The present invention relates generally to a magnetic valve assembly. More particularly, the present invention relates to a valve assembly where the movement of a first disc relative to a second disc is controlled across a barrier using complementary magnetic structures.
Certain water valve assemblies that control the flow of hot and cold water into and out of faucets use a movement control mechanism to control a valve mechanism comprising two or more discs that are configured to control flow and mixing of hot and cold water while also providing a seal intended to prevent leakage of water out of the faucet. The movement control mechanism of such valve assemblies typically involves a moveable handle connected to a stem or lever that is rotated to rotate a first disc relative to a second disc. Alternatively, the stem may pivot a ball within a housing, where the ball has a knuckle that extends into a recess of a first disc configured to slide on a second disc that is fixed doesn't move). Generally, movement of the handle controls rotational and/or translational movement of the first disc relative to the second disc, where the relative location of the first disc to the second disc determines whether holes and/or channels associated with the discs are aligned which subsequently determines whether or not hot and/or cold water flows through the valve and also the mixing of hot and cold water flowing through the valve. With some assemblies, a third disc located between the first and second discs is used to provide a water film that lubricates the first and second discs and provides a seal. With other such assemblies, a lubricating grease is used to provide a seal. Examples of disc-based valve systems are described in U.S. Pat. No. 4,823,841 issued Apr. 25, 1989, U.S. Pat. No. 5,100,565 issued Mar. 31, 1992, U.S. Pat. No. 6,904,935 issued Jun. 14, 2005, U.S. Pat. No. 7,134,452 issued Nov. 14, 2006, U.S. Pat. No. 7,628,173 issued Dec. 8, 2009, and U.S. Pat. No. 7,980,268 issued Jul. 19, 2011, which are all incorporated herein in their entirety.
As explained above, modern disc-based valve assemblies typically involve discs having precisely polished surfaces that provide a longer lasting seal, where the disc polishing process can be quite expensive. But, such assemblies can eventually develop leaks between the discs after extended periods of operation, which can result in substantial property damage and thus there remains a liability concern of faucet leakage. Therefore, an improved disc-based valve-system is desirable whereby disc polishing requirements are relieved and leakage of water between the discs is no longer a concern.
Briefly, according to the present invention, a valve assembly comprises a sealed container connected to a hot water supply line and a cold water supply line. The sealed container has an outlet for supplying at least one of hot water or cold water to a faucet. A valve mechanism is located inside the sealed container comprising a stationary mixing part and a moveable mixing part. A magnetic coupling adapter has a first magnetic structure located outside of a wall of the sealed container. A first magnetic structure is made of a first magnetizable material having a first plurality of first printed maxels having a first polarity pattern. A second magnetic structure located inside the wall of the sealed container is made of a second magnetizable material having a second plurality of second printed maxels having a second polarity pattern that is complementary to the first polarity pattern. The first magnetic structure and second magnetic structure are magnetically coupled across the wall of the sealed container. A first adapter interface component located outside of the wall of the sealed container is associated with the first magnetic structure. A second adapter interface component located inside the wall of the sealed container is associated with the second magnetic structure and the moveable mixing part. A movement control mechanism includes a moveable handle associated with the first adapter interface, which is configured to control a movement of the magnetic coupling adapter and thereby a movement of the moveable mixing part to control flow and mixing of the hot and cold water.
According to some of the more detailed features of the invention, the stationary mixing part comprises a first side and a second side opposite said first side. The first side of the stationary mixing part can comprise a first inlet configured to receive hot water from hot water supply line, a second inlet configured to receive cold water from cold water supply line, and an outlet for supplying at least one of hot water and cold water to the faucet, with the first and second inlets and said outlet extending from the first side of the stationary mixing part to the second side of said stationary mixing part. The moveable mixing part can comprises a first side and a second side opposite the first side. The first side of the moveable mixing part can comprise an outer portion, an inner portion, and a channel. The second side of the stationary mixing part and the first side of the movable mixing part can be configured to interface with each other to provide a seal intended to prevent leakage of at least one of the cold water and hot water out of the valve mechanism.
According to other more featured of the invention, a location of the inner portion of the first side of the moveable mixing part relative to the first and second inlets of the second side of the stationary mixing part controls the flow and the mixing of hot water and cold water. A moveable handle can be configured for rotational movement or translational movement.
According to still other more featured of the invention, the movement control mechanism further comprises a stem assembly attached to the handle and associated with said the adapter interface component, in one embodiment, the stem assembly comprises a ball having a knuckle that can be placed into a recess of the first adapter interface component. The ball can be movable within a housing or constrained. The movement of the moveable mixing part can be rotational movement or a translational movement. A puck can be associated with the stationary mixing part. A gasket can be positioned between the puck and the stationary mixing part. A tap between can be positioned between least one of the cold water supply line and the hot water supply line and the sealed container. A piston can be connected to the tap. The sealed container can be filled with grease.
Certain described embodiments of the invention described herein may relate by way of example, but not limitation, to systems and/or apparatuses comprising magnetic structures, magnetic and non-magnetic materials, methods for using magnetic structures, magnetic structures produced via magnetic printing, magnetic structures comprising arrays of discrete magnetic elements, combinations thereof, and so forth. Example realizations for such embodiments may be facilitated, at least in part, by the use of an emerging, revolutionary technology that may be termed correlated magnetics. This revolutionary technology referred to herein as correlated magnetics was first fully described and enabled in the co-assigned U.S. Pat. No. 7,800,471 issued on Sep. 21, 2010, and entitled “A Field Emission System and Method”. The contents of this document are hereby incorporated herein by reference. A second generation of a correlated magnetic technology is described and enabled in the co-assigned U.S. Pat. No. 7,868,721 issued on Jan. 11, 2011, and entitled “A Field Emission System and Method”. The contents of this document are hereby incorporated herein by reference. A third generation of a correlated magnetic technology is described and enabled in the co-assigned U.S. Pat. No. 8,179,219, issued May 15, 2012, and entitled “A Field Emission System and Method”. The contents of this document are hereby incorporated herein by reference. Another technology known as correlated inductance, which is related to correlated magnetics, has been described and enabled in the co-assigned U.S. Pat. No. 8,115,581 issued on Feb. 14, 2012, and entitled “A System and Method for Producing an Electric Pulse”. The contents of this document are hereby incorporated by reference.
Material presented herein may relate to and/or be implemented in conjunction with multilevel correlated magnetic systems and methods for producing a multilevel correlated magnetic system such as described in U.S. Pat. No. 7,982,568 issued Jul. 19, 2011 which is all incorporated herein by reference in its entirety.
Material presented herein may relate to and/or be implemented in conjunction with systems and methods pertaining to magnetic coupling across a barrier such as described in U.S. Pat. No. 8,222,986 issued Jul. 17, 2012, which is all incorporated herein by reference in its entirety. Material presented herein may relate to and/or be implemented in conjunction with systems and methods pertaining to magnetic coupling across a barrier such as described in U.S. Pat. No. 8,704,626 issued Apr. 22, 2014, which is all incorporated herein by reference in its entirety.
Such systems and methods described in U.S. Pat. No. 7,681,256 issued Mar. 23, 2010, U.S. Pat. No. 7,750,781 issued Jul. 6, 2010, U.S. Pat. No. 7,755,462 issued Jul. 13, 2010, U.S. Pat. No. 7,812,698 issued Oct. 12, 2010, U.S. Pat. Nos. 7,817,002, 7,817,003, 7,817,004, 7,817,005, and 7,817,006 issued Oct. 19, 2010, U.S. Pat. No. 7,821,367 issued Oct. 26, 2010, U.S. Pat. Nos. 7,823,300 and 7,824,083 issued Nov. 2, 2011, U.S. Pat. No. 7,834,729 issued Nov. 16, 2011, U.S. Pat. No. 7,839,247 issued Nov. 23, 2010, U.S. Pat. Nos. 7,843,295, 7,843,296, and 7,843,297 issued Nov. 30, 2010, U.S. Pat. No. 7,893,803 issued Feb. 22, 2011, U.S. Pat. Nos. 7,956,711 and 7,956,712 issued Jun. 7, 2011, U.S. Pat. Nos. 7,958,575, 7,961,068 and 7,961,069 issued Jun. 14, 2011, U.S. Pat. No. 7,963,818 issued Jun. 21, 2011, and U.S. Pat. Nos. 8,015,752 and 8,016,330 issued Sep. 13, 2011, and U.S. Pat. No. 8,035,260 issued Oct. 11, 2011, and U.S. Pat. No. 8,174,347 issued May 8, 2012, and U.S. Pat. Nos. 8,279,031 and 8,279,032 issued Oct. 2, 2012, and U.S. Pat. No. 8,368,495 issued Feb. 5, 2013 are all incorporated by reference herein in their entirety.
