducing element in one magnetic head. As the reproducing head, a magnetic head (MR head) including a magnetoresistive (MR) element capable of sensitively reading information recorded on the magnetic tape as a reproducing element is preferable. As the MR head, various well-known MR heads can be used. In addition, the magnetic head which performs the recording of information and/or the reproducing of information may include a servo pattern reading element. Alternatively, as a head other than the magnetic head which performs the recording of information and/or the reproducing of information, a magnetic head (servo head) comprising a servo pattern reading element may be included in the magnetic tape apparatus.


In the magnetic tape apparatus, the recording of information on the magnetic tape and/or the reproducing of information recorded on the magnetic tape can be performed by bringing the surface of the magnetic layer of the magnetic tape into contact with the magnetic head and sliding. The magnetic tape apparatus may include the magnetic tape according to an aspect of the invention and well-known techniques can be applied for other configurations.


EXAMPLES

Hereinafter, the invention will be described with reference to examples. However, the invention is not limited to aspects shown in the examples. “Parts” and “%” in the following description mean “parts by mass” and “% by mass”, unless otherwise noted. In addition, steps and evaluations described below are performed in an environment of an atmosphere temperature of 23° C.±1° C., unless otherwise noted.


A “binding agent A” described below is a SO3Na group-containing polyurethane resin (weight-average molecular weight: 70,000, SO3Na group: 0.20 meq/g).


A “binding agent B” described below is a vinyl chloride copolymer (product name: MR110, SO3K group-containing vinyl chloride copolymer, SO3K group: 0.07 meq/g) manufactured by Kaneka Corporation.


Manufacturing of Magnetic Tape


Example 1

(1) Preparation of Alumina Dispersion


3.0 parts of 2,3-dihydroxynaphthalene (manufactured by Tokyo Chemical Industry Co., Ltd.), 31.3 parts of a 32% solution (solvent is a mixed solvent of methyl ethyl ketone and toluene) of a SO3Na group-containing polyester polyurethane resin (UR-4800 (SO3Na group: 0.08 meq/g) manufactured by Toyobo Co., Ltd.), and 570.0 parts of a mixed solvent of methyl ethyl ketone and cyclohexanone (mass ratio of 1:1) as a solvent were mixed with 100.0 parts of alumina powder (HIT-80 manufactured by Sumitomo Chemical Co., Ltd.) having a gelatinization ratio of approximately 65% and a BET specific surface area of 20 m2/g, and dispersed in the presence of zirconia beads by a paint shaker for 5 hours. After the dispersion, the dispersion liquid and the beads were separated by a mesh and an alumina dispersion was obtained.


(2) Magnetic Layer Forming Composition List












Magnetic Liquid


















Ferromagnetic Powder
100.0 parts



Hexagonal barium ferrite powder having




average particle size (average plate diameter)




of 21 nm




Binding agent (see Table 1)
see Table 1



Cyclohexanone
150.0 parts



Methyl ethyl ketone
150.0 parts



Abrasive Solution




Alumina dispersion prepared in the section (1)
 6.0 parts



Silica Sol (projection forming agent liquid)




Colloidal silica (average particle size: 120 nm)
 2.0 parts



Methyl ethyl ketone
 1.4 parts



Other Components




Stearic acid
 2.0 parts



Stearic acid amide
 0.2 parts



Butyl stearate
 2.0 parts



Polyisocyanate (CORONATE (registered
 2.5 parts



trademark) manufactured by Tosoh Corporation)




Finishing Additive Solvent




Cyclohexanone
200.0 parts



Methyl ethyl ketone
200.0 parts










(3) Non-Magnetic Layer Forming Composition List


















Non-magnetic inorganic powder: α-iron oxide
100.0 parts



Average particle size (average long axis




length): 0.15 μm




Average acicular ratio: 7




BET specific surface area: 52 m2/g




Carbon black
 20.0 parts



Average particle size: 20 nm




Binding agent A
 18.0 parts



Stearic acid
 2.0 parts



Stearic acid amide
 0.2 parts



Butyl stearate
 2.0 parts



Cyclohexanone
300.0 parts



Methyl ethyl ketone
300.0 parts










(4) Back Coating Layer Forming Composition List


















Non-magnetic inorganic powder: α-iron oxide
 80.0 parts



Average particle size (average long axis




length): 0.15 μm




Average acicular ratio: 7




BET specific surface area: 52 m2/g




Carbon black
 20.0 parts



Average particle size: 20 nm




Binding agent (see Table 1)
see Table 1



Phenylphosphonic acid
 3.0 parts



Methyl ethyl ketone
155.0 parts



Polyisocyanate
 5.0 parts



Cyclohexanone
355.0 parts










(5) Preparation of Each Layer Forming Composition


The non-magnetic layer forming composition was prepared by the following method.


The magnetic liquid was prepared by dispersing (beads-dispersing) each component by using a batch type vertical sand mill for 24 hours. Zirconia beads having a bead diameter of 0.5 mm were used as the dispersion beads.


The prepared magnetic liquid, the abrasive solution, and other components (silica sol, other components, and finishing additive solvent) were mixed with each other and beads-dispersed for 5 minutes by using the sand mill, and the treatment (ultrasonic dispersion) was performed with a batch type ultrasonic device (20 kHz, 300 W) for 0.5 minutes. After that, the obtained mixed solution was filtered by using a filter having a hole diameter of 0.5 μm, and the magnetic layer forming composition was prepared.


The non-magnetic layer forming composition was prepared by the following method.


Various components described above excluding the lubricant (stearic acid, stearic acid amide, and butyl stearate), cyclohexanone, and methyl ethyl ketone were dispersed by using batch type vertical sand mill for 24 hours to obtain a dispersion liquid. Zirconia beads having a bead diameter of 0.5 mm were used as the dispersion beads. After that, the remaining components were added into the obtained dispersion liquid and stirred with a dissolver. The dispersion liquid obtained as described above was filtered with a filter having a hole diameter of 0.5 μm and a non-magnetic layer forming composition was prepared.


The back coating layer forming composition was prepared by the following method.


Each component excluding polyisocyanate and cyclohexanone was kneaded by an open kneader and diluted, and were subjected to a dispersion process of 12 passes, with a transverse beads mill disperser and zirconia beads having a bead diameter of 1 mm, by setting a bead filling percentage as 80 volume %, a circumferential speed of rotor distal end as 10 m/sec, and a retention time for 1 pass as 2 minutes. After that, the remaining components were added into the obtained dispersion liquid and stirred with a dissolver. The dispersion liquid obtained as described above was filtered with a filter having a hole diameter of 1 μm and a back coating layer forming composition was prepared.


(6) Manufacturing Method of Magnetic Tape


The non-magnetic layer forming composition prepared in the section (5) was applied to a surface of a support made of polyethylene naphthalate having a thickness of 5.00 μm so that the thickness after the drying becomes 1.00 μm and was dried to form a non-magnetic layer.


Then, in a coating device disposed with a magnet for applying an alternating magnetic field, the magnetic layer forming composition prepared in the section (5) was applied onto the surface of the non-magnetic layer so that the thickness after the drying becomes 0.10 μm, while applying an alternating magnetic field (magnetic field strength: 0.15 T), to form a coating layer. The applying of the alternating magnetic field was performed so that the alternating magnetic field was applied vertically to the surface of the coating layer. After that, a homeotropic alignment process was performed by applying a magnetic field having a DC magnetic field strength of 0.30 T in a vertical direction with respect to a surface of a coating layer, while the coating layer of the magnetic layer forming composition is wet (not dried). After that, the coating layer was dried to form a magnetic layer.


After that, the back coating layer forming composition prepared in the section (5) was applied to the surface of the support made of polyethylene naphthalate on a side opposite to the surface where the non-magnetic layer and the magnetic layer were formed, so that the thickness after the drying becomes 0.50 mm, and was dried to form a coating layer of the back coating layer forming composition. The coating of the back coating layer forming composition was performed while applying the alternating magnetic field (magnetic field strength: 0.15 T) vertically to the surface of the coating layer of the back coating layer forming composition, in a coating device disposed with a magnet for applying the alternating magnetic field.


After the magnetic tape obtained as described above was slit to have a width of ½ inches (0.0127 meters), the burnish treatment and the wiping treatment of the surface of the coating layer of the magnetic layer forming composition were performed.


After that, the burnish treatment and the wiping treatment of the surface of the coating layer of the back coating layer forming composition were performed.


The burnish treatment and the wiping treatment were performed by using a commercially available abrasive tape (product name MA22000 manufactured by FUJIFILM Corporation, abrasive: diamond/Cr2O3/bengala) as the abrasive tape, using a commercially available sapphire blade (manufactured by KYOCERA Corporation, width of 5 mm, length of 35 mm, tip angle of 60 degrees) as the grinding blade, and using a commercially available wiping material (product name WRP736 manufactured by KURARAY CO., LTD.) as the wiping material, in the processing apparatus having the configuration shown in FIG. 1 of JP1994-052544 (JP-H06-52544A). As the treatment conditions, the treatment conditions in Example 12 of JP1994-052544 (JP-H06-52544A) were adopted.


After the burnish treatment and the wiping treatment, a surface smoothing treatment (calender process) was performed by using a calender roll configured of only a metal roll, at a speed of 100 m/min, linear pressure of 294 kN/m (300 kg/cm), and a calender temperature (surface temperature of a calender roll) of 100° C.


After that, the heat treatment (curing treatment) was performed in an environment of the atmosphere temperature of 70° C. for 36 hours, and then a servo pattern was formed on the magnetic layer by a commercially available servo writer.


By doing so, a magnetic tape of Example 1 was manufactured.


Examples 2 to 5 and Comparative Examples 1 to 10

A magnetic tape was manufactured by the same method as in Example 1, except that various conditions were changed as shown in Table 1.


As shown in Table 1, in Examples 2 to 5, the same magnetic tape manufacturing method as in Example 1 was performed. That is, the application of the alternating magnetic field was performed during the coating of the magnetic layer forming composition and the coating of the back coating layer forming composition, and the burnish treatment and the wiping treatment were performed on the coating layer of the magnetic layer forming composition and the coating layer of the back coating layer forming composition in the same manner as in Example 1.


With respect to this, in Comparative Examples 1 to 4, 7, and 8, the same magnetic tape manufacturing method as in Example 1 was performed, except that the application of the alternating magnetic field was not performed during the coating of the magnetic layer forming composition and the coating of the back coating layer forming composition, and the burnish treatment and the wiping treatment were not performed on the coating layer of the magnetic layer forming composition and the coating layer of the back coating layer forming composition.


In Comparative Example 5, the same magnetic tape manufacturing method as in Example 1 was performed, except that the burnish treatment and the wiping treatment were not performed on the coating layer of the magnetic layer forming composition and the coating layer of the back coating layer forming composition.


In Comparative Example 6, the same magnetic tape manufacturing method as in Example 1 was performed, except that the application of the alternating magnetic field was not performed during the coating of the magnetic layer forming composition and the coating of the back coating layer forming composition.


