This invention relates generally to thermally insulated enclosures, and more particularly to systems for mounting thermally insulated enclosures.
There has long been a high demand for portable insulated containers such as, for example, coolers, food and beverage containers, water coolers, lunch boxes, etc. Such containers are frequently transported in highly dynamic and, therefore, unstable environments such as, for example, on off-road vehicles, boats, construction trailers, heavy construction equipment, etc. When transporting containers in such environments, it is almost always necessary that they be secured down in order to prevent any problems associated with tipping and/or sliding. Doing so typically entails securing the enclosure to a stable structure via some suitable fastener (e.g., elastic cord, rope, strap, etc).
Although tipping and sliding problems can be prevented by fastening the enclosure to a stable structure via mechanical fasteners, there are disadvantages to doing so. For example, the enclosure can only be secured in locations where there are available structures (e.g., eye bolt) for the mechanical fasteners to engage. Another disadvantage to the current solution is the inconvenience associated with having to make sure the enclosure is accompanied by the fastener. Not only is it inconvenient to always keep a fastener on hand, but it is also inconvenient to have to remember to secure the enclosure. For example, forgetting to secure lunchboxes down on work trailers is a very common problem that often results in it falling off while the trailer is moving. As another example, the current solutions also impose challenges on heavy equipment operators because they typically have to remain on the equipment for long periods of time and, therefore, have to keep their coolers nearby. This is problematic in that there are typically not very many convenient structures to which an enclosure can be mounted via fasteners.
In efforts to alleviate the aforementioned problems, manufacturers have incorporated various types of slip preventative features into the design of many insulated enclosures. For example, friction promoting features (e.g., rubber, treads, etc) are often formed on the bottom surfaces of insulated containers.
Although friction promoting features can increase the amount of friction between the bottom surface of the container and the underlying surface, it is typically insignificant in such unstable environments.
What is needed, therefore, is an insulated enclosure that can be secured to a structure without additional fasteners. What is also needed is an insulated enclosure that can be secured to structures where no fastener structures are available. What is also needed is an insulated enclosure that is simpler to secure onto structures.
The present invention overcomes the problems associated with the prior art by providing a thermally insulated enclosure having a magnet assembly that facilitates magnetic coupling of the insulated enclosure to a ferromagnetic structure. The invention facilitates, for example, securing ice chests, water coolers, and the like to vehicles and/or other equipment or structures.
In an example embodiment, a thermally insulated enclosure includes an insulated wall, an opening, and a magnet assembly. The insulated wall includes a first surface defining an interior of the enclosure and a second surface defining an exterior of the enclosure. The opening is closable and defines a passageway between the exterior of the enclosure and the interior of the enclosure. The magnet assembly is coupled to the insulated wall, and provides an attractive magnetic force sufficient to fixedly secure the thermally insulated enclosure to a ferromagnetic structure. Optionally, the attractive magnetic force of the magnet assembly is sufficient to fixedly secure the thermally insulated enclosure to a vertical surface of ferromagnetic structures. In some disclosed embodiments, the attractive magnetic force of the magnet assembly is sufficient to fixedly secure the thermally insulated enclosure to a vertical surface of a ferromagnetic structure when the thermally insulated enclosure is full of liquid.
In one example embodiment, the magnet assembly includes at least one magnet mounted to the second surface of the insulated wall (exterior of enclosure). In an alternate embodiment, the magnet assembly includes at least one magnet mounted to the first surface of the insulated wall (interior of enclosure), and the thermally insulated enclosure is an insulated bag. In another alternate embodiment, the magnet assembly includes at least one magnet mounted between the first surface of the insulated wall and the second surface of the insulated wall (within the insulated wall).
In an example embodiment, a portion of the insulated wall defines a bottom region of the thermally insulated enclosure, and the magnet assembly is disposed at the bottom region of the thermally insulated enclosure. In another example embodiment, a portion of the insulated wall defines a side region of the thermally insulated enclosure, and the magnet assembly is disposed at the side region of the thermally insulated enclosure. Optionally, the magnet assembly includes at least one magnet coupled to the side region of the thermally insulated enclosure and at least one magnet coupled to the bottom region of the thermally insulated enclosure.