Such systems and methods described in U.S. Pat. No. 8,648,681 issued Feb. 11, 2014, U.S. Pat. No. 8,760,251 issued Jun. 24, 2014, and U.S. Pat. No. 8,576,036 issued Nov. 5, 2013, and U.S. patent application Ser. No. 13/604,939 filed Sep. 6, 2012, Ser. No. 13/659,444 filed Oct. 23, 2012, Ser. No. 13/687,819 filed Nov. 28, 2012, Ser. No. 13/779,611 filed Feb. 27, 2013, and Ser. No. 13/959,201 filed Aug. 5, 2013, which are all incorporated by reference herein in their entirety.
In accordance with one aspect of the invention, a magnetic valve assembly comprises a movement control mechanism and a valve mechanism. The movement control mechanism comprises a first magnetic structure having a first plurality of magnetic source regions having a first polarity pattern and a second magnetic structure having a second plurality of magnetic source regions having a second polarity pattern that is complementary to said first polarity pattern. The first magnetic structure is placed into complementary alignment with the second magnetic structure such that the two magnetic structures are magnetically coupled (attached) across a plane corresponding to a barrier, for example, a wall of a sealed container to which hot and cold water supply lines are connected to respective hot and cold water inlets and from which water can be supplied via a water outlet. The movement control mechanism includes a moveable handle that can rotate and/or translate, where the handle is attached to a stem or lever that is attached or otherwise associated with the first magnetic structure such that movement of the handle controls rotational and/or translational movement of the first magnetic structure.
The valve mechanism comprises two or more discs including at least one movable disc and a stationary (or fixed) disc constituting each constituting a corresponding mixing parts, where the relative location of the at least one movable mixing part/disc relative to the stationary mixing part/disc determines the alignment of holes and/or channels associated with the mixing parts/discs that determines whether hot and/or cold water flows through the valve and also the mixing of the hot and cold water. The second magnetic structure is attached to or otherwise associated with the at least one movable disc such that rotational and/or translational movement of the first magnetic structure produces respective rotational and/or translational movement of the second magnetic structure and the at least one moveable disc.
The present invention will now be described more fully in detail with reference to the accompanying drawings, in which the preferred embodiments of the invention are shown. This invention should not, however, be construed as limited to the embodiments set forth herein; rather, they are provided so that this disclosure will be thorough and complete and will fully convey the scope of the invention to those skilled in the art.
One skilled in the art will understand that the magnetic structures need not the round and that the magnetic structures and ceramic discs can be secured in their respective cavities in various ways. For example, the magnetic structures and ceramic discs can be secured in their respective cavities using an adhesive or using set screws. Not shown in
One skilled in the art will recognize that instead of using the second adapter interface component 212, the second magnetic structure could be integrated directly into the ceramic disc 14 and that many different configurations of magnetic structures can be used to provide the magnetic coupling across the barrier of the sealed container. For example, the first magnetic structure could have a recess or hole that functions like recess 20 of the ceramic disc 14.
One skilled in the art will understand that magnetic sources may be discrete magnets integrated into or onto a substrate or, preferably, may be magnetic sources printed into magnetizable material, which may be referred to as maxels, and the polarities and relative locations of the magnetic sources can be selected to achieve desirable shear and/or torque characteristics. For example, maxels may be arranged in concentric circles where the maxels of each circle are offset from maxels of adjacent circles or where the maxels of each circle are arranged to resemble a radial pattern, which might be used given a requirement for rotational movement by the movement control mechanism. Maxel polarities may be selected to provide a substantially uniform shear behavior in all translational directions or selected to provide different shear behaviors depending on the direction of movement. Similarly, to achieve desired shear or torque characteristics, maxel field strengths may be varied, maxel sizes may be varied, maxel shapes may be varied, etc.
One skilled in the art will understand that the size and shape of maxels or of groups of maxels can be selected based on characteristics of the magnetic material being used, for example the grade and thickness of the material. Maxels may be printed from only one side of the material or from both sides of the material. The dotted lines of
Under one arrangement a two-dimensional pattern of rows and columns of alternating polarity magnetic sources can be used. Under another arrangement, the magnetic sources of a given row may be shifted relative to an adjoining row of magnetic sources such as depicted in
Under one arrangement, the magnetic structures used in the invention are magnetized to exhibit multi-level magnetism behavior. For example, structures exhibiting contactless attachment behavior can be constrained to minimize contact with the barrier yet provide magnetic attachment and sufficient shear/torque necessary to remain coupled when controlling the valve mechanism 12.
While particular embodiments of the invention have been described, it will be understood, however, that the invention is not limited thereto, since modifications may be made by those skilled in the art, particularly in light of the foregoing teachings.
This application claims the benefit under 35 USC 119(e) of provisional application 61/871,689, titled “Magnetic Valve Assembly”, filed Aug. 29, 2013 by Fullerton et al. This application is a continuation-in-part of non-provisional application Ser. No. 14/198,226, titled “Correlated Magnetic System and Method”, filed Mar. 5, 2014 by Fullerton et al., which claims the benefit under 35 USC 119(e) of provisional applications 61/794,427, titled “Method for Correcting Bias in Correlated Field Emission Structures”, filed Mar. 15, 2013 by Fullerton et al., 61/798,233, titled “Method for Using Symbols in Coded Field Emission Structures”, filed Mar. 15, 2013 by Roberts et al., 61/798,453, titled “Apparatus and Method for Mechanical Augmentation of Correlated Field Emission Structures”, filed Mar. 15, 2013 by Fullerton, 61/799,507, titled “Apparatus and Method for Constraining Field Emission Structures”, filed Mar. 15, 2013 by Fullerton et al, and 61/800,377, titled “Method for Making and Using Composite Coded Field Emission Structures”, filed Mar. 15, 2013 by Roberts et al. Non-provisional application Ser. No. 14/198,226 is a continuation-in-part of non-provisional application Ser. No. 14/103,760, titled “An Intelligent Magnetic System”, filed Dec. 11, 2013 by Fullerton et al., which claims the benefit under 35 USC 119(e) of provisional application 61/735,460, titled “An Intelligent Magnetic System”, filed Dec. 10, 2012 by Fullerton et al. Non-provisional application Ser. No. 14/103,760 is a continuation-in-part of non-provisional application Ser. No. 13/779,611, titled “System for Detaching a Magnetic Structure from a Ferromagnetic Material”, filed Feb. 27, 2013 by Fullerton et al., which claims the benefit under 35 USC 119(e) of provisional application 61/640,979, titled “System for Detaching a Magnetic Structure from a Ferromagnetic Material”, filed May 1, 2012 by Fullerton et al. and provisional application 61/604,376, titled “System for Detaching a Magnetic Structure from a Ferromagnetic Material”, filed Feb. 28, 2012 by Fullerton et al. Non-provisional application Ser. No. 14/103,760 is also a continuation-in-part of non-provisional application Ser. No. 14/066,426, titled “System and Method for Affecting Flux of Magnetic Structures”, filed Oct. 29, 