In Comparative Example 9, the same magnetic tape manufacturing method as in Example 1 was performed, except that the application of the alternating magnetic field was not performed during the coating of the back coating layer forming composition, and the burnish treatment and the wiping treatment were not performed on the coating layer of the back coating layer forming composition.


In Comparative Example 10, the same magnetic tape manufacturing method as in Example 1 was performed, except that the application of the alternating magnetic field was not performed during the coating of the magnetic layer forming composition, and the burnish treatment and the wiping treatment were not performed on the coating layer of the magnetic layer forming composition.


Evaluation of Magnetic Tape


(1) Isoelectric Point of Surface Zeta Potential of Magnetic Layer


Six samples for isoelectric point measurement were cut out from each magnetic tape of the examples and the comparative examples and disposed in the measurement cell of two samples in one measurement. In the measurement cell, a sample installing surface and a surface of the back coating layer of the sample were bonded to each other by using a double-sided tape in upper and lower sample table (size of each sample installing surface is 1 cm×2 cm) of the measurement cell. In a case where an electrolyte flows in the measurement cell after disposing two samples as described above, the surface of the magnetic layer of the two samples bonded to each other on the upper and lower sample table of the measurement cell comes into contact with the electrolyte, and thus, the surface zeta potential of the magnetic layer can be measured. The measurement was performed three times in total by using two samples in each measurement, and the isoelectric points of the surface zeta potential of the magnetic layer were obtained. An arithmetic mean of the three values obtained by three times of the measurement is shown in Table 1, as the isoelectric point of the surface zeta potential of the magnetic layer of each magnetic tape. As a surface zeta potential measurement device, SurPASS manufactured by Anton Paar was used. The measurement conditions were set as follows. Other details of the method of obtaining the isoelectric point are as described above.


Measurement cell: variable gap cell (20 mm×10 mm)


Measurement mode: Streaming Current


Gap: approximately 200 μm


Measurement temperature: room temperature


Ramp Target Pressure/Time: 400,000 Pa (400 mbar)/60 seconds


Electrolyte: KCl aqueous solution having concentration of 1 mmol/L (adjusted pH to 9)


pH adjusting solution: HCl aqueous solution having concentration of 0.1 mol/L or KOH aqueous solution having concentration of 0.1 mol/L


Measurement pH: pH 9 pH 3 (measured at 13 measurement points in total at interval of approximately 0.5)


(2) Isoelectric Point of Surface Zeta Potential of Back Coating Layer


Six samples for isoelectric point measurement were cut out from each magnetic tape of the examples and the comparative examples and disposed in the measurement cell of two samples in one measurement. In the measurement cell, a sample installing surface and a surface of the magnetic layer of the sample were bonded to each other by using a double-sided tape in upper and lower sample table (size of each sample installing surface is 1 cm×2 cm) of the measurement cell. In a case where an electrolyte flows in the measurement cell after disposing two samples as described above, the surface of the back coating layer of the two samples bonded to each other on the upper and lower sample table of the measurement cell comes into contact with the electrolyte, and thus, the surface zeta potential of the back coating layer can be measured. The measurement was performed three times in total by using two samples in each measurement, and the isoelectric points of the surface zeta potential of the back coating layer were obtained. An arithmetic mean of the three values obtained by three times of the measurement is shown in Table 1, as the isoelectric point of the surface zeta potential of the back coating layer of each magnetic tape. As a surface zeta potential measurement device, the device disclosed in the section (1) was used, and the measurement conditions were set as shown in the section (1). Other details of the method of obtaining the isoelectric point are as described above.


(3) Signal-to-Noise-Ratio (SNR) Decrease


Each magnetic tape (total length of magnetic tape: 500 m) of the examples and the comparative examples was stored in a thermo box in which a temperature was maintained to be 32° C. and relative humidity was maintained to be 10%, for 3 hours. After that, the magnetic tape was extracted from the thermo box (a temperature of the outside air was 23° C. and relative humidity was 50%) and put in a thermo room in which a temperature was maintained to be 10° C. and relative humidity was maintained to be 10%, within 1 minute, and then 2000 passes of the recording and the reproducing were performed in this thermo room and a difference between the SNR of the 1st pass and the SNR of 2000th pass (SNR of 2000th pass-SNR of first pass) was calculated as an SNR decrease.


The SNR was measured by the following method using a ½ inches (0.0127 meters) reel tester to which the magnetic head was fixed.


A relative speed between the magnetic tape and the magnetic head is 8 m/sec, and the recording was performed by using a metal-in-gap (MIG) head (gap length 0.15 μm, track width 1.0 μm) as the recording head and setting a recording current to an optimum recording current for each magnetic tape. The reproducing was performed by using a giant-magnetoresistive (GMR) head (element thickness 15 nm, shield interval 0.1 μm, lead width 0.5 μm) as the reproducing head. A signal with a linear recording density of 300 kfci was recorded, and a reproducing signal was measured by a spectrum analyzer manufactured by Shibasoku Co., Ltd. The unit kfci is a unit of the linear recording density (cannot be converted into SI unit system). As the signal, a portion where the signal was sufficiently stable after the start of running of the magnetic tape was used. The recording and the reproducing were performed under the above conditions, and the SNR (Broadband-SNR) was obtained as a relative value when a ratio of an output value of a carrier signal and an integrated noise of an entire spectrum band was SNR and the SNR of the 1st pass in Comparative Example 1 was a reference (0 dB).


The results of the above evaluation are shown in Table 1 (Table 1-1 and Table 1-2).















TABLE 1-1







Example 1
Example 2
Example 3
Example 4
Example 5



























Formation of magnetic layer
Content of binding agent
Binding agent A
5.0
parts
10.0
parts
15.0
parts
20.0
parts
10.0 parts




Binding agent B
0
parts
0
parts
0
parts
0
parts
10.0 parts














Alternating magnetic field application
Performed
Performed
Performed
Performed
Performed



during coating



Burnish treatment
Performed
Performed
Performed
Performed
Performed

















Formation of back coating layer
Content of binding agent
Binding agent A
5.0
parts
10.0
parts
15.0
parts
20.0 
10.0 parts


















Binding agent B
0
parts
0
parts
0
parts
0
parts
10.0 parts














Application of alternating magnetic field
Performed
Performed
Performed
Performed
Performed



during coating



Burnish treatment
Performed
Performed
Performed
Performed
Performed












Isoelectric point of surface zeta potential of magnetic layer
5.5
6.1
6.3
6.5
6.5


Isoelectric point of surface zeta potential of back coating layer
4.5
5.0
5.2
5.8
5.2
















SNR decrease
−0.5
dB
−0.3
dB
−0.3
dB
−0.3
dB
−0.3 dB 






















TABLE 1-2









Comparative
Comparative
Comparative
Comparative
Comparative



Example 1
Example 2
Example 3
Example 4
Example 5























Formation of
Content of
Binding agent A
5.0
parts
10.0
parts
15.0
parts
20.0
parts
15.0
parts


magnetic layer
binding agent
Binding agent B
0
parts
0
parts
0
parts
0
parts
0
parts














Alternating magnetic field
Not
Not
Not
Not
Performed



application during coating
performed
performed
performed
performed



Burnish treatment
Not
Not
Not
Not
Not




performed
performed
performed
performed
performed



















Formation of back
Content of
Binding agent A
5.0
parts
10.0
parts
15.0
parts
20.0
parts
15.0
parts


coating layer
binding agent
Binding agent B
0
parts
0
parts
0
parts
0
parts
0
parts














Application of alternating
Not
Not
Not
Not
Performed



magnetic field during coating
performed
performed
performed
performed



Burnish treatment
Not
Not
Not
Not
Not




performed
performed
performed
performed
performed












Isoelectric point of surface zeta potential of magnetic layer
5.0
4.8
4.6
4.6
4.5


Isoelectric point of surface zeta potential of back coating layer
4.0
3.8
3.7
3.7
4.0

















SNR decrease
−5.5
dB
−4.5
dB
−3.5
dB
−3.3
dB
−3.5
dB
















Comparative
Comparative
Comparative
Comparative
Comparative



Example 6
Example 7
Example 8
Example 9
Example 10






















Formation of
Content of
Binding agent A
15.0
parts
0
parts
10.0 parts
10.0
parts
10.0
parts


magnetic layer
binding agent
Binding agent B
0
parts
10
parts
10 parts
0
parts
0
parts














Alternating magnetic field
Not
Not
Not
Performed
Not



application during coating
performed
performed
performed

performed



Burnish treatment
Performed
Not
Not
Performed
Not





performed
performed

performed


















Formation of back
Content of
Binding agent A
15.0
parts
0
parts
10.0 parts
10.0
parts
10.0
parts


coating layer
binding agent
Binding agent B
0
parts
10.0
parts
10.0 parts
0
parts
0
parts














Application of alternating
Not
Not
Not
Not
Performed



magnetic field during coating
performed
performed
performed
performed



Burnish treatment
Performed
Not
Not
Not
Performed





performed
performed
performed












Isoelectric point of surface zeta potential of magnetic layer
4.6
4.8
4.7
6.1
4.8


Isoelectric point of surface zeta potential of back coating layer
4.0
4.0
4.0
3.8
5.0
















SNR decrease
−3.5
dB
−4.5
dB
−3.5 dB 
−2.5
dB
−3.0
dB









As shown in Table 1, even in a case where the magnetic tapes of the examples were exposed to a temperature change from a high temperature to a low temperature under low humidity, the SNR decrease was small compared to the magnetic tapes of the comparative examples.


An aspect of the invention is effective in the technical fields of various magnetic recording media for data storage.