In an example embodiment, the magnet assembly is removable from the thermally insulated enclosure. The magnet assembly includes a rigid support structure adapted to engage the exterior of the enclosure. At least one magnet is fixedly coupled to the rigid support structure, and a fastening device is coupled to the rigid support structure. The fastening device is operative to fixedly couple the insulated wall to the rigid support member. Optionally, the magnet assembly is adapted to universally mount objects to ferromagnetic structures.
In a particular embodiment, the rigid support structure is a plate having a top surface and an opposite bottom surface. The top surface is adapted to engage the exterior of the insulated wall, and the at least one magnet of the magnet assembly is fixedly attached to the bottom surface of the plate. In one example embodiment, the fastening device is a strap. In another embodiment, the rigid support structure is a molded structure formed around at least a portion of the at least one magnet.
Optionally, the thermally insulated enclosure is collapsible. For example, in one particular embodiment, the insulated enclosure is a bag. In another example embodiment, the insulated enclosure is a collapsible chest. The collapsible chest includes a removable insert that has an inner surface defining at least a portion of the interior of the thermally insulated enclosure. The thermally insulated enclosure includes a collapsible outer shell, which has an outer surface defining at least a portion of the exterior of the thermally insulated enclosure, and the collapsible outer shell is adapted to receive the removable insert. The removable insert and the collapsible outer shell form components of the insulated wall, and the magnet assembly is coupled to a portion the collapsible outer shell. Optionally, the portion of the collapsible outer shell coupled to the magnet assembly is formed by molding material directly around at least a portion of the magnet assembly.
In another example embodiment, the thermally insulated enclosure is rigid. The insulated wall includes a first rigid layer, a second rigid layer, and an insulation layer. The first rigid layer has an outer surface and an opposite inner surface. The outer surface of the first rigid layer defines the exterior of the thermally insulated enclosure. The second rigid layer has an outer surface and an opposite inner surface. The inner surface of the second rigid layer defines the interior of the thermally insulated enclosure. The insulation layer is sandwiched between the inner surface of the first rigid layer and the outer surface of the second rigid layer. The magnet assembly includes at least one magnet fixedly coupled to the outer surface of the first rigid layer. Alternatively, the magnet assembly includes at least one magnet disposed between the inner surface of the first rigid layer and the insulation layer. As another alternative, a portion of the first rigid layer is molded directly on at least a portion of the magnet assembly.
In yet another example embodiment, the thermally insulated enclosure is a container adapted to dispense potable liquids (e.g., a water cooler). A portion of the insulated wall defines a bottom region of the water cooler, and the magnet assembly is removably coupled to the bottom region of the water cooler. The magnet assembly is operative to fixedly mount the water cooler on horizontal surfaces of ferromagnetic structures. Alternatively, a portion of the insulated wall defines a side region of the water cooler, the magnet assembly is removably coupled to the side region of the water cooler, so that the magnet assembly is operative to fixedly mount the water cooler to a vertical surface of a ferromagnetic structure.
The insulated wall of the water cooler includes a first rigid layer, a second rigid layer, and an insulation layer. The first rigid layer has an outer surface and an opposite inner surface. The outer surface of the first rigid layer defines the exterior of the thermally insulated enclosure. The second rigid layer has an outer surface and an opposite inner surface. The inner surface of the second rigid layer defines the interior of the thermally insulated enclosure. The insulation layer is sandwiched between the inner surface of the first rigid layer and the outer surface of the second rigid layer.
The magnet assembly is fixedly coupled to the outer surface of the first rigid layer of the insulated wall of the water cooler. Alternatively, the magnet assembly includes at least one magnet disposed between the inner surface of the first rigid layer and the insulation layer. As another alternative, a portion of said first rigid layer is molded directly on at least a portion of said magnet assembly. The magnet assembly can be coupled to a bottom region of the insulated wall and/or a side region of said insulated wall.
Each of the disclosed example embodiments includes means for coupling a thermally insulated enclosure to a ferromagnetic substrate.