2013 by Fullerton et al., which is a continuation of U.S. Pat. No. 8,576,036, issued Nov. 5, 2013, which claims the benefit under 35 USC 119(e) of provisional application 61/459,994, titled “System and Method for Affecting Flux of Magnetic Structures”, filed Dec. 22, 2010 by Fullerton et al. Non-provisional application Ser. No. 14/103,760 is also a continuation-in-part of non-provisional application Ser. No. 14/086,924, titled “System and Method for Positioning a Multi-Pole Magnetic Structure” filed Nov. 21, 2013 by Fullerton et al. which claims the benefit under 35 USC 119(e) of provisional application 61/796,863, titled “System for Determining a Position of a Multi-pole Magnetic Structure”, filed Nov. 21, 2012 by Fullerton et al. Non-provisional application Ser. No. 14/086,924 is a continuation-in-part of non-provisional application Ser. No. 14/035,818, titled “Magnetic Structures and Methods for Defining Magnetic Structures Using One-Dimensional Codes” filed Sep. 24, 2013 by Fullerton et al, which claims the benefit under 35 USC 119(e) of provisional application 61/744,342, titled “Magnetic Structures and Methods for Defining Magnetic Structures Using One-Dimensional Codes”, filed Sep. 24, 2012 by Roberts. Non-provisional application Ser. No. 14/035,818 is a continuation-in-part of non-provisional application Ser. No. 13/959,649, titled “Magnetic Device Using Non Polarized Magnetic Attraction Elements” filed Aug. 5, 2013 by Richards et al., now U.S. Pat. No. 8,692,637, which is a continuation-in-part of non-provisional application Ser. No. 13/759,695, titled “System and Method for Defining Magnetic Structures” filed Feb. 5, 2013 by Fullerton et al, now U.S. Pat. No. 8,502,630, which is a continuation of application Ser. No. 13/481,554, titled “System and Method for Defining Magnetic Structures”, filed May 25, 2012, by Fullerton et al., now U.S. Pat. No. 8,368,495, which is a continuation-in-part of non-provisional application Ser. No. 13/351,203, titled “A Key System For Enabling Operation Of A Device”, filed Jan. 16, 2012, by Fullerton et al., now U.S. Pat. No. 8,314,671 and claims the benefit under 35 USC 119(e) of provisional application 61/519,664, titled “System and Method for Defining Magnetic Structures”, filed May 25, 2011 by Roberts et al. Non-provisional application Ser. No. 13/351,203 is a continuation of application Ser. No. 13/157,975, titled “Magnetic Attachment System with Low Cross Correlation”, filed Jun. 10, 2011, by Fullerton et al., now U.S. Pat. No. 8,098,122, which is a continuation of application Ser. No. 12/952,391, titled “Magnetic Attachment System”, filed Nov. 23, 2010 by Fullerton et al., now U.S. Pat. No. 7,961,069. Non-provisional application Ser. No. 12/952,391 is a continuation of application Ser. No. 12/478,911, titled “Magnetically Attachable and Detachable Panel System” filed Jun. 5, 2009 by Fullerton et al., now U.S. Pat. No. 7,843,295. Non-provisional application Ser. No. 12/952,391 is also a continuation of application Ser. No. 12/478,950, titled “Magnetically Attachable and Detachable Panel Method,” filed Jun. 5, 2009 by Fullerton et al., now U.S. Pat. No. 7,843,296. Non-provisional application Ser. No. 12/952,391 is also a continuation of application Ser. No. 12/478,969, titled “Coded Magnet Structures for Selective Association of Articles,” filed Jun. 5, 2009 by Fullerton et al., now U.S. Pat. No. 7,843,297. Non-provisional application Ser. No. 12/952,391 is also a continuation of application Ser. No. 12/479,013, titled “Magnetic Force Profile System Using Coded Magnet Structures,” filed Jun. 5, 2009 by Fullerton et al., now U.S. Pat. No. 7,839,247. The preceding four applications are each a continuation-in-part of non-provisional application Ser. No. 12/476,952, filed Jun. 2, 2009, titled “A Field Emission System and Method”, by Fullerton et al., now U.S. Pat. No. 8,179,219, which is a continuation-in-part of non-provisional application Ser. No. 12/322,561, filed Feb. 4, 2009 titled “System and Method for Producing an Electric Pulse”, by Fullerton et al., now U.S. Pat. No. 8,115,581, which is a continuation-in-part of non-provisional application Ser. No. 12/358,423, filed Jan. 23, 2009 titled “A Field Emission System and Method”, by Fullerton et al., now U.S. Pat. No. 7,868,721, which is a continuation-in-part of non-provisional application Ser. No. 12/123,718, filed May 20, 2008 titled “A Field Emission System and Method”, by Fullerton et now U.S. Pat. No. 7,800,471, which claims the benefit of U.S. Provisional Patent Application No. 61/123,019, filed Apr. 4, 2008, which is entitled “A Field Emission System and Method”. Non-provisional application Ser. No. 14/103,760 is also a continuation-in-part of U.S. patent application Ser. No. 13/918,921, filed Jun. 15, 2013 titled “Detachable Cover System”, by Fullerton et al., which is a continuation of U.S. patent application Ser. No. 13/629,879, filed Sep. 28, 2012, now U.S. Pat. No. 8,514,046, which is a continuation of U.S. patent application Ser. No. 13/426,909, filed Mar. 22, 2012, now U.S. Pat. No. 8,279,032, which is a continuation-in-part of U.S. non-provisional patent application Ser. No. 13/179,759, filed Jul. 11, 2011, now U.S. Pat. No. 8,174,347, and claims the benefit of U.S. Provisional Application 61/465,810, filed Mar. 24, 2011, which is entitled “Electromagnet Based Detachment System”. Non-provisional application Ser. No. 14/103,760 is also a continuation-in-part of U.S. non-provisional patent application Ser. No. 14/045,756, filed Oct. 3, 2013, which is entitled “System and Method for Tailoring Transition Regions of Magnetic Structures”, now U.S. Pat. No. 8,810,348, which claims the benefit of U.S. Provisional Patent Application No. 61/744,864, filed Oct. 4, 2012, which is entitled “System And Method for Tailoring Polarity Transitions of Magnetic Structures”. Non-provisional application Ser. No. 14/045,756 is a continuation-in-part of U.S. non-provisional patent application Ser. No. 13/240,335, filed Sep. 22, 2011, which is entitled “Magnetic Structure Production”, now U.S. Pat. No. 8,648,681, issued Feb. 11, 2014, which claims the benefit of U.S. Provisional Patent Application No. 61/403,814, filed Sep. 22, 2010 and U.S. Provisional Patent Application No. 61/462,715, filed Feb. 7, 2011, both of which are entitled “System And Method For Producing Magnetic Structures”. Non-provisional application Ser. No. 13/240,335 is a continuation-in-part of U.S. Pat. No. 8,179,219, issued May 15, 2012, which is entitled “Field Emission System and Method”. Non-provisional application Ser. No. 13/240,335 is also a continuation-in-part of U.S. non-provisional patent application Ser. No. 12/895,589, filed Sep. 30, 2010, now U.S. Pat. No. 8,760,250, which is entitled “A System And Method For Energy Generation”, which claims the benefit of Provisional Patent Application Nos. 61/277,214, filed Sep. 22, 2009, 61/277,900, filed Sep. 30, 2009, 61/278,767, filed Oct. 9, 2009, 61/279,094, filed Oct. 16, 2009, 61/281,160, filed Nov. 13, 2009, 61/283,780, filed Dec. 9, 2009, 61/284,385, filed Dec. 17, 2009, and 61/342,988, filed Apr. 22, 2010. Non-provisional application Ser. No. 12/895,589 is a continuation-in-part of U.S. Pat. No. 7,982,568, issued Jul. 19, 2011, and U.S. Pat. No. 8,179,219, issued May 15, 2012; Ser. No. 14/045,756 is also a continuation-in-part of U.S. patent application Ser. No. 13/246,584, filed Sep. 27, 2011, which is entitled “System and Method for Producing Stacked Field Emission Structures”. This application is also a continuation-in-part of non-provisional application Ser. No. 14/258,776, titled “System and Method for Moving an Object”, filed Apr. 22, 2014 by Fullerton et al., which is a continuation of non-provisional application Ser. No. 13/104,393, titled “System and Method for Moving and Object”, filed May 10, 2011, now U.S. Pat. No. 8,704,626, which claims the benefit under 35 USC 119(e) of provisional applications 61/395,205, titled “System and Method for Moving and Object”, filed May 5, 2010 by Fullerton et al. The contents of the provisional patent applications, the contents of the non-provisional patent applications, and the contents of the issued patents that are identified above are hereby incorporated by reference in their entirety herein.