Claims
  • 1. A magnetic tape comprising: a non-magnetic support;a magnetic layer including ferromagnetic powder and a binding agent on one surface side of the non-magnetic support; anda back coating layer including non-magnetic powder and a binding agent on the other surface side of the non-magnetic support,wherein the isoelectric point of the surface zeta potential of the magnetic layer is equal to or greater than 5.5, andthe isoelectric point of the surface zeta potential of the back coating layer is greater than or equal to 4.5 and less than or equal to 5.8.
  • 2. The magnetic tape according to claim 1, wherein the isoelectric point of the surface zeta potential of the magnetic layer is 5.5 to 7.0.
  • 3. The magnetic tape according to claim 1, wherein the binding agent of the magnetic layer is a binding agent including an acidic group.
  • 4. The magnetic tape according to claim 3, wherein the acidic group includes at least one kind of acidic group selected from the group consisting of a sulfonic acid group and a salt thereof.
  • 5. The magnetic tape according to claim 1, wherein the binding agent of the back coating layer is a binding agent including an acidic group.
  • 6. The magnetic tape according to claim 5, wherein the acidic group includes at least one kind of acidic group selected from the group consisting of a sulfonic acid group and a salt thereof.
  • 7. The magnetic tape according to claim 1, further comprising: a non-magnetic layer including non-magnetic powder and a binding agent between the non-magnetic support and the magnetic layer.
  • 8. A magnetic tape cartridge comprising: a magnetic tape, which comprises:a non-magnetic support;a magnetic layer including ferromagnetic powder and a binding agent on one surface side of the non-magnetic support; anda back coating layer including non-magnetic powder and a binding agent on the other surface side of the non-magnetic support,wherein the isoelectric point of the surface zeta potential of the magnetic layer is equal to or greater than 5.5, andthe isoelectric point of the surface zeta potential of the back coating layer is greater than or equal to 4.5 and less than or equal to 5.8.
  • 9. The magnetic tape cartridge according to claim 8, wherein the isoelectric point of the surface zeta potential of the magnetic layer is 5.5 to 7.0.
  • 10. The magnetic tape cartridge according to claim 8, wherein the binding agent of the magnetic layer and/or the binding agent of the back coating layer is a binding agent including an acidic group.
  • 11. The magnetic tape cartridge according to claim 10, wherein the acidic group includes at least one kind of acidic group selected from the group consisting of a sulfonic acid group and a salt thereof.
  • 12. The magnetic tape cartridge according to claim 8, wherein the magnetic tape further comprises a non-magnetic layer including non-magnetic powder and a binding agent between the non-magnetic support and the magnetic layer.
  • 13. A magnetic tape apparatus comprising: a magnetic head; anda magnetic tape, which comprises:a non-magnetic support;a magnetic layer including ferromagnetic powder and a binding agent on one surface side of the non-magnetic support; anda back coating layer including non-magnetic powder and a binding agent on the other surface side of the non-magnetic support,wherein the isoelectric point of the surface zeta potential of the magnetic layer is equal to or greater than 5.5, andthe isoelectric point of the surface zeta potential of the back coating layer is greater than or equal to 4.5 and less than or equal to 5.8.
  • 14. The magnetic tape apparatus according to claim 13, wherein the isoelectric point of the surface zeta potential of the magnetic layer is 5.5 to 7.0.
  • 15. The magnetic tape apparatus according to claim 13, wherein the binding agent of the magnetic layer and/or the binding agent of the back coating layer is a binding agent including an acidic group.
  • 16. The magnetic tape apparatus according to claim 15, wherein the acidic group includes at least one kind of acidic group selected from the group consisting of a sulfonic acid group and a salt thereof.
  • 17. The magnetic tape apparatus according to claim 13, wherein the magnetic tape further comprises a non-magnetic layer including non-magnetic powder and a binding agent between the non-magnetic support and the magnetic layer.
Priority Claims (1)
Number Date Country Kind
JP2018-246873 Dec 2018 JP national
US Referenced Citations (389)
Number Name Date Kind
3966686 Asakura et al. Jun 1976 A
4112187 Asakura et al. Sep 1978 A
4425404 Suzuki et al. Jan 1984 A
4524108 Kawakami Jun 1985 A
4590119 Kawakami et al. May 1986 A
4693930 Kuo et al. Sep 1987 A
4731292 Sasaki et al. Mar 1988 A
4746569 Takahashi et al. May 1988 A
4818606 Koyama et al. Apr 1989 A
4825317 Rausch Apr 1989 A
5006406 Kovacs Apr 1991 A
5242752 Isobe et al. Sep 1993 A
5419938 Kagotani et al. May 1995 A
5445881 Irie Sep 1995 A
5474814 Komatsu et al. Dec 1995 A
5496607 Inaba et al. Mar 1996 A
5540957 Ueda et al. Jul 1996 A
5585032 Nakata et al. Dec 1996 A
5645917 Ejiri et al. Jul 1997 A
5689384 Albrecht et al. Nov 1997 A
5728454 Inaba et al. Mar 1998 A
5786074 Soui Jun 1998 A
5827600 Ejiri et al. Oct 1998 A
5835314 Moodera et al. Nov 1998 A
6099957 Yamamoto et al. Aug 2000 A
6183606 Kuo et al. Feb 2001 B1
6207252 Shimomura Mar 2001 B1
6228461 Sueki et al. May 2001 B1
6254964 Saito et al. Jul 2001 B1
6261647 Komatsu et al. Jul 2001 B1
6268043 Koizumi et al. Jul 2001 B1
6282051 Albrecht et al. Aug 2001 B1
6496328 Dugas Dec 2002 B1
6579826 Furuya et al. Jun 2003 B2
6649256 Buczek et al. Nov 2003 B1
6686022 Takano et al. Feb 2004 B2
6770359 Masaki Aug 2004 B2
6791803 Saito et al. Sep 2004 B2
6835451 Ejiri Dec 2004 B2
6921592 Tani et al. Jul 2005 B2
6939606 Hashimoto et al. Sep 2005 B2
6950269 Johnson Sep 2005 B1
6994925 Masaki Feb 2006 B2
7014927 Sueki et al. Mar 2006 B2
7029726 Chen et al. Apr 2006 B1
7153366 Chen et al. Dec 2006 B1
7255908 Ishikawa et al. Aug 2007 B2
7341798 Hirai Mar 2008 B2
7474505 Hirai Jan 2009 B2
7511907 Dugas et al. Mar 2009 B2
7515383 Saito et al. Apr 2009 B2
7656602 Iben et al. Feb 2010 B2
7755863 Neumann et al. Jul 2010 B2
7803471 Ota et al. Sep 2010 B1
7839599 Bui et al. Nov 2010 B2
8000057 Bui et al. Aug 2011 B2
8318242 Bradshaw et al. Nov 2012 B2
8524108 Hattori Sep 2013 B2
8535817 Imaoka Sep 2013 B2
8576510 Cherubini et al. Nov 2013 B2
8609264 Mitsuoka et al. Dec 2013 B2
8681451 Harasawa et al. Mar 2014 B2
9105294 Jensen et al. Aug 2015 B2
9159341 Bradshaw et al. Oct 2015 B2
9311946 Tanaka et al. Apr 2016 B2
9324343 Bradshaw et al. Apr 2016 B2
9495985 Biskeborn et al. Oct 2016 B2
9530444 Kasada Dec 2016 B2
9542967 Sekiguchi et al. Jan 2017 B2
9564161 Cherubini et al. Feb 2017 B1
9601146 Kasada et al. Mar 2017 B2
9704425 Zhang et al. Jul 2017 B2
9704525 Kasada Jul 2017 B2
9704527 Kasada Jul 2017 B2
9711174 Kasada et al. Jul 2017 B2
9721605 Oyanagi et al. Aug 2017 B2
9721606 Kasada Aug 2017 B2
9721607 Tada et al. Aug 2017 B2
9748026 Shirata Aug 2017 B2
9773519 Kasada et al. Sep 2017 B2
9779772 Kasada et al. Oct 2017 B1
9837104 Biskeborn Dec 2017 B1
9837116 Ozawa et al. Dec 2017 B2
9959894 Omura May 2018 B2
9972351 Kaneko et al. May 2018 B1
9978414 Kaneko et al. May 2018 B1
9984710 Kasada May 2018 B2
9984712 Ozawa May 2018 B1
9984716 Kaneko et al. May 2018 B1
10008230 Ozawa et al. Jun 2018 B1
10026430 Kasada et al. Jul 2018 B2
10026433 Kasada Jul 2018 B2
10026434 Oyanagi et al. Jul 2018 B2
10026435 Kasada et al. Jul 2018 B2
10062403 Kasada et al. Aug 2018 B1
10074393 Kaneko et al. Sep 2018 B2
10134433 Kasada et al. Nov 2018 B2
10170144 Ozawa et al. Jan 2019 B2
10347280 Kasada et al. Jul 2019 B2
10373633 Kaneko et al. Aug 2019 B2
10373639 Kasada et al. Aug 2019 B2
10403314 Kasada et al. Sep 2019 B2
10403319 Kasada Sep 2019 B2
10403320 Kasada et al. Sep 2019 B2
10410666 Kasada et al. Sep 2019 B2
10431248 Kasada et al. Oct 2019 B2
10431249 Kasada et al. Oct 2019 B2
10431250 Tada et al. Oct 2019 B2
10438624 Kasada Oct 2019 B2
10438625 Ozawa et al. Oct 2019 B2
10438628 Kasada et al. Oct 2019 B2
10453488 Kurokawa et al. Oct 2019 B2
10460756 Kasada et al. Oct 2019 B2
10475481 Oyanagi et al. Nov 2019 B2
10477072 Kasada Nov 2019 B2
10482913 Kasada Nov 2019 B2
10490220 Kasada et al. Nov 2019 B2
10497384 Kasada et al. Dec 2019 B2
10497388 Ozawa et al. Dec 2019 B2