A method for manufacturing a thermally insulated enclosure is also disclosed. The method includes providing an exterior structure, a plurality of magnets, an insulation structure, and an interior structure. The exterior structure includes an exterior surface and an interior surface. The interior surface of the exterior structure defines an inner region of the exterior structure. The insulation structure includes an exterior surface and an interior surface. The interior surface of the insulation structure defines an inner region of the insulation structure. The interior structure includes an exterior surface and an interior surface. The interior surface of the interior structure defines an inner region of the thermally insulated enclosure. The method further includes positioning the plurality of magnets in the inner region of the exterior structure. The method further includes positioning the insulation structure in the inner region of the exterior structure such that the plurality of magnets is disposed between the exterior structure and the insulation structure. The method further includes positioning the interior structure in the inner region of the insulation structure. The plurality of magnets and the insulation structure are disposed between the exterior structure and the interior structure. The method further includes coupling the interior structure to the exterior structure.
In a particular method, the exterior structure defines a plurality of screw holes, the exterior surface of the interior structure defines a plurality of screw bosses coaxially aligned with the plurality of screw holes, and the method further comprises providing a plurality screws disposed through the screw holes and into the plurality of screw bosses. In a more particular example, each of the magnets defines a through-hole and each of the screws is disposed through a respective one of the through-holes of the magnets. The insulation structure also defines a plurality of through-holes and each of the screw bosses is disposed in a respective one of the through-holes of the insulation structure.
Optionally, each of the screws can be fitted with a suction cup, which facilitates mounting the thermally insulated enclosure on a non-magnetic structure. As another option, a separate set of screws having suction cups connected thereto can be provided, such that the original screws and the suction cup screws can be interchanged depending on the surface upon which the thermally insulated enclosure is to be mounted.
In another particular method, the exterior structure defines a snap feature, the interior structure defines a complementary snap feature adapted to engage the snap feature of the exterior structure, and the exterior structure and the interior structure are coupled together via engaging the snap feature of the exterior structure and the complementary snap feature of the interior structure. In a more particular example, at least one of the snap feature and the complementary snap feature is a lip and the other of the snap features and the complementary snap features is a lip engaging structure. The lip is formed on the interior surface of the exterior structure.
In another particular method, the interior surface of the exterior structure defines a plurality of magnet seats. Furthermore, the method includes seating each of the plurality of magnets in a respective one of the plurality of magnet seats.
In another particular example of the method, each of the plurality of magnets includes a shunt structure.
In another particular example of the method, each of the plurality of magnets is annular shaped.
In another particular example of the method, each of the plurality of magnets is located at a different bottom corner of the thermally insulated enclosure. In a more specific example, the step of providing the plurality of magnets includes providing four discrete magnets.
In another particular example of the method, the exterior structure is a rigid structure. In a more specific example, the exterior structure is a molded polymer structure.
In another particular example of the method, the interior structure is a rigid structure. In a more specific example, the interior structure is a molded polymer structure.
In another particular example of the method, the insulation structure is a rigid structure. In a more specific example, the insulation structure is a foam structure.
In another particular example of the method, the exterior structure is a rigid structure that is formed before the thermally insulated enclosure is assembled, the interior structure is a rigid structure that is formed before the thermally insulated enclosure is assembled, and the insulation structure is a rigid structure formed before the thermally insulated enclosure is assembled.
In other embodiments, advantages are provided by fixing magnets in a carrier and incorporating the magnet carrier into the design of the thermally insulated enclosure. An example method for manufacturing a magnetic, thermally insulated enclosure includes providing a thermally insulated enclosure, providing a magnet carrier having a substrate and a plurality of magnets fixed to the substrate, and coupling the magnet carrier to the thermally insulated enclosure. Optionally, the step of coupling the magnet carrier to the thermally insulated enclosure can include coupling the magnet carrier to the thermally insulated enclosure during the process of manufacturing the thermally insulated enclosure. Alternatively, the step of coupling the magnet carrier to the thermally insulated enclosure can include coupling the magnet carrier to the thermally insulated enclosure after the process of manufacturing the thermally insulated enclosure.
In an example method, the step of providing the thermally insulated enclosure includes providing a thermally insulated enclosure having pliable sidewalls. However, the sidewalls and/or bottom wall can be rigid.
The magnet carrier can be made in different ways. In one advantageous method, the magnets can be molded into the substrate. In another method, the magnets can be mechanically fixed to the substrate.
