This application is the national phase of International Application No. PCT/CN2015/000276, filed on 20 Apr. 2015, which is based upon and claims priority to Chinese Patent Application No. 201410218163.7, filed on May 22, 2014, the entire contents of which are incorporated herein by reference.
The present invention relates to a magnetic unlocking device and a magnetic unlocking structure of a. magnetic encoding key.
In the industries (such as the electricity, the petrochemistry, the transportation, the metallurgy, the coal and so on), it is a common method of equipment management to lock the door of the equipment and the manual operating mechanism using the lockset. Using a key to operate the lockset is a common method of equipment management, and security arrangement which is essential to avoid accidental risk. Nowadays, the lockset for locking is the ordinary lockset available in the market primarily. Such kind of lockset usually encompasses the lock core with the structure of “bullet-spring” or “bland”. Such structure has significant defects if applied in industries. The defects are mainly reflected in terms of reliability. (a) Due to the incomplete rain-proof structure, the parts of the lock core are easily prone to rust. Such phenomenon is especially observed in the oceanic climate, acid rain climate, or the environment which may induce an electrochemical reaction. (b) Since the unlocking hole does not have the dustproof structure, under the condition of a sandstorm, the dust can enter the lock core through the unlocking hole easily, which makes it impossible to open the lock. With respect to this problem, people tried to develop new lockset structure to deal with the above defects. For example, the intention patent whose number is ZL201410107543.3 filed by the present applicant previously and which is titled as a lock core structure with a magnetic encoding free monad style. As shown in
The purpose of the present invention is to provide a magnetic unlocking device and a magnetic unlocking structure of a magnetic encoding key, which has good security, high reliability, easy digital management, simple structure and process of manufacture, and low cost of production.
The technical solution of the magnetic unlocking device of a magnetic encoding key of the present invention is as follows. The magnetic unlocking device includes a key casing, at least one set of magnetic combination unit and a filler which is located inside the key casing. The magnetic combination unit includes at least one double-pole permanent magnet and magnetic yoke. One magnetic pole of the double-pole permanent magnet is near to the magnetic yoke, while the other magnetic pole is far from the magnetic yoke. A butterfly-like magnetic field distribution is generated on the external main magnetic circuit of the magnetic combination unit.
Furthermore, the magnetic combination unit includes a plurality of double-pole permanent magnets. Surface magnetic fluxes of a plurality of double-pole permanent magnets increase or decrease along the arranging orientation. Two adjacent double-pole permanents magnet on the same side have opposite polarities. The magnetic yoke is used as a magnetic conducting path for perspective magnetic pole of the plurality of double-pole permanent magnets oriented to an axial center. The main magnetic circuit passing therethrough. A magnetic field distribution which is weak-to-strong or strong-to-weak along a magnet arranging orientation is generated on the external main magnetic circuit of the magnetic combination unit.
Furthermore, there are a plurality sets of magnetic combination units. Some of the magnetic combination units include a single double-pole permanent magnet and magnetic yoke. Remaining magnetic combination units include a plurality of the double-pole permanent magnets and magnetic yoke. The plurality sets of magnetic combination units share the same magnetic yoke.
Furthermore, the magnetic yoke is one of soft iron or magnetic steel or magnetically soft alloy or ferrite material.
Furthermore, the filler is a magnetic conductor or a magnetic non-conductor.
The technical solution of another magnetic unlocking device of a magnetic encoding key of the. present invention is as follows. The magnetic unlocking device includes a key casing, at least one set of magnetic combination unit and tiller which is located inside the key casing. The magnetic combination unit includes the multi-pole permanent magnet and the magnetic yoke. The multi-pole permanent magnet is divided into a plurality of magnet units that have opposite polarities. Surface magnetic fluxes of the plurality of the magnet units increase or decrease one by one along the arranging orientation. Adjacent magnet units on the same side have opposite polarities. The magnetic yoke is used as a magnetic conducting path for perspective magnetic pole of the plurality of the multi-pole permanent magnet oriented to an axial center. The main magnetic circuit passes therethrough. A magnetic field distribution which is weak-to-strong or strong-to-weak along a magnet arranging orientation is generated on the external main magnetic circuit of the magnetic combination unit.
Furthermore, there are a plurality sets of magnetic combination unit. The plurality sets of magnetic combination units share the same magnetic yoke.
The technical solution of a magnetic unlocking structure of the present invention is as follows. The magnetic unlocking structure includes a lock core device and a magnetic unlocking device which fits the lock core device. The magnetic unlocking device includes key casing, at least one set of magnetic combination unit and filler which is located inside the key casing. The magnetic unlocking device is inserted into and fit the lock core device. The magnetic combination unit includes magnetic yoke and one double-pole permanent magnet or a plurality of double-pole permanent magnets or multi-level permanent magnet. The lock core device includes a lock core casing, a lock knob which is rotatably provided in the internal cavity of the lock core casing, a lock core front end cover and a lock core rear end cover that are located at both ends of the lock core casing. The internal wall of the lock core casing is provided with at least one monad longitudinal moving groove and at least one monad horizontal rotating groove. An end of the lock knob corresponding to the lock core front end cover along an axis line is provided with an unlocking hole of the magnetic encoding key. The external wall of the lock knob is provided with a plurality of monad longitudinal slide-ways. At least one of the plurality of monad longitudinal slide-ways being provided with a free monad. The free monad being big monad and/or small, monad. The monad longitudinal slide-ways and the monad longitudinal moving groove correspond to each other and form a monad moving cavity. When unlocking, the magnetic combination unit and each free monad moving cavity correspond to each other in terms of positions. The main magnetic field of the magnetic combination unit is distributed externally and directly oriented to the free monad moving cavity. An arranging direction of a magnetic field in the magnetic combination unit is the same as a moving direction of the free monad of the free monad moving cavity. The magnetic combination unit can attract one or more free monads that are located at a weak magnetic field side of the magnetic combination unit to a position which has a shortest magnetic circuit to the magnetic combination unit and a strongest magnetic field.