Number | Name | Date | Kind |
---|---|---|---|
93931 | Westcott | Aug 1869 | A |
361248 | Winton | Apr 1887 | A |
381968 | Tesla | May 1888 | A |
493858 | Edison | Mar 1893 | A |
675323 | Clark | May 1901 | A |
687292 | Armstrong | Nov 1901 | A |
996933 | Lindquist | Jul 1911 | A |
1081462 | Patton | Dec 1913 | A |
1171351 | Neuland | Feb 1916 | A |
1236234 | Troje | Aug 1917 | A |
1252289 | Murray, Jr. | Jan 1918 | A |
1301135 | Karasick | Apr 1919 | A |
1312546 | Karasick | Aug 1919 | A |
1323546 | Karasick | Aug 1919 | A |
1554236 | Simmons | Jan 1920 | A |
1343751 | Simmons | Jun 1920 | A |
1624741 | Leppke et al. | Dec 1926 | A |
1784256 | Stout | Dec 1930 | A |
1895129 | Jones | Jan 1933 | A |
2048161 | Klaiber | Jul 1936 | A |
2147482 | Butler | Dec 1936 | A |
2186074 | Koller | Jan 1940 | A |
2240035 | Catherall | Apr 1941 | A |
2243555 | Faus | May 1941 | A |
2269149 | Edgar | Jan 1942 | A |
2327748 | Smith | Aug 1943 | A |
2337248 | Koller | Dec 1943 | A |
2337249 | Koller | Dec 1943 | A |
2346904 | Carlson | Apr 1944 | A |
2389298 | Ellis | Nov 1945 | A |
2401887 | Sheppard | Jun 1946 | A |
2414653 | Iokholder | Jan 1947 | A |
2438231 | Schultz | Mar 1948 | A |
2471634 | Vennice | May 1949 | A |
2475456 | Norlander | Jul 1949 | A |
2508305 | Teetor | May 1950 | A |
2513226 | Wylie | Jun 1950 | A |
2514927 | Bernhard | Jul 1950 | A |
2520828 | Bertschi | Aug 1950 | A |
2565624 | Phelon | Aug 1951 | A |
2570625 | Zimmerman et al. | Oct 1951 | A |
2690349 | Teetor | Sep 1954 | A |
2694164 | Geppelt | Nov 1954 | A |
2964613 | Williams | Nov 1954 | A |
2701158 | Schmitt | Feb 1955 | A |
2722627 | Cluwen et al. | Nov 1955 | A |
2770759 | Ahlgren | Nov 1956 | A |
2792194 | Huck | May 1957 | A |
2837366 | Loeb | Jun 1958 | A |
2853331 | Teetor | Sep 1958 | A |
2888291 | Scott et al. | May 1959 | A |
2896991 | Martin, Jr. | Jul 1959 | A |
2932545 | Foley | Apr 1960 | A |
2935352 | Heppner | May 1960 | A |
2935353 | Loeb | May 1960 | A |
2936437 | Fraser et al. | May 1960 | A |
2962318 | Teetor | Nov 1960 | A |
3025372 | Benjetsky | Mar 1962 | A |
3055999 | Lucas | Sep 1962 | A |
3089986 | Gauthier | May 1963 | A |
3102314 | Alderfer | Sep 1963 | A |
3134404 | Ziccardi | May 1964 | A |
3151902 | Ahlgren | Oct 1964 | A |
3204995 | Teetor | Sep 1965 | A |
3208296 | Baermann | Sep 1965 | A |
3238399 | Johanees et al. | Mar 1966 | A |
3273104 | Krol | Sep 1966 | A |
3288511 | Tavano | Nov 1966 | A |
3301091 | Reese | Jan 1967 | A |
3351368 | Sweet | Nov 1967 | A |
3382386 | Schlaeppi | May 1968 | A |
3408104 | Raynes | Oct 1968 | A |
3414309 | Tresemer | Dec 1968 | A |
3425729 | Bisbing | Feb 1969 | A |
3468576 | Beyer et al. | Sep 1969 | A |
3474366 | Barney | Oct 1969 | A |
3500090 | Baermann | Mar 1970 | A |
3521216 | Tolegian | Jul 1970 | A |
3645650 | Laing | Feb 1972 | A |
3668670 | Andersen | Jun 1972 | A |
3684992 | Huguet et al. | Aug 1972 | A |
3690393 | Guy | Sep 1972 | A |
3696258 | Anderson et al. | Oct 1972 | A |
3790197 | Parker | Feb 1974 | A |
3791309 | Baermann | Feb 1974 | A |
3802034 | Bookless | Apr 1974 | A |
3803433 | Ingenito | Apr 1974 | A |
3808577 | Mathauder | Apr 1974 | A |
3836801 | Yamashita et al. | Sep 1974 | A |
3845430 | Petkewicz et al. | Oct 1974 | A |
3893059 | Nowak | Jul 1975 | A |
3976316 | Laby | Aug 1976 | A |
4079558 | Gorham | Mar 1978 | A |
4117431 | Eicher | Sep 1978 | A |
4129846 | Yablochnikov | Dec 1978 | A |
4209905 | Gillings | Jul 1980 | A |
4222489 | Hutter | Sep 1980 | A |
4296394 | Ragheb | Oct 1981 | A |
4327892 | Ruyak | May 1982 | A |
4340833 | Sudo et al. | Jul 1982 | A |
4352960 | Dormer et al. | Oct 1982 | A |
4355236 | Holsinger | Oct 1982 | A |
4399595 | Yoon et al. | Aug 1983 | A |
4416127 | Gomez-Olea Naveda | Nov 1983 | A |
4451811 | Hoffman | May 1984 | A |
4453294 | Morita | Jun 1984 | A |
4505301 | Yang | Mar 1985 | A |
4517483 | Hucker et al. | May 1985 | A |
4535278 | Asakawa | Aug 1985 | A |
4547756 | Miller et al. | Oct 1985 | A |
4629131 | Podell | Dec 1986 | A |
4645283 | Macdonald et al. | Feb 1987 | A |
4680494 | Grosjean | Jul 1987 | A |
4764743 | Leupold et al. | Aug 1988 | A |
4808955 | Godkin et al. | Feb 1989 | A |
4837539 | Baker | Jun 1989 | A |
4849749 | Fukumachi et al. | Jul 1989 | A |
4862128 | Leupold | Aug 1989 | A |
4893103 | Leupold | Jan 1990 | A |
4912727 | Schubert | Mar 1990 | A |
4941236 | Sherman et al. | Jul 1990 | A |
4956625 | Cardone et al. | Sep 1990 | A |
4980593 | Edmundson | Dec 1990 | A |
4993950 | Mensor, Jr. | Feb 1991 | A |
4994778 | Leupold | Feb 1991 | A |
4996457 | Hawsey et al. | Feb 1991 | A |
5013949 | Mabe, Jr. | May 1991 | A |
5020625 | Yamauchi et al. | Jun 1991 | A |
5050276 | Pemberton | Sep 1991 | A |
5062855 | Rincoe | Nov 1991 | A |
5123843 | Van der Zel et al. | Jun 1992 | A |
5179307 | Porter | Jan 1993 | A |
5190325 | Doss-Desouza | Mar 1993 | A |
5213307 | Perrillat-Amede | May 1993 | A |
5302929 | Kovacs | Apr 1994 | A |
5309680 | Kiel | May 1994 | A |
5345207 | Gebele | Sep 1994 | A |
5349258 | Leupold et al. | Sep 1994 | A |
5367891 | Furuyama | Nov 1994 | A |
5383049 | Carr | Jan 1995 | A |
5394132 | Poil | Feb 1995 | A |
5399933 | Tsai | Mar 1995 | A |
5425763 | Stemmann | Jun 1995 | A |
5440997 | Crowley | Aug 1995 | A |
5461386 | Knebelkamp | Oct 1995 | A |
5485435 | Matsuda et al. | Jan 1996 | A |
5492572 | Schroeder et al. | Feb 1996 | A |
5495221 | Post | Feb 1996 | A |
5512732 | Yagnik et al. | Apr 1996 | A |
5570084 | Ritter et al. | Oct 1996 | A |
5582522 | Johnson | Dec 1996 | A |
5604960 | Good | Feb 1997 | A |
5631093 | Perry et al. | May 1997 | A |
5631618 | Trumper et al. | May 1997 | A |