Another method of manufacturing a thermally insulated enclosure with a liner is disclosed. The method includes providing a liner adapted to fit within the thermally insulated enclosure, placing the magnet carrier within the thermally insulated enclosure, and placing the liner within the thermally insulated enclosure with the magnet carrier disposed between a bottom wall or a side wall of the thermally insulated enclosure and the liner.
Another method of manufacturing a thermally insulated enclosure without a liner is disclosed. In that example method, the step of coupling the magnet carrier to the thermally insulated enclosure includes inserting the magnet carrier into one of the bottom wall or a side wall of the thermally insulated enclosure. Optionally, the step of inserting the magnet carrier into one of the bottom wall or the side wall of the thermally insulated enclosure includes removably inserting the magnet carrier through an opening in the bottom wall or the side wall. The opening is adapted to facilitate the insertion and removal of the magnet carrier. The magnet carrier can be positioned within the bottom wall or a side wall of the thermally insulated enclosure but outside of a thermally insulating layer of the bottom wall or side wall with respect to an interior of the thermally insulated enclosure. Beneficially, the insulating layer is then not interposed between the magnets and an external ferromagnetic surface.
Other example magnetic, thermally insulated enclosures are disclosed. One example includes a thermally insulating enclosure, a plurality of plurality of magnets, and a magnet carrier coupled to the magnets and to the thermally insulating enclosure, thereby coupling the magnets to the thermally insulating enclosure. The magnet carrier can be permanently coupled to the thermally insulating enclosure. Alternatively, the magnet carrier can be removably coupled to the thermally insulating enclosure. The thermally insulating enclosure can include a plurality of pliable side walls or, optionally, one or more rigid walls.
In one embodiment, the magnet carrier includes a substrate, and the plurality of magnets are molded into the substrate. In another embodiment, the magnet carrier includes a substrate, and the plurality of magnets are mechanically fastened the substrate.
Another magnetic, thermally insulated enclosure includes a liner adapted to fit with the thermally insulating enclosure. The magnet carrier is disposed between the liner and a bottom wall or a side wall of the thermally insulated enclosure. Optionally, the magnet carrier can be removed and/or replaced as desired by the end user.
In yet another embodiment, the thermally insulating enclosure includes a thermally insulating bottom wall and a plurality of thermally insulating side walls. The magnet carrier is disposed within the thermally insulating bottom wall or one of the thermally insulating side walls. The thermally insulating bottom wall and/or one or more of the thermally insulating side walls can include an opening adapted to facilitate the insertion and removal of the magnet carrier. The magnet carrier is disposed outside of a thermally insulating layer of the bottom wall or the side wall in which the magnet carrier is disposed.
The present invention is described with reference to the following drawings, wherein like reference numbers denote substantially similar elements:
The present invention overcomes the problems associated with the prior art, by providing a thermally insulated enclosure including a magnet assembly for mounting the enclosure to ferromagnetic structures. In the following description, numerous specific details are set forth (e.g., type of ferromagnetic structure, magnet geometry, fasteners, etc.) in order to provide a thorough understanding of the invention. Those skilled in the art will recognize, however, that the invention may be practiced apart from these specific details. In other instances, details of well known insulated enclosure manufacturing practices (e.g., molding, insulating, assembling, etc.) and components have been omitted, so as not to unnecessarily obscure the present invention.
Cooler 100 includes an insulated wall 110, an insulated lid 112, and a magnet assembly 114 (visible in
Those skilled in the art will recognize that cooler 100 provides several advantages over prior art insulated enclosures. For example, cooler 100 can be secured to ferromagnetic structures without the need for mechanical fasteners. This is beneficial in that it not only eliminates the need always have mechanical fasteners on hand, but also enables cooler 100 to be mounted to structures (i.e. flat walls) that do not have physical features for mechanical fasteners to engage. Furthermore, cooler 100 is self mounting thus eliminating the process of manually fastening it to a suitable structure. This is not only convenient, but also ensures that cooler 100 remains secure in situations such as, for example, when left on the tailgate of a truck, toolbox, trailer, etc. As another example, cooler 100 can be very useful for heavy equipment operators because it can be placed at almost any location on the equipment without the risk of falling off during operation.