10510366 Kaneko et al. Dec 2019 B2
10515657 Kasada et al. Dec 2019 B2
10515660 Oyanagi et al. Dec 2019 B2
10515661 Kasada et al. Dec 2019 B2
10522171 Kasada et al. Dec 2019 B2
10522180 Kasada Dec 2019 B2
10546602 Kasada et al. Jan 2020 B2
10573338 Kasada et al. Feb 2020 B2
10643646 Kasada et al. May 2020 B2
10672426 Kasada Jun 2020 B2
10706875 Kasada et al. Jul 2020 B2
10720181 Yamaga et al. Jul 2020 B1
10755741 Ozawa et al. Aug 2020 B2
10839850 Tada et al. Nov 2020 B2
10854231 Kasada et al. Dec 2020 B2
10854233 Ozawa et al. Dec 2020 B2
10854234 Kasada et al. Dec 2020 B2
10878846 Kasada et al. Dec 2020 B2
10891982 Kasada Jan 2021 B2
11158340 Bradshaw Oct 2021 B2
20010012574 Matsubayashi et al. Aug 2001 A1
20010038928 Nakamigawa et al. Nov 2001 A1
20010053458 Suzuki et al. Dec 2001 A1
20020072472 Furuya et al. Jul 2002 A1
20020122339 Takano et al. Sep 2002 A1
20030017366 Takahashi Jan 2003 A1
20030059649 Saliba et al. Mar 2003 A1
20030091866 Ejiri et al. May 2003 A1
20030121284 Ikeda et al. Jul 2003 A1
20030124386 Masaki Jul 2003 A1
20030128453 Saito et al. Jul 2003 A1
20030170498 Inoue Sep 2003 A1
20030203240 Seng et al. Oct 2003 A1
20030228492 Ejiri et al. Dec 2003 A1
20030228493 Doushita et al. Dec 2003 A1
20040013892 Yano et al. Jan 2004 A1
20040018388 Kitamura et al. Jan 2004 A1
20040023066 Watase et al. Feb 2004 A1
20040053074 Jingu et al. Mar 2004 A1
20040072025 Kishimoto et al. Apr 2004 A1
20040197605 Seki et al. Oct 2004 A1
20040213948 Saito et al. Oct 2004 A1
20040218304 Goker et al. Nov 2004 A1
20040265643 Ejiri Dec 2004 A1
20050020803 Machida et al. Jan 2005 A1
20050057838 Ohtsu Mar 2005 A1
20050153170 Inoue et al. Jul 2005 A1
20050196645 Doi et al. Sep 2005 A1
20050260456 Hanai et al. Nov 2005 A1
20050260459 Hanai et al. Nov 2005 A1
20050264935 Sueki et al. Dec 2005 A1
20060008681 Hashimoto et al. Jan 2006 A1
20060035114 Kuse et al. Feb 2006 A1
20060056095 Saitou Mar 2006 A1
20060068232 Mikamo et al. Mar 2006 A1
20060083954 Meguro et al. Apr 2006 A1
20060187589 Harasawa et al. Aug 2006 A1
20060232883 Biskeborn et al. Oct 2006 A1
20070009769 Kanazawa Jan 2007 A1
20070020489 Yamazaki et al. Jan 2007 A1
20070020490 Harasawa et al. Jan 2007 A1
20070224456 Murao et al. Sep 2007 A1
20070230054 Takeda et al. Oct 2007 A1
20070231606 Hanai Oct 2007 A1
20080057351 Meguro et al. Mar 2008 A1
20080144211 Weber et al. Jun 2008 A1
20080152956 Murayama et al. Jun 2008 A1
20080174897 Bates et al. Jul 2008 A1
20080297950 Noguchi et al. Dec 2008 A1
20080311308 Lee et al. Dec 2008 A1
20090027812 Noguchi et al. Jan 2009 A1
20090087689 Doushita et al. Apr 2009 A1
20090142625 Fukushima et al. Jun 2009 A1
20090161249 Takayama et al. Jun 2009 A1
20090162701 Jensen et al. Jun 2009 A1
20090174970 Inoue et al. Jul 2009 A1
20100000966 Kamata et al. Jan 2010 A1
20100035086 Inoue et al. Feb 2010 A1
20100035088 Inoue Feb 2010 A1
20100053810 Biskeborn et al. Mar 2010 A1
20100073816 Komori et al. Mar 2010 A1
20100081011 Nakamura Apr 2010 A1
20100134929 Ito Jun 2010 A1
20100227201 Sasaki et al. Sep 2010 A1
20100246073 Katayama Sep 2010 A1
20100284105 Dugas et al. Nov 2010 A1
20110003241 Kaneko et al. Jan 2011 A1
20110051280 Karp et al. Mar 2011 A1
20110052908 Imaoka Mar 2011 A1
20110077902 Awezec et al. Mar 2011 A1
20110151281 Inoue Jun 2011 A1
20110229739 Jensen et al. Sep 2011 A1
20110244272 Suzuki et al. Oct 2011 A1
20120003503 Mori Jan 2012 A1
20120045664 Tanaka et al. Feb 2012 A1
20120152891 Brown et al. Jun 2012 A1
20120177951 Yamazaki et al. Jul 2012 A1
20120183811 Hattori et al. Jul 2012 A1
20120196156 Suzuki Aug 2012 A1
20120243120 Harasawa et al. Sep 2012 A1
20120244387 Mori et al. Sep 2012 A1
20120251845 Wang et al. Oct 2012 A1
20120314319 Olson et al. Dec 2012 A1
20130029183 Omura et al. Jan 2013 A1
20130084470 Hattori et al. Apr 2013 A1
20130088794 Cherubini et al. Apr 2013 A1
20130256584 Yamazaki et al. Oct 2013 A1
20130260179 Kasada et al. Oct 2013 A1
20130279040 Cideciyan et al. Oct 2013 A1
20130286510 Rothermel et al. Oct 2013 A1
20140011055 Suzuki et al. Jan 2014 A1
20140130067 Madison et al. May 2014 A1
20140139944 Johnson et al. May 2014 A1
20140272474 Kasada Sep 2014 A1
20140295214 Tada et al. Oct 2014 A1
20140342189 Tachibana et al. Nov 2014 A1
20140366990 Lai et al. Dec 2014 A1
20140374645 Kikuchi et al. Dec 2014 A1
20150043101 Biskeborn et al. Feb 2015 A1
20150098149 Bates et al. Apr 2015 A1
20150111066 Terakawa et al. Apr 2015 A1
20150123026 Masada et al. May 2015 A1
20150279404 Aoshima et al. Oct 2015 A1
20150302879 Holmberg et al. Oct 2015 A1
20150380036 Kasada et al. Dec 2015 A1
20160061447 Kobayashi Mar 2016 A1
20160064025 Kurokawa et al. Mar 2016 A1
20160092315 Ashida et al. Mar 2016 A1
20160093321 Aoshima et al. Mar 2016 A1
20160093322 Kasada et al. Mar 2016 A1
20160093323 Omura Mar 2016 A1
20160171993 Okubo Jun 2016 A1
20160180875 Tanaka et al. Jun 2016 A1
20160189739 Kasada et al. Jun 2016 A1
20160189740 Oyanagi et al. Jun 2016 A1
20160247530 Kasada Aug 2016 A1
20160260449 Ahmad et al. Sep 2016 A1
20160276076 Kasada Sep 2016 A1
20170032812 Kasada Feb 2017 A1
20170053669 Kasada Feb 2017 A1
20170053670 Oyanagi et al. Feb 2017 A1
20170053671 Kasada et al. Feb 2017 A1
20170058227 Kondo et al. Mar 2017 A1
20170092315 Ozawa et al. Mar 2017 A1
20170092316 Imamura et al. Mar 2017 A1
20170130156 Kondo et al. May 2017 A1
20170162220 Nakashio et al. Jun 2017 A1
20170178675 Kasada Jun 2017 A1
20170178676 Kasada Jun 2017 A1
20170178677 Kasada Jun 2017 A1
20170186456 Tada et al. Jun 2017 A1
20170186460 Kasada et al. Jun 2017 A1
20170221513 Hiroi et al. Aug 2017 A1
20170221516 Oyanagi et al. Aug 2017 A1
20170221517 Ozawa et al. Aug 2017 A1
20170249963 Oyanagi et al. Aug 2017 A1
20170249964 Kasada et al. Aug 2017 A1
20170249965 Kurokawa et al. Aug 2017 A1
20170249966 Tachibana et al. Aug 2017 A1
20170278533 Kasada et al. Sep 2017 A1
20170287517 Hosoya et al. Oct 2017 A1
20170355022 Kaneko et al. Dec 2017 A1
20170358318 Kasada et al. Dec 2017 A1
20170372726 Kasada et al. Dec 2017 A1
20170372727 Kasada et al. Dec 2017 A1
20170372736 Kaneko et al. Dec 2017 A1
20170372737 Oyanagi et al. Dec 2017 A1
20170372738 Kasada Dec 2017 A1
20170372739 Ozawa et al. Dec 2017 A1
20170372740 Ozawa et al. Dec 2017 A1
20170372741 Kurokawa et al. Dec 2017 A1
20170372742 Kaneko et al. Dec 2017 A1
20170372743 Kasada et al. Dec 2017 A1
20170372744 Ozawa et al. Dec 2017 A1
20180061446 Kasada Mar 2018 A1
20180061447 Kasada Mar 2018 A1
20180137887 Sekiguchi et al. May 2018 A1
20180147626 Shirata et al. May 2018 A1
20180182417 Kaneko et al. Jun 2018 A1
20180182422 Kawakami et al. Jun 2018 A1
20180182425 Kasada et al. Jun 2018 A1
20180182426 Ozawa et al. Jun 2018 A1
20180182427 Kasada et al. Jun 2018 A1
20180182428 Kasada et al. Jun 2018 A1
20180182429 Kasada et al. Jun 2018 A1
20180182430 Ozawa et al. Jun 2018 A1
20180240475 Kasada Aug 2018 A1
20180240476 Kasada et al. Aug 2018 A1
20180240478 Kasada et al. Aug 2018 A1
20180240479 Kasada et al. Aug 2018 A1
20180240481 Kasada et al. Aug 2018 A1
20180240488 Kasada Aug 2018 A1
20180240489 Kasada et al. Aug 2018 A1
20180240490 Kurokawa et al. Aug 2018 A1
20180240491 Ozawa et al. Aug 2018 A1
20180240492 Kasada Aug 2018 A1
20180240493 Tada et al. Aug 2018 A1
20180240494 Kurokawa et al. Aug 2018 A1
20180240495 Kasada Aug 2018 A1
20180286439 Ozawa et al. Oct 2018 A1
20180286442 Ozawa et al. Oct 2018 A1
20180286443 Ozawa et al. Oct 2018 A1
20180286444 Kasada et al. Oct 2018 A1
20180286447 Ozawa et al. Oct 2018 A1
20180286448 Ozawa et al. Oct 2018 A1
20180286449 Kasada et al. Oct 2018 A1
20180286450 Kasada et al. Oct 2018 A1
20180286451 Ozawa et al. Oct 2018 A1
20180286452 Ozawa et al. Oct 2018 A1
20180286453 Kasada et al. Oct 2018 A1
20180301165 Oyanagi et al. Oct 2018 A1
20180350398 Kawakami et al. Dec 2018 A1
20180350400 Kaneko et al. Dec 2018 A1
20180358042 Kasada et al. Dec 2018 A1
20180374503 Kasada Dec 2018 A1
20180374504 Kasada Dec 2018 A1
20180374505 Kasada et al. Dec 2018 A1
20180374506 Kasada Dec 2018 A1
20180374507 Kasada Dec 2018 A1
20190027167 Tada et al. Jan 2019 A1
20190027168 Kasada et al. Jan 2019 A1
20190027177 Kasada Jan 2019 A1
20190027178 Kasada Jan 2019 A1
20190035424 Endo Jan 2019 A1
20190051325 Kasada et al. Feb 2019 A1
20190088278 Kasada et al. Mar 2019 A1
20190096437 Ozawa et al. Mar 2019 A1
20190103130 Kasada et al. Apr 2019 A1
20190103131 Kasada et al. Apr 2019 A1
20190103133 Ozawa et al. Apr 2019 A1