5633555 | Ackermann et al. | May 1997 | A |
5635889 | Stelter | Jun 1997 | A |
5637972 | Randall et al. | Jun 1997 | A |
5730155 | Allen | Mar 1998 | A |
5742036 | Schramm, Jr. et al. | Apr 1998 | A |
5759054 | Spadafore | Jun 1998 | A |
5788493 | Tanaka et al. | Aug 1998 | A |
5838304 | Hall | Nov 1998 | A |
5852393 | Reznik et al. | Dec 1998 | A |
5935155 | Humayun et al. | Aug 1999 | A |
5956778 | Godoy | Sep 1999 | A |
5983406 | Meyerrose | Nov 1999 | A |
6000484 | Zoretich et al. | Dec 1999 | A |
6039759 | Carpentier et al. | Mar 2000 | A |
6047456 | Yao et al. | Apr 2000 | A |
6072251 | Markle | Jun 2000 | A |
6074420 | Eaton | Jun 2000 | A |
6104108 | Hazelton et al. | Aug 2000 | A |
6115849 | Meyerrose | Sep 2000 | A |
6118271 | Ely et al. | Sep 2000 | A |
6120283 | Cousins | Sep 2000 | A |
6125955 | Zoretich et al. | Oct 2000 | A |
6142779 | Siegel et al. | Nov 2000 | A |
6170131 | Shin | Jan 2001 | B1 |
6187041 | Garonzik | Feb 2001 | B1 |
6188147 | Hazelton et al. | Feb 2001 | B1 |
6205012 | Lear | Mar 2001 | B1 |
6208489 | Marchon | Mar 2001 | B1 |
6210033 | Karkos, Jr. et al. | Apr 2001 | B1 |
6224374 | Mayo | May 2001 | B1 |
6234374 | Hwang et al. | May 2001 | B1 |
6241069 | Mazur et al. | Jun 2001 | B1 |
6273918 | Yuhasz et al. | Aug 2001 | B1 |
6275778 | Shimada et al. | Aug 2001 | B1 |
6285097 | Hazelton et al. | Sep 2001 | B1 |
6387096 | Hyde, Jr. | May 2002 | B1 |
6422533 | Harms | Jul 2002 | B1 |
6457179 | Prendergast | Oct 2002 | B1 |
6467326 | Garrigus | Oct 2002 | B1 |
6535092 | Hurley et al. | Mar 2003 | B1 |
6540515 | Tanaka | Apr 2003 | B1 |
6561815 | Schmidt | May 2003 | B1 |
6599321 | Hyde, Jr. | Jul 2003 | B2 |
6607304 | Lake et al. | Aug 2003 | B1 |
6652278 | Honkura et al. | Nov 2003 | B2 |
6653919 | Shih-Chung et al. | Nov 2003 | B2 |
6720698 | Galbraith | Apr 2004 | B2 |
6747537 | Mosteller | Jun 2004 | B1 |
6821126 | Neidlein | Nov 2004 | B2 |
6841910 | Gery | Jan 2005 | B2 |
6842332 | Rubenson et al. | Jan 2005 | B1 |
6847134 | Frissen et al. | Jan 2005 | B2 |
6850139 | Dettmann et al. | Feb 2005 | B1 |
6862748 | Prendergast | Mar 2005 | B2 |
6864773 | Perrin | Mar 2005 | B2 |
6913471 | Smith | Jul 2005 | B2 |
6927657 | Wu | Aug 2005 | B1 |
6936937 | Tu et al. | Aug 2005 | B2 |
6954968 | Sitbon | Oct 2005 | B1 |
6971147 | Halstead | Dec 2005 | B2 |
7004446 | Petro | Feb 2006 | B2 |
7009874 | Deak | Mar 2006 | B2 |
7016492 | Pan et al. | Mar 2006 | B2 |
7031160 | Tillotson | Apr 2006 | B2 |
7033400 | Currier | Apr 2006 | B2 |
7038565 | Chell | May 2006 | B1 |
7065860 | Aoki et al. | Jun 2006 | B2 |
7066739 | Mcleish | Jun 2006 | B2 |
7066778 | Kretzschmar | Jun 2006 | B2 |
7097461 | Neidlein | Aug 2006 | B2 |
7101374 | Hyde, Jr. | Sep 2006 | B2 |
7135792 | Devaney et al. | Nov 2006 | B2 |
7137727 | Joseph et al. | Nov 2006 | B2 |
7186265 | Sharkawy et al. | Mar 2007 | B2 |
7224252 | Meadow, Jr. et al. | May 2007 | B2 |
7264479 | Lee | Sep 2007 | B1 |
7276025 | Roberts et al. | Oct 2007 | B2 |
7311526 | Rohrbach et al. | Dec 2007 | B2 |
7324320 | Maurer et al. | Jan 2008 | B2 |
7339790 | Baker et al. | Mar 2008 | B2 |
7344380 | Neidlein et al. | Mar 2008 | B2 |
7351066 | DiFonzo et al. | Apr 2008 | B2 |
7358724 | Taylor et al. | Apr 2008 | B2 |
7362018 | Kulogo et al. | Apr 2008 | B1 |
7364433 | Neidlein | Apr 2008 | B2 |
7381181 | Lau et al. | Jun 2008 | B2 |
7402175 | Azar | Jul 2008 | B2 |
7416414 | Bozzone et al. | Aug 2008 | B2 |
7438726 | Erb | Oct 2008 | B2 |
7444683 | Prendergast et al. | Nov 2008 | B2 |
7453341 | Hildenbrand | Nov 2008 | B1 |
7467948 | Lindberg et al. | Dec 2008 | B2 |
7498914 | Miyashita et al. | Mar 2009 | B2 |
7583500 | Ligtenberg et al. | Sep 2009 | B2 |
7637746 | Lindberg et al. | Dec 2009 | B2 |
7645143 | Rohrbach et al. | Jan 2010 | B2 |
7658613 | Griffin et al. | Feb 2010 | B1 |
7715890 | Kim et al. | May 2010 | B2 |
7717396 | Graffin | May 2010 | B2 |
7750524 | Sugimoto et al. | Jul 2010 | B2 |
7762817 | Ligtenberg et al. | Jul 2010 | B2 |
7775567 | Ligtenberg et al. | Aug 2010 | B2 |
7796002 | Hashimoto et al. | Sep 2010 | B2 |
7799281 | Cook et al. | Sep 2010 | B2 |
7808349 | Fullerton et al. | Oct 2010 | B2 |
7812697 | Fullerton et al. | Oct 2010 | B2 |
7817004 | Fullerton et al. | Oct 2010 | B2 |
7828556 | Rodrigues | Nov 2010 | B2 |
7832897 | Ku | Nov 2010 | B2 |
7837032 | Smeltzer | Nov 2010 | B2 |
7839246 | Fullerton et al. | Nov 2010 | B2 |
7843297 | Fullerton et al. | Nov 2010 | B2 |
7868721 | Fullerton et al. | Jan 2011 | B2 |
7871272 | Firman, II et al. | Jan 2011 | B2 |
7874856 | Schriefer et al. | Jan 2011 | B1 |
7889037 | Cho | Feb 2011 | B2 |
7901216 | Rohrbach et al. | Mar 2011 | B2 |
7903397 | McCoy | Mar 2011 | B2 |
7905626 | Shantha et al. | Mar 2011 | B2 |
7997906 | Ligtenberg et al. | Aug 2011 | B2 |
8002585 | Zhou | Aug 2011 | B2 |
8009001 | Cleveland | Aug 2011 | B1 |
8050714 | Fadell et al. | Nov 2011 | B2 |
8078224 | Fadell et al. | Dec 2011 | B2 |
8078776 | Novotney et al. | Dec 2011 | B2 |
8087939 | Rohrbach et al. | Jan 2012 | B2 |
8099964 | Saito et al. | Jan 2012 | B2 |
8138869 | Lauder et al. | Mar 2012 | B1 |
8143982 | Lauder et al. | Mar 2012 | B1 |
8143983 | Lauder et al. | Mar 2012 | B1 |
8165634 | Fadell et al. | Apr 2012 | B2 |
8177560 | Rohrbach et al. | May 2012 | B2 |
8187006 | Rudisill et al. | May 2012 | B2 |
8190205 | Fadell et al. | May 2012 | B2 |
8242868 | Lauder et al. | Aug 2012 | B2 |
8253518 | Lauder et al. | Aug 2012 | B2 |
8264310 | Lauder et al. | Sep 2012 | B2 |
8264314 | Sankar | Sep 2012 | B2 |
8271038 | Fadell et al. | Sep 2012 | B2 |
8271705 | Novotney et al. | Sep 2012 | B2 |
8297367 | Chen et al. | Oct 2012 | B2 |