Insulated wall 110 further includes a first rigid layer 202, an insulation layer 204, and a second rigid layer 206. First rigid layer 202 defines the exterior surfaces of insulated wall 110. More specifically, first rigid layer 202 defines a bottom exterior surface 208 of bottom wall 116 and four side exterior surfaces 210 of side walls 118. Insulation layer 204 is disposed between first rigid layer 202 and second rigid layer 206 so as to impede heat transfer through wall 110. Second rigid layer 206 defines the interior surfaces of insulated wall 110 including a bottom interior surface 212 of bottom wall 116 and four side interior surfaces 214 of side walls 118. Furthermore, second rigid layer 206 is coupled to first rigid layer 202 near the top of sidewalls 118 such that insulation layer 204 is enclosed therebetween.
Insulated lid 112 further includes a first rigid layer 216 and an insulation layer 218. First rigid layer 216 defines an exterior surface 220 of lid 112 and, therefore, the contour of handle 122. Accordingly, first rigid layer 216 of lid 112 and first rigid layer 202 of insulated wall 110, together, define the exterior surface of cooler 100. Insulation 218 is coupled to the interior surface of first rigid layer 216 so as to impede heat transfer through lid 112. When lid 112 is closed, insulation layer 218 covers and insulates opening 200 such that the interior of cooler 100 is completely enclosed with insulation on all six sides.
Magnet assembly 114 includes a plurality of magnets 222 coupled to bottom wall 116 of insulated wall 110. In this particular embodiment, magnets 222 are imbedded directly into first rigid layer 202 by some suitable means. For example, first rigid layer 202 could be a plastic structure that is formed by molding plastic material directly over magnets 222.
As shown in
As shown in
Rigid support structure 502 includes a top surface 600, a retaining feature 602, two slots 604, and a bottom surface 606. Top surface 600 is a planar surface whereon cooler 100 is seated when fastened to rigid support structure 502 via fastening device 504. Retaining feature 602 is a set of walls extending upward from the peripheral edges of top surface 600. When cooler 100 is seated on rigid support structure 502, retaining feature 602 encloses the outer perimeter of the lower region of exterior surfaces 210 of cooler 100. Slots 604 facilitate the coupling of fastening device 504 to rigid support member 502. More specifically, slots 604 are elongated throughholes formed at opposite sides of rigid support structure 502.
Fastening device 504 provides a means for securing cooler 100 onto rigid support structure 502. Further, fastening device 504 includes a flexible strap 608 and buckle 610. Flexible strap 608 is looped through slots 604 so as to engage bottom surface 606 of rigid support structure 502. Buckle 610 provides a means for connecting and disconnecting the open ends of strap 608 to one another such that tray 500 can be easily connected and disconnected from cooler 100. Furthermore, buckle 610 provides a means for adjusting the working length of strap 608. With fastening device 504 being adjustable, tray 500 can also be used universally for mounting miscellaneous objects other than cooler 100 onto ferromagnetic structures.
Magnets 506 provide a means for magnetically securing tray 500 to ferromagnetic structures. In this embodiment, magnets 506 are coupled to bottom surface 606 of rigid support structure 502 by some suitable means (e.g., threaded fasteners, adhesive, insert molding of rigid support structure 502 around magnets 506, etc.).
Although the present invention is not limited to any specific design of tray 500 and the components thereof, the inventor has achieved good results with at least two design concepts. In one design concept, rigid support structure 502 is a rigid plate and magnets 506 are fastened on bottom surface 606 via threaded fasteners (e.g., nuts, bolts, screws, etc.). In another design concept, rigid support structure 502 is formed by molding plastic directly over magnets 506 such that magnets 506 are fully, or at least partially, imbedded therein.
Cooler 800 includes an insulated wall 806, an insulated cover 808, a magnet assembly 810 (visible in
Insulated wall 806 further includes a base 902, a flexible layer 904, an insulation layer 906, and a rigid layer 908. Base 902 defines a bottom exterior surface 910 of bottom wall 814. Flexible layer 904 defines four side exterior surfaces 912 of side walls 816. Insulation layer 906 is disposed between rigid layer 908 and both of base 902 and flexible layer 904. Rigid layer 908 is a removable insert that defines the interior surfaces of insulated wall 806 including a bottom interior surface 914 of bottom wall 814 and four side interior surfaces 916 of side walls 816.