20190103134 Kasada et al. Apr 2019 A1
20190103135 Ozawa et al. Apr 2019 A1
20190130936 Kaneko et al. May 2019 A1
20190259416 Kawakami et al. Aug 2019 A1
20190295581 Kasada Sep 2019 A1
20190295586 Kasada Sep 2019 A1
20190295587 Kasada Sep 2019 A1
20190295588 Kasada Sep 2019 A1
20190295589 Kasada Sep 2019 A1
20190295590 Kaneko et al. Sep 2019 A1
20190304496 Fujimoto Oct 2019 A1
20200005814 Kasada et al. Jan 2020 A1
20200005818 Kasada et al. Jan 2020 A1
20200005827 Ozawa et al. Jan 2020 A1
20200035262 Kasada Jan 2020 A1
20200035265 Kasada Jan 2020 A1
20200035267 Kasada Jan 2020 A1
20200126589 Iwamoto et al. Apr 2020 A1
20200211592 Kasada Jul 2020 A1
20200227081 Hosoda et al. Jul 2020 A1
20200227084 Iwamoto et al. Jul 2020 A1
20200243110 Kasada Jul 2020 A1
20200251134 Kasada et al. Aug 2020 A1
20200251135 Kasada et al. Aug 2020 A1
20200251139 Kasada et al. Aug 2020 A1
20200342904 Yamaga et al. Oct 2020 A1
20210012800 Yamaga et al. Jan 2021 A1
20210020195 Kasada Jan 2021 A1
20210082462 Bradshaw Mar 2021 A1
20210082463 Ozawa et al. Mar 2021 A1
20210082464 Ozawa et al. Mar 2021 A1
20210090599 Nakano et al. Mar 2021 A1
20210125634 Yamaga et al. Apr 2021 A1
20210249043 Kasada et al. Aug 2021 A1
20210280212 Kasada Sep 2021 A1
20210287712 Iwamoto et al. Sep 2021 A1
20210295865 Kasada et al. Sep 2021 A1
20210335387 Kasada Oct 2021 A1
20210358521 Kasada Nov 2021 A1
20220036918 Kasada Feb 2022 A1
Foreign Referenced Citations (132)
Number Date Country
2 282 171 Mar 2000 CA
1630680 Jun 2005 CN
1691139 Nov 2005 CN
1914275 Feb 2007 CN
101105949 Jan 2008 CN
102459429 May 2012 CN
105324650 Feb 2016 CN
33 40 381 May 1984 DE
101 46 429 Mar 2002 DE
0 102 581 Mar 1984 EP
0 387 420 Sep 1990 EP
0 416 656 Mar 1991 EP
0 520 155 Aug 1996 EP
0 421 213 Apr 1991 ER
2495356 Apr 2013 GB
59-221830 Dec 1984 JP
60-66316 Apr 1985 JP
60-171626 Sep 1985 JP
61-11924 Jan 1986 JP
61-139923 Jun 1986 JP
61-139932 Jun 1986 JP
62-117138 May 1987 JP
63-129519 Jun 1988 JP
63-249932 Oct 1988 JP
63-298813 Dec 1988 JP
64-057422 Mar 1989 JP
64-60819 Mar 1989 JP
1-276424 Nov 1989 JP
1-318953 Dec 1989 JP
2-168415 Jun 1990 JP
2-227821 Sep 1990 JP
3-109701 May 1991 JP
4-123312 Apr 1992 JP
5-258283 Oct 1993 JP
5-267409 Oct 1993 JP
5-298653 Nov 1993 JP
7-57242 Mar 1995 JP
7-114723 May 1995 JP
7-244834 Sep 1995 JP
7-326044 Dec 1995 JP
8-7256 Jan 1996 JP
9-73626 Mar 1997 JP
H09-190623 Jul 1997 JP
10-149788 Jun 1998 JP
10-303199 Nov 1998 JP
11-073630 Mar 1999 JP
11-110743 Apr 1999 JP
11-175949 Jul 1999 JP
11-259849 Sep 1999 JP
11-273051 Oct 1999 JP
2000-241319 Sep 2000 JP
2000-251240 Sep 2000 JP
2002-8910 Jan 2002 JP
2002-157726 May 2002 JP
2002-222515 Aug 2002 JP
2002-298332 Oct 2002 JP
2002-329605 Nov 2002 JP
2002-347197 Dec 2002 JP
2002-367142 Dec 2002 JP
2002-367318 Dec 2002 JP
2002-373414 Dec 2002 JP
2003-77116 Mar 2003 JP
2003-296918 Oct 2003 JP
2003-323710 Nov 2003 JP
2004-5793 Jan 2004 JP
2004-005820 Jan 2004 JP
2004-55137 Feb 2004 JP
2004-103186 Apr 2004 JP
2004-114492 Apr 2004 JP
2004-133997 Apr 2004 JP
2004-185676 Jul 2004 JP
2005-029656 Feb 2005 JP
2005-038579 Feb 2005 JP
2005-209265 Aug 2005 JP
2005-243063 Sep 2005 JP
2005-243162 Sep 2005 JP
2006-54018 Feb 2006 JP
2006-92672 Apr 2006 JP
2006-234835 Sep 2006 JP
2006-257434 Sep 2006 JP
2006-286114 Oct 2006 JP
2007-265555 Oct 2007 JP
2007-273039 Oct 2007 JP
2007-287310 Nov 2007 JP
2007-297427 Nov 2007 JP
2007-305197 Nov 2007 JP
2008-047276 Feb 2008 JP
2008-243317 Oct 2008 JP
2009-32338 Feb 2009 JP
2009-093738 Apr 2009 JP
2009-245515 Oct 2009 JP
2009-283082 Dec 2009 JP
2010-036350 Feb 2010 JP
2010-49731 Mar 2010 JP
2011-48878 Mar 2011 JP
2011-134372 Jul 2011 JP
2011-138566 Jul 2011 JP
2011-187142 Sep 2011 JP
2011-210288 Oct 2011 JP
2011-225417 Nov 2011 JP
2012-38367 Feb 2012 JP
2012-043495 Mar 2012 JP
2012-203955 Oct 2012 JP
2012-203956 Oct 2012 JP
2013-25853 Feb 2013 JP
2013-77360 Apr 2013 JP
2013-164889 Aug 2013 JP
2014-15453 Jan 2014 JP
2014-179149 Sep 2014 JP
2015-39801 Mar 2015 JP
2015-111484 Jun 2015 JP
2015-201241 Nov 2015 JP
2016-15183 Jan 2016 JP
2016-502224 Jan 2016 JP
2016-051493 Apr 2016 JP
2016-071912 May 2016 JP
2016-71926 May 2016 JP
2016-110680 Jun 2016 JP
2016-126817 Jul 2016 JP
2016-139451 Aug 2016 JP
2016-177851 Oct 2016 JP
2017-16732 Jan 2017 JP
2017-041291 Feb 2017 JP
2017-041296 Feb 2017 JP
2017-174475 Sep 2017 JP
2017-228328 Dec 2017 JP
2017-228331 Dec 2017 JP
2018-73454 May 2018 JP
2018-92693 Jun 2018 JP
2019-08847 Jan 2019 JP
2019065199 Apr 2019 WO
2019065200 Apr 2019 WO
Non-Patent Literature Citations (406)
Entry
Ridaoui, H., et al. “Effect of Cationic Surfactant and Block Copolymer on Carbon Black Particle Surface Charge and Size.” Colloids and Surfaces A: Physicochemical and Engineering Aspects, Elsevier, Jan. 18, 2006 (Year: 2006).
Non-Final Office Action dated Feb. 3, 2021 in U.S. Appl. No. 16/009,461.
Notice of Allowance dated Dec. 2, 2020 in U.S. Appl. No. 16/361,797.
Notice of Allowance dated Oct. 1, 2020 in U.S. Appl. No. 16/777,201.
Notice of Allowance dated Sep. 16, 2020 in U.S. Appl. No. 16/848,331.
Office Action dated Mar. 3, 2020 by the Japanese Patent Office in Japanese application No. 2017-123062, corresponding to U.S. Appl. No. 16/009,461.
Office Action dated Aug. 18, 2020 in U.S. Appl. No. 16/361,797.
Office Action dated Jun. 10, 2020 in U.S. Appl. No. 16/848,331.
Office Action dated Jun. 16, 2020 in U.S. Appl. No. 16/777,201.
Office Action dated Sep. 27, 2019 in U.S. Appl. No. 16/361,570.
Office Action dated Sep. 2, 2020 in U.S. Appl. No. 16/361,814.
Notice of Allowance dated Jul. 16, 2021 in U.S. Appl. No. 16/658,565.
Notice of Allowance dated Jul. 8, 2021 in U.S. Appl. No. 16/009,461.
Office Action dated Mar. 23, 2021 in Japanese Application No. 2020-208023, corresponds to U.S. Appl. No. 16/361,814.
Office Action dated Mar. 23, 2021 in Japanese Application No. 2020-208022, corresponds to U.S. Appl. No. 16/361,570.
Office Action dated Mar. 12, 2021 in U.S. Appl. No. 16/658,565.
Notice of Allowance dated Mar. 3, 2021 in U.S. Appl. No. 16/361,814.
English translation of JP H08-7256 published Jan. 12, 1996 provided by Espacenet.
U.S. Appl. No. 17/500,337, filed Oct. 13, 2021 (Kasada).
Office Action dated Oct. 26, 2021 in Japanese Application No. 2018-246873; corresponds to U.S. Appl. No. 16/727,205 (the present application).
Notice of Allowance dated Jan. 24, 2022 in U.S. Appl. No. 17/032,621.
Notice of Allowance dated Jan. 25, 2022 in U.S. Appl. No. 16/361,814.
Notice of Allowance dated Jan. 27, 2022 in U.S. Appl. No. 16/361,797.
Office Action dated Apr. 27, 2021 in Japanese Application No. 2020-122792, corresponds to U.S. Appl. No. 17/021,529.
Office Action dated Nov. 9, 2021 in U.S. Appl. No. 17/021,529.
Office Action dated Feb. 1, 2022 in U.S. Appl. No. 16/832,788.
Notice of Allowance dated Feb. 8, 2022 in U.S. Appl. No. 16/361,589.
Notice of Allowance dated Feb. 9, 2022 in U.S. Appl. No. 16/361,597.
U.S. Appl. No. 16/777,411, Allowed.
U.S. Appl. No. 16/361,589, Pending.
U.S. Appl. No. 16/361,597, Pending.
U.S. Appl. No. 16/522,867, now U.S. Pat. No. 10,902,574.
U.S. Appl. No. 16/522,894, Allowed.
U.S. Appl. No. 16/727,181, Allowed.
U.S. Appl. No. 16/832,284, Pending.
U.S. Appl. No. 16/832,788, Allowed.
U.S. Appl. No. 17/032,621, Pending.
U.S. Appl. No. 17/326,458, Pending.
U.S. Appl. No. 17/328,620, Allowed.
U.S. Appl. No. 17/330,680, Pending.
U.S. Appl. No. 17/368,274, Pending.
U.S. Appl. No. 17/386,616, Pending.
U.S. Appl. No. 16/361,570, now U.S. Pat. No. 10,672,426.
U.S. Appl. No. 16/361,814, Pending.
U.S. Appl. No. 16/361,797, Pending.
U.S. Appl. No. 16/009,461, Allowed.
U.S. Appl. No. 16/848,331, now U.S. Pat. No. 10,891,982.
U.S. Appl. No. 16/658,565, Pending.
U.S. Appl. No. 16/777,201, now U.S. Pat. No. 10,878,846.
U.S. Appl. No. 16/727,205, Pending.
U.S. Appl. No. 17/500,337, Pending.
International Preliminary Report on Patentability dated Mar. 31, 2020 from the International Bureau in International Application No. PCT/JP2018/033531, corresponding to U.S. Appl. No. 16/832,788.
International Preliminary Report on Patentability dated Mar. 31, 2020 in International Application No. PCT/JP2018/033530, corresponding to U.S. Appl. No. 16/832,284.
International Search Report dated Nov. 20, 2018 from the International Searching Authority in International Application No. PCT/JP2018/033531, corresponding to U.S. Appl. No. 16/832,788.