8344836 | Lauder et al. | Jan 2013 | B2 |
8348678 | Hardisty et al. | Jan 2013 | B2 |
8354767 | Pennander et al. | Jan 2013 | B2 |
8390411 | Lauder et al. | Mar 2013 | B2 |
8390412 | Lauder et al. | Mar 2013 | B2 |
8390413 | Lauder et al. | Mar 2013 | B2 |
8395465 | Lauder et al. | Mar 2013 | B2 |
8398409 | Schmidt | Mar 2013 | B2 |
8435042 | Rohrbach et al. | May 2013 | B2 |
8454372 | Lee | Jun 2013 | B2 |
8467829 | Fadell et al. | Jun 2013 | B2 |
8497753 | DiFonzo et al. | Jul 2013 | B2 |
8514042 | Lauder et al. | Aug 2013 | B2 |
8535088 | Gao et al. | Sep 2013 | B2 |
8576031 | Lauder et al. | Nov 2013 | B2 |
8576034 | Bilbrey et al. | Nov 2013 | B2 |
8616362 | Browne et al. | Dec 2013 | B1 |
8648679 | Lauder et al. | Feb 2014 | B2 |
8665044 | Lauder et al. | Mar 2014 | B2 |
8665045 | Lauder et al. | Mar 2014 | B2 |
8690582 | Rohrbach et al. | Apr 2014 | B2 |
8702316 | DiFonzo et al. | Apr 2014 | B2 |
8734024 | Isenhour et al. | May 2014 | B2 |
8752200 | Varshavsky et al. | Jun 2014 | B2 |
8757893 | Isenhour et al. | Jun 2014 | B1 |
8770857 | DiFonzo et al. | Jul 2014 | B2 |
8774577 | Benjamin et al. | Jul 2014 | B2 |
8781273 | Benjamin et al. | Jul 2014 | B2 |
20020125977 | VanZoest | Sep 2002 | A1 |
20030136837 | Amon et al. | Jul 2003 | A1 |
20030170976 | Molla et al. | Sep 2003 | A1 |
20030179880 | Pan et al. | Sep 2003 | A1 |
20030187510 | Hyde | Oct 2003 | A1 |
20040003487 | Reiter | Jan 2004 | A1 |
20040244636 | Meadow et al. | Dec 2004 | A1 |
20040251759 | Hirzel | Dec 2004 | A1 |
20050102802 | Sitbon et al. | May 2005 | A1 |
20050196484 | Khoshnevis | Sep 2005 | A1 |
20050231046 | Aoshima | Oct 2005 | A1 |
20050240263 | Fogarty et al. | Oct 2005 | A1 |
20050263549 | Scheiner | Dec 2005 | A1 |
20050283839 | Cowburn | Dec 2005 | A1 |
20060066428 | McCarthy et al. | Mar 2006 | A1 |
20060189259 | Park et al. | Aug 2006 | A1 |
20060198047 | Xue et al. | Sep 2006 | A1 |
20060198998 | Raksha et al. | Sep 2006 | A1 |
20060214756 | Elliott et al. | Sep 2006 | A1 |
20060290451 | Prendergast et al. | Dec 2006 | A1 |
20060293762 | Schulman et al. | Dec 2006 | A1 |
20070072476 | Milan | Mar 2007 | A1 |
20070075594 | Sadler | Apr 2007 | A1 |
20070103266 | Wang et al. | May 2007 | A1 |
20070138806 | Ligtenberg et al. | Jun 2007 | A1 |
20070255400 | Parravicini et al. | Nov 2007 | A1 |
20070267929 | Pulnikov et al. | Nov 2007 | A1 |
20080119250 | Cho et al. | May 2008 | A1 |
20080139261 | Cho et al. | Jun 2008 | A1 |
20080174392 | Cho | Jul 2008 | A1 |
20080181804 | Tanigawa et al. | Jul 2008 | A1 |
20080186683 | Ligtenberg et al. | Aug 2008 | A1 |
20080218299 | Arnold | Sep 2008 | A1 |
20080224806 | Ogden et al. | Sep 2008 | A1 |
20080272868 | Prendergast et al. | Nov 2008 | A1 |
20080282517 | Claro | Nov 2008 | A1 |
20090021333 | Fiedler | Jan 2009 | A1 |
20090209173 | Arledge et al. | Aug 2009 | A1 |
20090250576 | Fullerton et al. | Oct 2009 | A1 |
20090251256 | Fullerton et al. | Oct 2009 | A1 |
20090254196 | Cox et al. | Oct 2009 | A1 |
20090278642 | Fullerton et al. | Nov 2009 | A1 |
20090289090 | Fullerton et al. | Nov 2009 | A1 |
20090289749 | Fullerton et al. | Nov 2009 | A1 |
20090292371 | Fullerton et al. | Nov 2009 | A1 |
20100033280 | Bird et al. | Feb 2010 | A1 |
20100126857 | Polwart et al. | May 2010 | A1 |
20100134916 | Kawabe | Jun 2010 | A1 |
20100167576 | Zhou | Jul 2010 | A1 |
20110026203 | Ligtenberg et al. | Feb 2011 | A1 |
20110051288 | Contreras | Mar 2011 | A1 |
20110085157 | Bloss et al. | Apr 2011 | A1 |
20110101088 | Marguerettaz et al. | May 2011 | A1 |
20110210636 | Kuhlmann-Wilsdorf | Sep 2011 | A1 |
20110234344 | Fullerton et al. | Sep 2011 | A1 |
20110248806 | Michael | Oct 2011 | A1 |
20110279206 | Fullerton et al. | Nov 2011 | A1 |
20120007704 | Nerl | Jan 2012 | A1 |
20120064309 | Kwon et al. | Mar 2012 | A1 |
20120085753 | Fitch et al. | Apr 2012 | A1 |
20120235519 | Dyer et al. | Sep 2012 | A1 |
20130001745 | Iwaki | Jan 2013 | A1 |
20130186209 | Herbst | Jul 2013 | A1 |
20130186473 | Mankame et al. | Jul 2013 | A1 |
20130186807 | Browne et al. | Jul 2013 | A1 |
20130187638 | Herbst | Jul 2013 | A1 |
20130192860 | Puzio et al. | Aug 2013 | A1 |
20130207758 | Browne et al. | Aug 2013 | A1 |
20130252375 | Yi et al. | Sep 2013 | A1 |
20130256274 | Faulkner | Oct 2013 | A1 |
20130270056 | Mankame et al. | Oct 2013 | A1 |
20130305705 | Ac et al. | Nov 2013 | A1 |
20130341137 | Mankame et al. | Dec 2013 | A1 |
20140044972 | Menassa et al. | Feb 2014 | A1 |
20140072261 | Isenhour et al. | Mar 2014 | A1 |
20140152252 | Wood et al. | Jun 2014 | A1 |
20140205235 | Benjamin et al. | Jul 2014 | A1 |
20140221741 | Wang et al. | Aug 2014 | A1 |
Number | Date | Country |
---|---|---|
1615573 | May 2005 | CN |
2938782 | Apr 1981 | DE |
0345554 | Dec 1989 | EP |
0545737 | Jun 1993 | EP |
823395 | Jan 1938 | FR |
1495677 | Dec 1977 | GB |
54-152200 | Nov 1979 | JP |
S57-55908 | Apr 1982 | JP |
S57-189423 | Dec 1982 | JP |
60091011 | May 1985 | JP |
60-221238 | Nov 1985 | JP |
64-30444 | Feb 1989 | JP |
2001-328483 | Nov 2001 | JP |
2008035676 | Feb 2008 | JP |
2008165974 | Jul 2008 | JP |
05-038123 | Oct 2012 | JP |
0231945 | Apr 2002 | WO |
2007081830 | Jul 2007 | WO |
2009124030 | Oct 2009 | WO |
2010141324 | Dec 2010 | WO |
Entry |
---|
Atallah, K, Calverley, S.D., D. Howe, 2004, “Design, analysis and realisation of a high-performance magnetic gear”, IEE Proc.-Electr. Power Appl., vol. 151, No. 2, Mar. 2004. |
Atallah, K., Howe, D. 2001, “A Novel High-Performance Magnetic Gear”, IEEE Transactions on Magnetics, vol. 37, No. 4, Jul. 2001, p. 2844-46. |
Bassani, R., 2007, “Dynamic Stability of Passive Magnetic Bearings”, Nonlinear Dynamics, V. 50, p. 161-68. |