Insulated cover 808 further includes a flexible layer 918 and an insulation layer 920. In this particular embodiment, flexible layer 918 and insulation layer 920 are formed from sections of flexible layer 904 and insulation layer 906, respectively, extending from the rear one of side walls 816 to the front one of side walls 816.
Magnet assembly 810 includes a plurality of magnets 922 coupled to bottom wall 814 of insulated wall 806. In this particular embodiment, magnets 922 are imbedded directly into base 902 by some suitable means. For example, base 902 could be a plastic and/or rubber structure that is formed by molding plastic and/or rubber material directly over magnets 922.
As shown in
As shown in
Magnet assembly 1402 includes a set of magnets 1414 coupled to interior surface 1406 of bottom wall 1408. Accordingly, the magnetic force attracting magnets 1414 to toolbox 102 is sufficient to secure bag 1300 to top surface 108.
Other than magnets 1414 being coupled to exterior surface 1404 instead of being coupled to interior surface 1406, the components and features of bag 1300 illustrated in
Water cooler 1600 includes an insulated wall 1602, a valve 1604, a set of handles 1606, an insulated lid 1608, and a magnet assembly 1610 (visible in
Insulated wall 1602 further includes a first rigid layer 1702, an insulation layer 1704, and a second rigid layer 1706. First rigid layer 1702 defines the exterior surfaces of insulated wall 1602. More specifically, first rigid layer 1702 defines a bottom exterior surface 1708 of bottom wall 1612 and a side exterior surface 1710 of side wall 1614. Insulation layer 1704 is disposed between first rigid layer 1702 and second rigid layer 1706 so as to impede heat transfer through wall 1602. Second rigid layer 1706 defines the interior surfaces of insulated wall 1602 including a bottom interior surface 1712 of bottom wall 1612 and a cylindrical interior surface 1714 of side wall 1614. Furthermore, second rigid layer 1706 is coupled to first rigid layer 1702 near the top of side wall 1614 such that insulation layer 1704 is enclosed therebetween.
Insulated lid 1608 includes a first rigid layer 1716, an insulation layer 1718, and a second rigid layer 1720. First rigid layer 1716 and second rigid layer 1720 define an exterior surface 1722 and an interior surface 1724, respectively, of lid 1608. Accordingly, exterior surface 1722 of lid 1608 and exterior surface 1710 of insulated wall 1602, together, define the exterior surface of water cooler 1600. Likewise, interior surface 1724 of lid 1608 and interior surface 1714 of insulated wall 1602, together, define the exterior surface of water cooler 1600.
Magnet assembly 1610 includes a plurality of magnets 1726 coupled to bottom wall 1612 of insulated wall 1602. In this particular embodiment, magnets 1726 are imbedded directly into first rigid layer 1702 by some suitable means. For example, first rigid layer 1702 could be a plastic or rubber structure that is formed by molding plastic or rubber material directly over magnets 1726.
As shown in
As shown in
Lid 2106 includes a set of locking features 2108 protruding horizontally therefrom. Locking features 2108 and handle 2104, together, facilitate the locking of lid 2106 onto body 2102. The position of handle 2104 dictates whether or not lid 2106 is locked onto body 2102. For example, when handle 2104 is rotated forward as shown, lid 2106 can be lifted off of body 2102. When handle 2104 is upright, it engages locking features 2108 and, therefore, locks lid 2106 onto body 2102. When handle 2104 is rotated backward, it engages locking features 2108 and, therefore, locks lid 2106 onto body 2102.
Each of suction cup assemblies 2900 includes a threaded metal shaft 2902 and a resilient body 2904. Threaded metal shaft 2902 has the same thread specifications (i.e. pitch, inner diameter, outer diameter, etc.) as screws 2202. As shown, threaded shafts 2902 not only facilitate the mounting of suction cup assemblies 2900 onto cooler 2100, but also provide the same fastening function as screws 2202. That is, threaded shafts 2902 are also operative to fasten interior structure 2210 and exterior structure 2204 together. Resilient body 2904 is a conventional suction cup that attaches to flat smooth surfaces. Body 2904 is permanently attached to threaded shaft 2902 by some suitable means. For example, body 2904 could be insert-molded around an end structure of threaded shaft 2904. As another example, body 2904 could be formed separately from threaded shaft 2904 and then bonded to one another thereafter.