International Search Report dated Nov. 20, 2018 in International Application No. PCT/JP2018/033530, corresponding to U.S. Appl. No. 16/832,284.
Notice of Allowance dated Jul. 28, 2020 in U.S. Appl. No. 16/361,589.
Notice of Allowance dated Jul. 29, 2020 in U.S. Appl. No. 16/361,597.
Notice of Allowance dated Jun. 23, 2020 in U.S. Appl. No. 16/522,894.
Notice of Allowance dated Nov. 12, 2020 in U.S. Appl. No. 16/777,411.
Notice of Allowance dated Nov. 4, 2020 in U.S. Appl. No. 16/727,181.
Notice of Allowance issued Nov. 5, 2020 in U.S. Appl. No. 16/361,597.
Notice of Allowance dated Sep. 17, 2020 in U.S. Appl. No. 16/522,867.
Office Action dated Jul. 20, 2020 in U.S. Appl. No. 16/777,411.
Office Action dated Jun. 25, 2020 in U.S. Appl. No. 16/727,181.
Office Action dated Mar. 13, 2020 in U.S. Appl. No. 16/361,589.
Office Action dated Mar. 13, 2020 in U.S. Appl. No. 16/361,597.
Office Action dated Mar. 2, 2020 in U.S. Appl. No. 16/522,894.
Office Action dated Nov. 3, 2020 in Chinese Application No. 201880063019.7; corresponds to U.S. Appl. No. 16/832,788.
Office Action issued Nov. 6, 2020 in Chinese Application No. 201880052980.4; corresponds to U.S. Appl. No. 16/832,284.
Office Action dated Sep. 15, 2020 in U.S. Appl. No. 16/832,284.
Office Action dated Sep. 15, 2020 in U.S. Appl. No. 16/832,788.
Office Action dated Sep. 23, 2020 in Japanese Application No. 2019-050201, corresponds to U.S. Appl. No. 16/361,589.
Office Action dated Sep. 29, 2020 in Japanese Application No. 2018-141866, corresponds to U.S. Appl. No. 16/522,867.
Office Action dated Sep. 29, 2020 in Japanese Application No. 2018-141867, corresponds to U.S. Appl. No. 16/522,894.
Office Action dated Sep. 29, 2020 in Japanese Application No. 2018-246871, corresponds to U.S. Appl. No. 16/727,181.
Written Opinion dated Nov. 20, 2018 from the International Bureau in International Application No. PCT/JP2018/033531, corresponding to U.S. Appl. No. 16/832,788.
Written Opinion dated Nov. 20, 2018 from the International Bureau in International Application No. PCT/JP2018/033530, corresponding to U.S. Appl. No. 16/832,284.
Notice of Allowance dated Dec. 31, 2020 in U.S. Appl. No. 16/361,589.
Notice of Allowance dated Dec. 9, 2020 in U.S. Appl. No. 16/727,181.
Notice of Allowance dated Apr. 28, 2021 in U.S. Appl. No. 16/361,589.
Notice of Allowance dated Apr. 7, 2021 in U.S. Appl. No. 16/361,597.
Notice of Allowance dated Aug. 17, 2021 in U.S. Appl. No. 17/032,621.
Notice of Allowance dated Feb. 26, 2021 in U.S. Appl. No. 16/777,411.
Notice of Allowance dated Feb. 3, 2021 in U.S. Appl. No. 16/832,284.
Notice of Allowance dated Mar. 8, 2021 in U.S. Appl. No. 16/727,181.
Notice of Allowance dated Mar. 9, 2021 in U.S. Appl. No. 16/522,894.
Notice of Allowance dated Sep. 30, 2021 in U.S. Appl. No. 16/522,894.
Office Action dated Apr. 19, 2021 in U.S. Appl. No. 17/032,621.
Office Action dated Aug. 23, 2021 in U.S. Appl. No. 16/777,411.
Office Action dated Jun. 17, 2021 in U.S. Appl. No. 16/522,894.
Office Action dated Oct. 28, 2021 in U.S. Appl. No. 17/326,458.
Office Action dated Oct. 4, 2021 in U.S. Appl. No. 17/328,620.
Notice of Allowance dated Feb. 3, 2021 in U.S. Appl. No. 16/832,788.
Office Action dated Jul. 15, 2021 in U.S. Appl. No. 16/832,788.
Notice of Allowance dated Nov. 16, 2021 in U.S. Appl. No. 16/832,788.
Office Action dated Mar. 13, 2020 in U.S. Appl. No. 16/522,867.
U.S. Appl. No. 17/326,458, filed May 21, 2021 (Iwamoto).
U.S. Appl. No. 17/328,620, filed May 24, 2021 (Kasada).
U.S. Appl. No. 17/330,680, filed May 26, 2021 (Kasada).
U.S. Appl. No. 17/368,274, filed Jul. 6, 2021 (Kasada).
U.S. Appl. No. 17/386,616, filed Jul. 28, 2021 (Kasada).
Advisory Action dated Jul. 5, 2018 in U.S. Appl. No. 14/838,663.
Office Action dated Apr. 26, 2017 in U.S. Appl. No. 15/388,864.
Office Action dated Aug. 10, 2017, in U.S. Appl. No. 14/870,618.
Office Action dated Aug. 3, 2018 in U.S. Appl. No. 15/388,911.
Office Action dated Feb. 4, 2016 in U.S. Appl. No. 14/753,227.
Office Action dated Jun. 7, 2018 in U.S. Appl. No. 15/380,309.
Office Action dated May 2, 2018, in U.S. Appl. No. 15/280,195.
Office Action dated May 4, 2018, in U.S. Appl. No. 15/422,944.
Office Action dated May 4, 2018, in U.S. Appl. No. 15/625,428.
Office Action dated May 7, 2018, in U.S. Appl. No. 15/624,792.
Office Action dated May 7, 2018, in U.S. Appl. No. 15/624,897.
Office Action dated May 7, 2018, in U.S. Appl. No. 15/626,832.
Office Action dated Nov. 16, 2016 in U.S. Appl. No. 15/072,550.
Office Action dated Oct. 12, 2018, in U.S. Appl. No. 15/626,355.
Office Action dated Oct. 12, 2018, in U.S. Appl. No. 15/627,696.
Office Action dated Oct. 15, 2018, in U.S. Appl. No. 15/619,012.
Office Action dated Oct. 22, 2018, in U.S. Appl. No. 15/854,439.
Office Action dated Oct. 9, 2018, in U.S. Appl. No. 15/628,814.
Office Action dated Sep. 24, 2018, in U.S. Appl. No. 15/690,400.
Office Action dated Sep. 27, 2018, in U.S. Appl. No. 15/690,906.
Office Action dated Sep. 27, 2018, in U.S. Appl. No. 15/854,383.
Office Action dated Aug. 23, 2018 from the United States Patent and Trademark Office in U.S. Appl. No. 15/614,876.
Office Action dated Aug. 23, 2018 from the United States Patent and Trademark Office in U.S. Appl. No. 15/621,464.
Office Action dated Aug. 23, 2018 from the United States Patent and Trademark Office in U.S. Appl. No. 15/626,720.
Office Action dated Aug. 24, 2018 from the United States Patent and Trademark Office in U.S. Appl. No. 15/620,916.
Office Action dated Aug. 3, 2018 from the United States Patent and Trademark Office in U.S. Appl. No. 15/380,336.
Office Action dated Dec. 5, 2016 from the United States Patent and Trademark Office in U.S. Appl. No. 14/978,834.
Office Action dated Dec. 6, 2016 from the United States Patent and Trademark Office in U.S. Appl. No. 14/757,555.
Office Action dated Jun. 9, 2017 in U.S. Appl. No. 15/388,864.
Office Action dated May 30, 2018 in U.S. Appl. No. 15/388,911.
Office Action dated Nov. 18, 2016 in U.S. Appl. No. 14/753,227.
Office Action dated Aug. 15, 2016 in U.S. Appl. No. 14/753,227.
“Introduction to TMR Magnetic Sensors”, Anonymous, Mar. 12, 2015, MR Sensor Technology, pp. 1-5 (Year: 2015).
Notice of Allowance dated Apr. 25, 2017 in U.S. Appl. No. 15/072,550.
Notice of Allowance dated Apr. 27, 2017, in U.S. Appl. No. 15/052,115.
Notice of Allowance dated Apr. 5, 2018, in U.S. Appl. No. 14/867,752.
Notice of Allowance dated Aug. 28, 2018 from the US Patent & Trademark Office in U.S. Appl. No. 15/422,821.
Notice of Allowance dated Aug. 30, 2017, in U.S. Appl. No. 15/466,143.
Notice of Allowance dated Aug. 6, 2018, in U.S. Appl. No. 15/920,768.
Notice of Allowance dated Aug. 9, 2018, in U.S. Appl. No. 15/920,563.
Notice of Allowance dated Dec. 2, 2016 in U.S. Appl. No. 14/753,227.
Notice of Allowance dated Dec. 3, 2018, in U.S. Appl. No. 15/920,518.
Notice of Allowance dated Dec. 4, 2018, in U.S. Appl. No. 15/625,428.
Notice of Allowance dated Feb. 14, 2018, in U.S. Appl. No. 14/870,618.
Notice of Allowance dated Jul. 12, 2017 in U.S. Appl. No. 15/388,864.
Notice of Allowance dated Jul. 13, 2018, in U.S. Appl. No. 15/920,782.
Notice of Allowance dated Jun. 2, 2017, in U.S. Appl. No. 15/218,190.
Notice of Allowance dated Jun. 28, 2017, in U.S. Appl. No. 15/464,991.
Notice of Allowance dated Mar. 14, 2018, in U.S. Appl. No. 15/854,474.
Notice of Allowance dated Mar. 16, 2018 in U.S. Appl. No. 15/854,410.
Notice of Allowance dated May 10, 2018 in U.S. Appl. No. 15/615,871.
Notice of Allowance dated May 8, 2017, in U.S. Appl. No. 14/757,555.
Notice of Allowance dated May 8, 2017, in U.S. Appl. No. 14/978,834.
Notice of Allowance dated Oct. 11, 2018, in U.S. Appl. No. 15/380,336.
Notice of Allowance dated Oct. 11, 2018, in U.S. Appl. No. 15/422,944.
Notice of Allowance dated Oct. 11, 2018, in U.S. Appl. No. 15/624,792.
Notice of Allowance dated Oct. 11, 2018, in U.S. Appl. No. 15/624,897.
Notice of Allowance dated Oct. 12, 2018, in U.S. Appl. No. 15/626,832.
Notice of Allowance dated Oct. 6, 2016, in U.S. Appl. No. 14/209,065.
Notice of Allowance dated Sep. 24, 2018, in U.S. Appl. No. 15/854,438.
Notice of Allowance dated Sep. 4, 2018, in U.S. Appl. No. 15/625,428.
Notice of Allowance dated Apr. 16, 2019 in U.S. Appl. No. 15/625,428.
Notice of Allowance dated Apr. 30, 2019 in U.S. Appl. No. 15/380,309.
Notice of Allowance dated Aug. 27, 2018 in U.S. Appl. No. 15/920,635.