“BNS 33 Range, Magnetic safety sensors, Rectangular design, http://www.farnell.com/datasheets/36449.pdf, 3 pages, date unknown.” |
“Boston Gear 221S-4, One-stage Helical Gearbox, http://www.bostongearcom/pdf/product—sections/200—series—helical.pdf, referenced Jun. 2010”. |
Charpentier et al., 2001, “Mechanical Behavior of Axially Magnetized Permanent-Magnet Gears”, IEEE Transactions on Magnetics, vol. 37, No. 3, May 2001, p. 1110-17. |
Chau et al., 2008, “Transient Analysis of Coaxial Magnetic Gears Using Finite Element Comodeling”, Journal of Applied Physics, vol. 103. |
Choi et al., 2010, “Optimization of Magnetization Directions in a 3-D Magnetic Structure”, IEEE Transactions on Magnetics, vol. 46, No. 6, Jun. 2010, p. 1603-06. |
Correlated Magnetics Research, 2009, Online Video, “Innovative Magnetics Research in Huntsville”, http://www.youtube.com/watch?v=m4m81JjZCJo. |
Correlated Magnetics Research, 2009, Online Video, “Non-Contact Attachment Utilizing Permanent Magnets”, http://www.youtube.com/watch?v=3xUm25CNNgQ. |
“Correlated Magnetics Research, 2010, Company Website, http://www.correlatedmagnetics.com”. |
Furlani 1996, “Analysis and optimization of synchronous magnetic couplings”, J. Appl. Phys., vol. 79, No. 8, p. 4692. |
Furlani 2001, “Permanent Magnet and Electromechanical Devices”, Academic Press, San Diego. |
Furlani, E.P., 2000, “Analytical analysis of magnetically coupled multipole cylinders”, J. Phys. D: Appl. Phys., vol. 33, No. 1, p. 28-33. |
General Electric DP 2.7 Wind Turbine Gearbox, http://www.gedrivetrain.com/insideDP27.cfm, referenced Jun. 2010. |
Ha et al., 2002, “Design and Characteristic Analysis of Non-Contact Magnet Gear for Conveyor by Using Permanent Magnet”, Conf. Record of the 2002 IEEE Industry Applications Conference, p. 1922-27. |
Huang et al., 2008, “Development of a Magnetic Planetary Gearbox”, IEEE Transactions on Magnetics, vol. 44, No. 3, p. 403-12. |
International Search Report and Written Opinion dated Jun. 1, 2009, directed to counterpart application No. PCT/US2009/002027. (10 pages). |
International Search Report and Written Opinion of the International Searching Authority issued in Application No. PCT/US12/61938 dated Feb. 26, 2013. |
International Search Report and Written Opinion of the International Searching Authority issued in Application No. PCT/US2013/028095 dated May 13, 2013. |
International Search Report and Written Opinion of the International Searching Authority issued in Application No. PCT/US2013/047986 dated Nov. 21, 2013. |
International Search Report and Written Opinion, dated Apr. 8, 2011 issued in related International Application No. PCT/US2010/049410. |
International Search Report and Written Opinion, dated Aug. 18, 2010, issued in related International Application No. PCT/US2010/036443. |
International Search Report and Written Opinion, dated Jul. 13, 2010, issued in related International Application No. PCT/US2010/021612. |
International Search Report and Written Opinion, dated May 14, 2009, issued in related International Application No. PCT/U52009/038925. |
Jian et al., “Comparison of Coaxial Magnetic Gears With Different Topologies”, IEEE Transactions on Magnetics, vol. 45, No. 10, Oct. 2009, p. 4526-29. |
Jian, L., Chau, K.T., 2010, “A Coaxial Magnetic Gear With Halbach Permanent-Magnet Arrays”, IEEE Transactions on Energy Conversion, vol. 25, No. 2, Jun. 2010, p. 319-28. |
Jorgensen et al., “The Cycloid Permanent Magnetic Gear”, IEEE Transactions on Industry Applications, vol. 44, No. 6, Nov./Dec. 2008, p. 1659-65. |
Jorgensen et al., 2005, “Two dimensional model of a permanent magnet spur gear”, Conf. Record of the 2005 IEEE Industry Applications Conference, p. 261-5. |
Kim, “A future cost trends of magnetizer systems in Korea”, Industrial Electronics, Control, and Instrumentation, 1996, vol. 2, Aug. 5, 1996, pp. 991-996. |
Krasil'nikov et al., 2008, “Calculation of the Shear Force of Highly Coercive Permanent Magnets in Magnetic Systems With Consideration of Affiliation to a Certain Group Based on Residual Induction”, Chemical and Petroleum Engineering, vol. 44, Nos. 7-8, p. 362-65. |
Krasil'nikov et al., 2009, “Torque Determination for a Cylindrical Magnetic Clutch”, Russian Engineering Research, vol. 29, No. 6, pp. 544-547. |
Liu et al., 2009, “Design and Analysis of Interior-magnet Outer-rotor Concentric Magnetic Gears”, Journal of Applied Physics, vol. 105. |
Lorimer, W., Hartman, A., 1997, “Magnetization Pattern for Increased Coupling in Magnetic Clutches”, IEEE Transactions on Magnetics, vol. 33, No. 5, Sep. 1997. |
Mezani, S., Atallah, K., Howe, D. , 2006, “A high-performance axial-field magnetic gear”, Journal of Applied Physics vol. 99. |
Mi, “Magnetreater/Charger Model 580” Magnetic Instruments Inc. Product specification, May 4, 2009, http://web.archive.org/web/20090504064511/http://www.maginst.com/specifications/580—mag netreater.htm, 2 pages. |
Neugart PLE-160, One-Stage Planetary Gearbox, http://www.neugartusa.com/ple—160—gb.pdf, referenced Jun. 2010. |
“Series BNS, Compatible Series AES Safety Controllers, http://www.schmersalusa.com/safety—controllers/drawingskes.Pdf, pp. 159-175, date unknown.” |
Series BNS-B20, Coded-Magnet Sensor Safety Door Handle, http://www.schmersalusa.com/catalog—pdfs/BNS—B20.pdf, 2pages, date unknown. |
Series BNS333, Coded-Magnet Sensors with Integral Safety Control Module, http://www.schmersalusa.com/machine—guarding/coded—magnet/drawings/bns333.pdf, 2 pages, date unknown. |
Tsurumoto 1992, “Basic Analysis on Transmitted Force of Magnetic Gear Using Permanent Magnet”, IEEE Translation Journal on Magnetics in Japan, Vo 7, No. 6, Jun. 1992, p. 447-52. |