Collapsible cooler 3203 includes four walls 3210, a bottom (not visible in the view of
In use, magnet carrier 3204 is placed inside of cooler 3202, to rest on the bottom of cooler 3202. Ice and other contents (e.g., drinks, food, etc.) are then placed inside cooler 3202 on top of magnet carrier 3204, and top 3212 is secured by zipper 3214. Then, when cooler 3202 is placed on a ferromagnetic surface, the magnets fixed to magnet carrier 3204 magnetically engage the ferromagnetic surface through the bottom of cooler 3202 and hold cooler 3202 in place.
Magnet carrier 3204 provides an important advantage over other magnetic coolers and/or warmers. In particular, the use of magnetic carrier 3204 eliminates, or at least minimizes, design constraints on cooler 3202. Indeed, in this particular embodiment, collapsible cooler 3202 is a conventional cooler that can be used with or without magnet carrier 3204. No alterations of cooler 3202 are required to use cooler 3202 in combination with magnet carrier 3204.
The ability to use magnet carrier 3204 (or similar magnet carrier) with conventional coolers, or to introduce magnet carrier 3204 into the manufacturing process of previously designed coolers, with few or no alterations of the original cooler design, provides tremendous savings in design time, tooling costs, and manufacturing complexity. Additional embodiments are described below to further illustrate this important feature of the present invention.
In
In this example embodiment, magnets 3302 are mechanically fastened to substrate 3304. However, any suitable means can be used to fix magnets to substrate 3304. For example, magnets 3302 can be molded into substrate 3304. For example, in a particular alternate embodiment, substrate 3304 is made from a thermally insulating material by molding the thermally insulating material around magnets 3302, leaving only the bottom surfaces of magnets 3302 exposed.
It is not necessary for each wall 3210 to be formed with multiple layers. For example, in an alternate embodiment, the walls of a cooler are formed from a single layer of thermally insulating material.
Magnetic cooler 3500 is assembled by placing magnet carrier 3204 inside and resting on the bottom of collapsible cooler 3502. Liner 3504 is then placed inside of collapsible cooler 3502, resting on magnet carrier 3204. The disposition of collapsible cooler 3502, magnet carrier 3204, and liner 3504 with respect to one another in the assembled position is shown in the cross-sectional view of
Liner 3504 can be permanently fixed to or removably inserted into cooler 3502. In embodiments where liner 3504 is permanently fixed to cooler 3502 (e.g., by fixing lip 3510 to the top edges 3512 of the walls of collapsible cooler 3502), magnet carrier 3204 is inserted into collapsible cooler 3502 during the manufacturing process and remains in magnetic cooler 3500 throughout the life of the product. In embodiments where liner 3504 is removable from collapsible cooler 3502, magnet carrier 3204 can be inserted between collapsible cooler 3502 and liner 3504 either during the manufacturing process or after purchase by the consumer. Indeed, collapsible cooler 3502 and liner 3504 can be sold together as a non-magnetic cooler, and the consumer can purchase magnetic carrier 3204 separately. Then, the consumer can remove liner 3504 from collapsible cooler 3502, insert magnet carrier 3204 into collapsible cooler 3502, and reinsert liner 3504 into collapsible cooler 3502 on top of magnet carrier 3204, thereby creating a magnetic cooler from a previously non-magnetic cooler.
In an alternate embodiment, the insulating layer 3608 and, optionally, the inner covering 3606, can be removable from the bottom wall of collapsible cooler 3502. In such embodiments, insulating layer 3608 can be removed before inserting magnet carrier 3204 into collapsible cooler 3502 and then replacing insulating layer 3608 into collapsible cooler 3502 on top of magnet carrier 3204. Disposing magnet carrier 3204 below insulating layer 3608 decreases the distance between magnets 3302 and the surface upon which cooler 3502 rests. As a result, weaker, less expensive, and/or lighter magnets can be advantageously used. As yet another option, substrate 3304 can be formed from an insulating material, and insulating layer 3608 can be omitted from the bottom wall of cooler 3502.