Notice of Allowance dated Jan. 10, 2019 in U.S. Appl. No. 15/848,173.
Notice of Allowance dated Jan. 17, 2019 in U.S. Appl. No. 15/422,944.
Notice of Allowance dated Jan. 17, 2019 in U.S. Appl. No. 15/626,720.
Notice of Allowance dated Jan. 30, 2019 in U.S. Appl. No. 15/854,409.
Notice of Allowance dated Jul. 16, 2019 in U.S. Appl. No. 15/900,144.
Notice of Allowance dated Jul. 31, 2019 in U.S. Appl. No. 16/100,289.
Notice of Allowance dated Jul. 31, 2019 in U.S. Appl. No. 16/143,646.
Notice of Allowance dated Jun. 25, 2019 in U.S. Appl. No. 15/620,916.
Notice of Allowance dated Jun. 27, 2019 in U.S. Appl. No. 15/854,439.
Notice of Allowance dated Jun. 6, 2019 in U.S. Appl. No. 15/854,383.
Notice of Allowance dated Mar. 13, 2019 in U.S. Appl. No. 16/100,289.
Notice of Allowance dated Mar. 14, 2018 in U.S. Appl. No. 15/854,329.
Notice of Allowance dated Mar. 18, 2019 in U.S. Appl. No. 15/626,355.
Notice of Allowance dated Mar. 18, 2019 in U.S. Appl. No. 15/628,814.
Notice of Allowance dated Mar. 5, 2019 in U.S. Appl. No. 16/009,603.
Notice of Allowance dated May 13, 2019 in U.S. Appl. No. 15/900,379.
Notice of Allowance dated May 14, 2019 in U.S. Appl. No. 15/422,821.
Notice of Allowance dated May 14, 2019 in U.S. Appl. No. 15/900,164.
Notice of Allowance dated May 15, 2019 in U.S. Appl. No. 15/900,106.
Notice of Allowance dated May 15, 2019 in U.S. Appl. No. 15/900,242.
Notice of Allowance dated May 16, 2019 in U.S. Appl. No. 15/614,876.
Notice of Allowance dated May 16, 2019 in U.S. Appl. No. 15/621,464.
Notice of Allowance dated May 24, 2019 in U.S. Appl. No. 15/900,345.
Notice of Allowance dated May 24, 2019 in U.S. Appl. No. 16/143,646.
Notice of Allowance dated May 28, 2019 in U.S. Appl. No. 15/920,616.
Notice of Allowance dated May 29, 2019 in U.S. Appl. No. 15/900,160.
Notice of Allowance dated May 29, 2019 in U.S. Appl. No. 15/900,334.
Notice of Allowance dated May 30, 2019 in U.S. Appl. No. 15/900,230.
Office Action dated Apr. 19, 2018, in U.S. Appl. No. 15/854,438.
Office Action dated Dec. 14, 2018, in U.S. Appl. No. 15/920,517.
Office Action dated Dec. 17, 2018, in U.S. Appl. No. 15/920,515.
Office Action dated Dec. 17, 2018, in U.S. Appl. No. 15/920,533.
Office Action dated Dec. 17, 2018, in U.S. Appl. No. 15/920,538.
Office Action dated Dec. 17, 2018, in U.S. Appl. No. 15/920,544.
Office Action dated Dec. 20, 2018, in U.S. Appl. No. 15/900,164.
Office Action dated Dec. 21, 2018, in U.S. Appl. No. 15/900,230.
Office Action dated Feb. 25, 2016, in U.S. Appl. No. 14/867,752.
Office Action dated Jan. 27, 2015 from the Japanese Patent Office in Japanese Application No. 2013-053543.
Office Action dated Jan. 31, 2018, in U.S. Appl. No. 14/867,752.
Office Action dated Jul. 3, 2018, in U.S. Appl. No. 15/920,518.
Office Action dated Jul. 6, 2015, in U.S. Appl. No. 14/209,065.
Office Action dated Jul. 6, 2018 from the United States Patent and Trademark Office in U.S. Appl. No. 15/848,173.
Office Action dated Mar. 13, 2015, in U.S. Appl. No. 14/209,065.
Office Action dated Mar. 16, 2017, in U.S. Appl. No. 14/867,752.
Office Action dated Mar. 24, 2016, in U.S. Appl. No. 14/209,065.
Office Action dated May 4, 2018 in U.S. Appl. No. 15/422,821.
Office Action dated Nov. 28, 2018, in U.S. Appl. No. 15/899,587.
Office Action dated Nov. 28, 2018, in U.S. Appl. No. 15/900,080.
Office Action dated Nov. 28, 2018, in U.S. Appl. No. 15/900,144.
Office Action dated Nov. 29, 2018, in U.S. Appl. No. 15/380,309.
Office Action dated Nov. 29, 2018, in U.S. Appl. No. 15/422,821.
Office Action dated Nov. 8, 2016 from the Japanese Patent Office in Japanese Application No. 2014-199022.
Office Action dated Oct. 15, 2018, in U.S. Appl. No. 15/854,403.
Office Action dated Oct. 19, 2016, in U.S. Appl. No. 14/867,752.
Office Action dated Oct. 3, 2018 from the United States Patent and Trademark Office in U.S. Appl. No. 15/280,195.
Office Action dated Sep. 10, 2015, in U.S. Appl. No. 14/209,065.
Office Action dated Sep. 19, 2014, in U.S. Appl. No. 14/209,065.
Office Action dated Sep. 26, 2017 issued by the Japanese Patent Office in JP Appln. No. 2014-265723.
Office Action dated Sep. 26, 2017 issued by the Japanese Patent Office in JP Appln. No. 2015-249264.
Office Action dated Sep. 28, 2018, in U.S. Appl. No. 15/854,409.
Office Action dated Sep. 7, 2017, in U.S. Appl. No. 14/867,752.
Office Action dated Apr. 15, 2019 in U.S. Appl. No. 16/182,083.
Office Action dated Apr. 16, 2019 in U.S. Appl. No. 16/232,165.
Office Action dated Apr. 23, 2019 in Japanese Application No. 2016-169851.
Office Action dated Apr. 23, 2019 in Japanese Application No. 2016-182230.
Office Action dated Aug. 23, 2019 in U.S. Appl. No. 15/854,409.
Office Action dated Aug. 25, 2017 in U.S. Appl. No. 14/838,663.
Office Action dated Aug. 27, 2019 in Japanese Application No. 2016-254428.
Office Action dated Aug. 27, 2019 in Japanese Application No. 2016-254430.
Office Action dated Aug. 27, 2019 in Japanese Application No. 2016-254432.
Office Action dated Aug. 28, 2019 in U.S. Appl. No. 15/854,397.
Office Action dated Aug. 6, 2019 in Japanese Application No. 2016-254421.
Office Action dated Aug. 6, 2019 in Japanese Application No. 2016-254427.
Office Action dated Dec. 19, 2018 in U.S. Appl. No. 15/900,345.
Office Action dated Dec. 19, 2018 in U.S. Appl. No. 15/900,379.
Office Action dated Dec. 20, 2018 in U.S. Appl. No. 15/900,106.
Office Action dated Dec. 20, 2018 in U.S. Appl. No. 15/900,242.
Office Action dated Dec. 21, 2018 in U.S. Appl. No. 15/900,160.
Office Action dated Dec. 21, 2018 in U.S. Appl. No. 15/920,616.
Office Action dated Dec. 25, 2018 in Japanese Application No. 2015-245144.
Office Action dated Dec. 25, 2018 in Japanese Application No. 2015-245145.
Office Action dated Dec. 25, 2018 in Japanese Application No. 2015-254192.
Office Action dated Dec. 27, 2018 in U.S. Appl. No. 15/900,334.
Office Action dated Dec. 31, 2018 in U.S. Appl. No. 16/009,603.
Office Action dated Dec. 7, 2018 in U.S. Appl. No. 15/920,592.
Office Action dated Feb. 11, 2016 in U.S. Appl. No. 14/838,663.
Office Action dated Feb. 21, 2019 in U.S. Appl. No. 15/854,383.
Office Action dated Feb. 26, 2019 in Japanese Application No. 2016-123207.
Office Action dated Feb. 26, 2019 in U.S. Appl. No. 15/380,336.
Office Action dated Feb. 26, 2019 in U.S. Appl. No. 15/624,792.
Office Action dated Feb. 26, 2019 in U.S. Appl. No. 15/624,897.
Office Action dated Feb. 26, 2019 in U.S. Appl. No. 15/626,832.
Office Action dated Feb. 28, 2019 in U.S. Appl. No. 15/920,518.
Office Action dated Feb. 5, 2019 in Japanese Application No. 2016-117339.
Office Action dated Feb. 5, 2019 in Japanese Application No. 2016-123205.
Office Action dated Feb. 5, 2019 in Japanese Application No. 2016-169871.
Office Action dated Feb. 5, 2019 in U.S. Appl. No. 16/038,339.
Office Action dated Feb. 7, 2019 in U.S. Appl. No. 15/621,464.
Office Action dated Jan. 10, 2019 in U.S. Appl. No. 15/899,430.
Office Action dated Jan. 29, 2019 in U.S. Appl. No. 15/614,876.
Office Action dated Jan. 30, 2019 in U.S. Appl. No. 15/620,916.
Office Action dated Jul. 16, 2019 in Japanese Application No. 2016-124933.
Office Action dated Jun. 10, 2019 in U.S. Appl. No. 15/920,518.
Office Action dated Jun. 25, 2019 in Japanese Application No. 2015-245144.
Office Action dated Jun. 6, 2019 in U.S. Appl. No. 15/899,587.
Office Action dated Mar. 15, 2018 in U.S. Appl. No. 14/838,663.
Office Action dated Mar. 15, 2019 in U.S. Appl. No. 15/280,195.
Office Action dated Mar. 15, 2019 in U.S. Appl. No. 15/619,012.
Office Action dated Mar. 15, 2019 in U.S. Appl. No. 15/627,696.
Office Action dated Mar. 15, 2019 in U.S. Appl. No. 15/690,906.
Office Action dated Mar. 18, 2019 in U.S. Appl. No. 15/442,961.
Office Action dated Mar. 19, 2019 in Japanese Application No. 2016-116261.
Office Action dated Mar. 19, 2019 in Japanese Application No. 2016-124515.
Office Action dated Mar. 19, 2019 in Japanese Application No. 2016-124529.
Office Action dated Mar. 19, 2019 in Japanese Application No. 2016-124932.
Office Action dated Mar. 19, 2019 in Japanese Application No. 2016-124933.
Office Action dated Mar. 19, 2019 in Japanese Application No. 2016-124935.
Office Action dated Mar. 19, 2019 in U.S. Appl. No. 15/443,094.
Office Action dated Mar. 21, 2019 in U.S. Appl. No. 15/900,144.
Office Action dated Mar. 21, 2019 in U.S. Appl. No. 16/160,377.
Office Action dated Mar. 27, 2019 in U.S. Appl. No. 15/690,400.