United States Office Action issued in U.S. Appl. No. 13/104,393 dated Apr. 4, 2013. |
United States Office Action issued in U.S. Appl. No. 13/236,413 dated Jun. 6, 2013. |
United States Office Action issued in U.S. Appl. No. 13/246,584 dated May 16, 2013. |
United States Office Action issued in U.S. Appl. No. 13/246,584 dated Oct. 15, 2013. |
United States Office Action issued in U.S. Appl. No. 13/374,074 dated Feb. 21, 2013. |
United States Office Action issued in U.S. Appl. No. 13/430,219 dated Aug. 13, 2013. |
United States Office Action issued in U.S. Appl. No. 13/470,994 dated Aug. 8, 2013. |
United States Office Action issued in U.S. Appl. No. 13/470,994 dated Jan. 7, 2013. |
United States Office Action issued in U.S. Appl. No. 13/470,994 dated Nov. 8, 2013. |
United States Office Action issued in U.S. Appl. No. 13/529,520 dated Sep. 28, 2012. |
United States Office Action issued in U.S. Appl. No. 13/530,893 dated Mar. 22, 2013. |
United States Office Action issued in U.S. Appl. No. 13/530,893 dated Oct. 29, 2013. |
United States Office Action issued in U.S. Appl. No. 13/718,839 dated Dec. 16, 2013. |
United States Office Action issued in U.S. Appl. No. 13/855,519 dated Jul. 17, 2013. |
United States Office Action issued in U.S. Appl. No. 13/928,126 dated Oct. 11, 2013. |
United States Office Action, dated Aug. 26, 2011, issued in courterpart U.S. Appl. No. 12/206,270. |
United States Office Action, dated Feb. 2, 2011, issued in counterpart U.S. Appl. No. 12/476,952. |
United States Office Action, dated Mar. 12, 2012, issued in counterpart U.S. Appl. No. 12/206,270. |
United States Office Action, dated Mar. 9, 2012, issued in counterpart U.S. Appl. No. 13/371,280. |
United States Office Action, dated Oct. 12, 2011, issued in counterpart U.S. Appl. No. 12/476,952. |
Wikipedia, “Barker Code”, Web article, last modified Aug. 2, 2008, 2 pages. |
Wikipedia, “Bitter Electromagnet”, Web article, last modified Aug. 2011, 1 page. |
Wikipedia, “Costas Array”, Web article, last modified Oct. 7, 2008, 4 pages. |
Wikipedia, “Gold Code”, Web article, last modified Jul. 27, 2008, 1 page. |
Wikipedia, “Golomb Ruler”, Web article, last modified Nov. 4, 2008, 3 pages. |
Wikipedia, “Kasami Code”, Web article, last modified Jun. 11, 2008, 1 page. |
Wikipedia, “Linear feedback shift register”, Web article, last modified Nov. 11, 2008, 6 pages. |
Wikipedia, “Walsh Code”, Web article, last modified Sep. 17, 2008, 2 pages. |
Number | Date | Country | |
---|---|---|---|
20140373950 A1 | Dec 2014 | US |
Number | Date | Country | |
---|---|---|---|
61871689 | Aug 2013 | US | |
61794427 | Mar 2013 | US | |
61798233 | Mar 2013 | US | |
61798453 | Mar 2013 | US | |
61799507 | Mar 2013 | US | |
61800377 | Mar 2013 | US | |
61735460 | Dec 2012 | US | |
61640979 | May 2012 | US | |
61604376 | Feb 2012 | US | |
61459994 | Dec 2010 | US | |
61796863 | Nov 2012 | US | |
61744342 | Sep 2012 | US | |
61519664 | May 2011 | US | |
61465810 | Mar 2011 | US | |
61744864 | Oct 2012 | US | |
61403814 | Sep 2010 | US | |
61462715 | Feb 2011 | US | |
61277214 | Sep 2009 | US | |
61277900 | Sep 2009 | US | |
61278767 | Oct 2009 | US | |
61279094 | Oct 2009 | US | |
61281160 | Nov 2009 | US | |
61283780 | Dec 2009 | US | |
61284385 | Dec 2009 | US | |
61342988 | Apr 2010 | US | |
61404147 | Sep 2010 | US | |
61123019 | Apr 2008 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13374074 | Dec 2011 | US |
Child | 14066426 | US | |
Parent | 13481554 | May 2012 | US |
Child | 13759695 | US | |
Parent | 13157975 | Jun 2011 | US |
Child | 13351203 | US | |
Parent | 12952391 | Nov 2010 | US |
Child | 13157975 | US | |
Parent | 12478911 | Jun 2009 | US |
Child | 12952391 | US | |
Parent | 12478950 | Jun 2009 | US |
Child | 12478911 | US | |
Parent | 12478969 | Jun 2009 | US |
Child | 12478950 | US | |
Parent | 12479013 | Jun 2009 | US |
Child | 12478969 | US | |
Parent | 13629879 | Sep 2012 | US |
Child | 13918921 | US | |
Parent | 13426909 | Mar 2012 | US |
Child | 13629879 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14198226 | Mar 2014 | US |
Child | 14472945 | US | |
Parent | 14103760 | Dec 2013 | US |
Child | 14198226 | US | |
Parent | 13779611 | Feb 2013 | US |
Child | 14103760 | US | |
Parent | 14066426 | Oct 2013 | US |
Child | 13779611 | US | |
Parent | 14086924 | Nov 2013 | US |
Child | 14103760 | US | |
Parent | 14035818 | Sep 2013 | US |
Child | 14086924 | US | |
Parent | 13959649 | Aug 2013 | US |
Child | 14035818 | US | |
Parent | 13759695 | Feb 2013 | US |
Child | 13959649 | US | |
Parent | 13351203 | Jan 2012 | US |
Child | 13481554 | US | |
Parent | 12476952 | Jun 2009 | US |
Child | 12478950 | US | |
Parent | 12476952 | US | |
Child | 12478911 | US | |
Parent | 12476952 | US | |
Child | 12478969 | US | |
Parent | 12476952 | US | |
Child | 12479013 | US | |
Parent | 12322561 | Feb 2009 | US |
Child | 12476952 | US | |
Parent | 12358423 | Jan 2009 | US |
Child | 12322561 | US | |
Parent | 13918921 | Jun 2013 | US |
Child | 14103760 | US | |
Parent | 13179759 | Jul 2011 | US |
Child | 13426909 | US | |
Parent | 14045756 | Oct 2013 | US |
Child | 14103760 | US | |
Parent | 13240335 | Sep 2011 | US |
Child | 14045756 | US | |
Parent | 12476952 | US | |
Child | 13240335 | US | |
Parent | 12895589 | Sep 2010 | US |
Child | 12476952 | US | |
Parent | 12885450 | Sep 2010 | US |
Child | 12895589 | US | |
Parent | 12476952 | US | |
Child | 12885450 | US | |
Parent | 13246584 | Sep 2011 | US |
Child | 14045756 | US | |
Parent | 12123718 | May 2008 | US |
Child | 12358423 | US |