Cooler 3700 can be used with or without magnet carrier 3702. If a user wants to immobilize cooler 3700 on a ferromagnetic surface, then magnet carrier 3702 is placed inside compartment 3802 to provide the desired magnetic attraction. Otherwise, magnet carrier 3702 can be removed, reducing the weight of cooler 3700 when the magnetic feature is not desired.
Similar to cooler 3700, cooler 3900 can be used with or without magnet carrier 3902. If a user wants to immobilize cooler 3900 by attaching to an adjacent ferromagnetic surface, then magnet carrier 3902 is placed inside compartment 4002 to provide the desired magnetic attraction. Otherwise, magnet carrier 3902 can be removed, reducing the weight of cooler 3900 when the magnetic feature is not desired.
In the example embodiment, carrying bag 4200 is made from a polyester fabric, but it can be made from cotton, hard or soft plastic, canvas, leather, or any other suitable material. Additionally, carrying bag 4200 can include any number of compartments and any number of pockets, dividers, or other storage features. In the example embodiment top opening 4206 and bottom opening 4212 are zippered openings, but alternate embodiments can include buttoned, hook-and-loop, or tied closures, or no closures at all. Additionally, while handles 4210 are cloth in the example embodiment, in alternate embodiments they can be plastic, wood, or any other suitable material. Handles 4210 can also be replaced and/or supplemented with a shoulder strap or omitted entirely.
The description of particular embodiments of the present invention is now complete. Many of the described features may be substituted, altered or omitted without departing from the scope of the invention. For example, different numbers, shapes and locations of magnets may be substituted for those shown in the example embodiments, including the disclosed magnet carrier inserts. As another example, the invention can be used in combination with alternate cooler design details (e.g., sizes, shapes, handles, lids, etc.). As yet another example, the magnetic trays disclosed may be altered (e.g., by making one of the side walls taller, alternate straps and/or points of attachment) to facilitate more secure attachment of differently shaped containers. As yet another example, alternate fastening means (e.g., hook-and-loop fasteners, mechanical fasteners, etc. can be substituted for suction cups 2904. As yet another example, the embodiments described in combination with magnet carriers include pliable sidewalls, but the magnet carriers can be used in combination with coolers/warmers with rigid walls. These and other deviations from the particular embodiments shown will be apparent to those skilled in the art, particularly in view of the foregoing disclosure.
This application is a divisional of U.S. patent application Ser. No. 14/883,442, filed Oct. 14, 2015 by the same inventor, which is a continuation-in-part of copending U.S. patent application Ser. No. 14/511,978, filed on Oct. 10, 2014 also by the same inventor, which is a continuation-in-part of U.S. patent application Ser. No. 13/931,050, filed on Jun. 28, 2013, now abandoned, by the same inventor, which is a continuation-in-part of U.S. patent application Ser. No. 13/192,350, filed on Jul. 27, 2011, now abandoned, by the same inventor, all of which are incorporated herein by reference in their entireties.
Number | Name | Date | Kind |
---|---|---|---|
3007568 | Kurland | Nov 1961 | A |
3237327 | Griggs | Mar 1966 | A |
4469256 | McEwen | Sep 1984 | A |
5001779 | Eggert | Mar 1991 | A |
5490607 | Hsieh | Feb 1996 | A |
5897040 | Ward | Apr 1999 | A |
6895642 | Huang | May 2005 | B2 |
20090250576 | Fullerton | Oct 2009 | A1 |
20090289090 | Fullerton | Nov 2009 | A1 |
20140182088 | Roberts | Jul 2014 | A1 |
Number | Date | Country | |
---|---|---|---|
20190159564 A1 | May 2019 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14883442 | Oct 2015 | US |
Child | 16261416 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14511978 | Oct 2014 | US |
Child | 14883442 | US | |
Parent | 13931050 | Jun 2013 | US |
Child | 14511978 | US | |
Parent | 13192350 | Jul 2011 | US |
Child | 13931050 | US |