Office Action dated Mar. 30, 2017 in U.S. Appl. No. 14/838,663.
Office Action dated Mar. 5, 2019 in U.S. Appl. No. 15/443,026.
Office Action dated Mar. 5, 2019 in U.S. Appl. No. 15/854,397.
Office Action dated Mar. 6, 2019 in U.S. Appl. No. 15/854,403.
Office Action dated Mar. 7, 2019 in U.S. Appl. No. 15/854,439.
Office Action dated May 23, 2019 in U.S. Appl. No. 15/388,911.
Office Action dated Nov. 14, 2018 in U.S. Appl. No. 16/100,289.
Office Action dated Nov. 19, 2018 in U.S. Appl. No. 15/900,141.
Office Action dated Oct. 12, 2018 in U.S. Appl. No. 15/854,397.
Office Action dated Sep. 12, 2016 in U.S. Appl. No. 14/838,663.
Office Action dated Sep. 16, 2019 in U.S. Appl. No. 15/854,403.
Office Action dated Sep. 17, 2019 in Japanese Application No. 2017-029499.
Office Action dated Sep. 19, 2019 in U.S. Appl. No. 15/443,026.
Office Action dated Sep. 20, 2019 in U.S. Appl. No. 15/442,961.
Office Action dated Sep. 24, 2019 in Japanese Application No. 2016-254436.
Office Action dated Sep. 24, 2019 in Japanese Application No. 2016-254439.
Office Action dated Sep. 24, 2019 in Japanese Application No. 2016-254441.
Office Action dated Sep. 24, 2019 in Japanese Application No. 2016-254450.
Office Action dated Sep. 24, 2019 in Japanese Application No. 2017-029491.
Office Action dated Sep. 24, 2019 in Japanese Application No. 2017-029508.
Office Action dated Sep. 24, 2019 in Japanese Application No. 2017-065730.
Office Action dated Sep. 3, 2019 in Japanese Application No. 2016-254434.
Office Action dated Oct. 1, 2019 in Japanese Application No. 2017-029495.
Office Action dated Oct. 1, 2019 in Japanese Application No. 2017-029493.
Office Action dated Oct. 1, 2019 in Japanese Application No. 2017-029494.
Office Action dated Oct. 2, 2019 in U.S. Appl. No. 15/443,094.
Office Action dated Oct. 5, 2017 in U.S. Appl. No. 15/241,286.
Office Action dated Oct. 5, 2017 in U.S. Appl. No. 15/241,631.
Office Action dated Oct. 5, 2017 in U.S. Appl. No. 15/378,907.
Office Action dated Oct. 5, 2017 in U.S. Appl. No. 15/241,297.
Notice of Allowance dated Mar. 21, 2018 in U.S. Appl. No. 15/241,286.
Notice of Allowance dated Mar. 27, 2018 in U.S. Appl. No. 15/241,631.
Notice of Allowance dated Mar. 19, 2018 in U.S. Appl. No. 15/378,907.
Notice of Allowance dated Mar. 21, 2018 in U.S. Appl. No. 15/241,297.
Office Action dated Oct. 8, 2019 in Japanese Application No. 2017-029492.
Office Action dated Oct. 8, 2019 in Japanese Application No. 2017-065700.
Office Action dated Oct. 8, 2019 in Japanese Application No. 2017-065708.
Office Action dated Oct. 8, 2019 in Japanese Application No. 2017-065678.
Office Action dated Oct. 10, 2019 in U.S. Appl. No. 15/705,531.
Office Action dated Oct. 9, 2019 in U.S. Appl. No. 16/440,161.
Office Action dated Oct. 22, 2019 in U.S. Appl. No. 16/037,564.
Notice of Allowance dated Oct. 17, 2019 in U.S. Appl. No. 15/388,911.
Office Action dated Dec. 10, 2019 in Japanese Application No. 2016-254428.
Office Action dated Dec. 17, 2019 in Japanese Application No. 2016-254430.
Office Action dated Dec. 17, 2019 in Japanese Application No. 2016-254432.
Office Action dated Dec. 17, 2019 in Japanese Application No. 2017-029507.
Office Action dated Dec. 24, 2019 in Japanese Application No. 2016-254434.
Office Action dated Dec. 24, 2019 in Japanese Application No. 2017-029510.
Office Action dated Nov. 26, 2019 in Japanese Application No. 2016-254421.
Office Action dated Nov. 26, 2019 in Japanese Application No. 2017-029496.
Office Action dated Nov. 26, 2019 in Japanese Application No. 2017-029502.
Office Action dated Nov. 26, 2019 in Japanese Application No. 2017-065694.
Advisory Action dated Jan. 17, 2020 in U.S. Appl. No. 15/443,094.
Office Action dated Jan. 28, 2020 in U.S. Appl. No. 15/442,961.
Notice of Allowance dated Feb. 7, 2020 in U.S. Appl. No. 16/440,161.
Notice of Allowance dated Feb. 20, 2020 in U.S. Appl. No. 15/705,531.
Office Action dated Feb. 21, 2020 in U.S. Appl. No. 16/038,514.
Notice of Allowance dated Mar. 18, 2020 in U.S. Appl. No. 16/037,564.
Office Action dated Mar. 10, 2020 in U.S. Appl. No. 16/037,573.
Office Action dated Mar. 10, 2020 in U.S. Appl. No. 16/037,596.
Office Action dated Mar. 10, 2020 in U.S. Appl. No. 16/037,681.
Office Action dated Mar. 10, 2020 in U.S. Appl. No. 16/038,545.
Office Action dated Mar. 10, 2020 in U.S. Appl. No. 16/038,687.
Office Action dated Mar. 10, 2020 in U.S. Appl. No. 16/038,771.
Office Action dated Mar. 10, 2020 in U.S. Appl. No. 16/038,884.
Office Action dated Mar. 10, 2020 in U.S. Appl. No. 16/038,847.
Office Action dated Mar. 10, 2020 in U.S. Appl. No. 16/142,560.
Office Action dated Mar. 10, 2020 in U.S. Appl. No. 16/144,428.
Office Action dated Mar. 13, 2020 in U.S. Appl. No. 16/038,669.
Office Action dated Mar. 13, 2020 in U.S. Appl. No. 16/144,605.
Office Action dated Mar. 31, 2020 in U.S. Appl. No. 15/443,026.
Office Action dated Apr. 1, 2020 in U.S. Appl. No. 15/443,094.
Office Action dated Apr. 29, 2020 in U.S. Appl. No. 16/012,018.
Notice of Allowance dated May 7, 2020 in U.S. Appl. No. 16/038,514.
Notice of Allowance dated Aug. 17, 2020 in U.S. Appl. No. 15/443,026.
Notice of Allowance dated Aug. 3, 2020 in U.S. Appl. No. 16/038,847.
Notice of Allowance dated Aug. 3, 2020 in U.S. Appl. No. 16/038,884.
Notice of Allowance dated Jul. 23, 2020 in U.S. Appl. No. 16/037,573.
Notice of Allowance dated Jul. 23, 2020 in U.S. Appl. No. 16/038,669.
Notice of Allowance dated Jul. 24, 2020 in U.S. Appl. No. 16/037,596.
Notice of Allowance dated Jul. 27, 2020 in U.S. Appl. No. 16/038,771.
Notice of Allowance dated Jul. 29, 2020 in U.S. Appl. No. 16/037,681.
Notice of Allowance dated Jul. 29, 2020 in U.S. Appl. No. 16/142,560.
Notice of Allowance dated Jul. 29, 2020 in U.S. Appl. No. 16/144,428.
Notice of Allowance dated Jul. 29, 2020 in U.S. Appl. No. 16/144,605.
Notice of Allowance dated Jul. 30, 2020 in U.S. Appl. No. 16/038,545.
Notice of Allowance dated Jul. 30, 2020 in U.S. Appl. No. 16/038,687.
Notice of Allowance dated Sep. 17, 2020 in U.S. Appl. No. 16/012,018.
Office Action dated Aug. 25, 2020 in Chinese Application No. 201711439496.2.
Office Action dated Jul. 8, 2020 in U.S. Appl. No. 15/442,961.
Notice of Allowance dated Sep. 23, 2020 in U.S. Appl. No. 15/443,094.
Notice of Allowance dated Nov. 13, 2020 in U.S. Appl. No. 15/442,961.
Notice of Allowance dated Nov. 26, 2021 in U.S. Appl. No. 16/658,565.
Office Action dated Dec. 2, 2021 in U.S. Appl. No. 17/330,680.
Office Action dated Dec. 7, 2021 in Japanese Application No. 2019-016529.
Notice of Allowance dated Dec. 15, 2021 in U.S. Appl. No. 16/777,411.
Notice of Allowance dated Jan. 5, 2022 in U.S. Appl. No. 17/328,620.
Notice of Allowance dated Jan. 5, 2022 in U.S. Appl. No. 16/727,181.
Notice of Allowance dated Jan. 7, 2022 in U.S. Appl. No. 16/522,894.
Notice of Allowance dated May 25, 2022 in U.S. Appl. No. 16/658,565.
Notice of Allowance dated May 26, 2022 in U.S. Appl. No. 17/326,458.
Office Action dated Jun. 8, 2022 in U.S. Appl. No. 17/386,616.
Office Action dated Apr. 19, 2022 in Japanese Application No. 2020-122807, corresponds to U.S. Appl. No. 16/522,894.
Office Action dated Mar. 22, 2022 in Chinese Application No. 20211076596.1, corresponds to U.S. Appl. No. 16/832,284.
Office Action dated Apr. 13, 2022 in U.S. Appl. No. 17/368,274.
Notice of Allowance dated Feb. 16, 2022 in U.S. Appl. No. 16/832,284.
Office Action dated Mar. 1, 2022 in U.S. Appl. No. 16/009,461.
Notice of Allowance dated Mar. 2, 2022 in U.S. Appl. No. 16/658,565.
Notice of Allowance dated Mar. 4, 2022 in U.S. Appl. No. 16/777,411.
Office Action dated Mar. 16, 2022 in U.S. Appl. No. 16/361,797.
Notice of Allowance dated Mar. 16, 2022 in U.S. Appl. No. 17/330,680.
Office Action dated Mar. 18, 2022 in U.S. Appl. No. 16/361,814.
Notice of Allowance dated Mar. 22, 2022 in U.S. Appl. No. 17/032,621.
Notice of Allowance dated Mar. 23, 2022 in U.S. Appl. No. 17/328,620.
Notice of Allowance dated Mar. 29, 2022 in U.S. Appl. No. 16/727,181.
Notice of Allowance dated Apr. 5, 2022 in U.S. Appl. No. 17/326,458.
Notice of Allowance dated Apr. 6, 2022 in U.S. Appl. No. 17/021,529.
Notice of Allowance dated Apr. 12, 2022 in U.S. Appl. No. 16/522,894.
Notice of Allowance dated Jul. 6, 2022 in U.S. Appl. No. 16/832,788.
Notice of Allowance dated Jun. 27, 2022 in U.S. Appl. No. 16/009,461.
Related Publications (1)
Number Date Country
20200211593 A1 Jul 2020 US