The advantages of the present invention are as below. 1. In the magnetic combination unit designed according to the above points, the main magnetic field distribution has a strong directivity. No matter in the mechanism or in the external space, the main magnetic field distribution is concentrated and converged. Thus, the issue of the mutual effect between the magnetic combination unit and the magnetic combination unit due to the overlapping of main magnetic fields is easy to be solved. More magnetic combination units can be positioned in the magnetic unlocking device, which enlarges the encodable number of the magnetic encoding lock core and the magnetic encoding key (the number of key bitting). Thus, the security and reliability of encoding the lock core and the magnetic encoding key are further increased; 2. The magnetic combination unit uses a design of the modular structure. Types of the magnetic combination unit are limited. The arranging position of the magnetic combination unit. is relatively fixed. Thus, before the key is assembled, the magnetic combination unit can be produced in advance. When the key is assembled, certain types of magnetic combination unit are positioned at corresponding locations according to different lock codes. Therefore, the efficiency of production of the key increases significantly. Further, the magnetic encoding key designed and produced according to the present invention has advantages of easy digital management, simple structure and process of manufacture, and low cost of production.
As shown in
According to the convenience of manufacture, the third technical solution is described in detail hereinafter. Take the four-pole permanent magnet as an example, the magnetic combination unit includes one magnet unit 11 with a large surface flux and one magnet unit 11 with a small surface flux. When the multi-pole permanent magnet 3 is expanded into six-pole, the multi-pole permanent magnet 3 includes one magnet unit 11 with a large surface flux, one magnet unit 11 with a middle surface flux, and one magnet unit 11 with a small surface flux that are arranged in sequence. Such design can generate a magnetic field distribution which is weak-to-strong or strong-to-weak along the magnetic steel arranging orientation on the main magnetic circuit outside the magnetic combination unit. Magnet units 11 are made of the same material, having the same intensity of magnetization. The magnets with different surface fluxes are made by altering the area of the cylindrical surface which is perpendicular to the magnetic field.
When the magnetic encoding key is inserted into the magnetic encoding lock core and reaches the unlocking position, each set of magnetic combination unit of the magnetic unlocking mechanism in the magnetic encoding key respectively corresponds to one free monad moving cavity in the magnetic encoding lock core in terms of the spatial position one-by-one. The externally oriented distribution of the main magnetic field of the magnetic combination unit is directly oriented to the free monad moving cavity. Thus, the magnetic combination unit and the free monad located inside the free monad moving cavity, which includes big monad 107 and small monad 108, form a flux linkage which has a short magnetic circuit. Further, the free monad is attracted to a position with the shortest magnetic circuit—unlocking position.
The content described above is one embodiment of the present invention, which is not used to limit the scope of the present invention. Any equivalent alternatives or modifications according to the present invention are covered by the scope of the claims of the present invention.
Number | Date | Country | Kind |
---|---|---|---|
2014 1 0218163 | May 2014 | CN | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/CN2015/000276 | 4/20/2015 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2015/176540 | 11/26/2015 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
3234767 | Claes | Feb 1966 | A |
3416336 | Felson | Dec 1968 | A |
3942345 | Sasahara | Mar 1976 | A |
4228667 | Herriott | Oct 1980 | A |
4287733 | Gomez-Olea | Sep 1981 | A |
4380162 | Woolfson | Apr 1983 | A |
4562711 | Fliege | Jan 1986 | A |
4748834 | Herriott | Jun 1988 | A |
4841758 | Ramblier | Jun 1989 | A |
6705139 | Tsai | Mar 2004 | B2 |
9790712 | Li | Oct 2017 | B2 |
20140250959 | Tsai | Sep 2014 | A1 |
Number | Date | Country |
---|---|---|
101638949 | Feb 2010 | CN |
201447943 | May 2010 | CN |
102003111 | Apr 2011 | CN |
201972462 | Sep 2011 | CN |
202081725 | Dec 2011 | CN |
202990621 | Jun 2013 | CN |
10393831 | Jul 2014 | CN |
104005606 | Aug 2014 | CN |
203924995 | Nov 2014 | CN |
2539757 | Mar 1977 | DE |
2727126 | Dec 1978 | DE |
4041094 | Jun 1992 | DE |
H1-73264 | May 1989 | JP |
Number | Date | Country | |
---|---|---|---|
20170138090 A1 | May 2017 | US |