The present invention relates to magnetic data recording and more particularly to a magnetic write element having a write pole having a constant flare angle and multiple yoke angles for improved magnetic performance.
At the heart of a computer is an assembly that is referred to as a magnetic disk drive. The magnetic disk drive includes a rotating magnetic disk, write and read heads that are suspended by a suspension arm adjacent to a surface of the rotating magnetic disk and an actuator that swings the suspension arm to place the read and write heads over selected circular tracks on the rotating disk. The read and write heads are directly located on a slider that has an air bearing surface (ABS). The suspension arm biases the slider into contact with the surface of the disk when the disk is not rotating, but when the disk rotates air is swirled by the rotating disk. When the slider rides on the air bearing, the write and read heads are employed for writing magnetic impressions to and reading magnetic impressions from the rotating disk. The read and write heads are connected to processing circuitry that operates according to a computer program to implement the writing and reading functions.
The write head includes at least one coil, a write pole and one or more return poles. When a current flows through the coil, a resulting magnetic field causes a magnetic flux to flow through the write pole, which results in a magnetic write field emitting from the tip of the write pole. This magnetic field is sufficiently strong that it locally magnetizes a portion of the adjacent magnetic disk, thereby recording a bit of data. The write field, then, travels through a magnetically soft under-layer of the magnetic medium to return to the return pole of the write head.
The magnetic write pole has a flared shape that helps to channel magnetic flux to the magnetic write pole. Current designs have a flare angle that is curved near the air bearing surface. As a result, any variation in the location of the air bearing surface relative to the write pole causes a large variation in write pole width and flare angle. In addition, current write poles have a yoke shape that has a constant angle relative to the air bearing surface. This constant yoke angle, which can be 45 to 60 degrees, causes a thinner side shield thickness as measured from the ABS.
The present invention provides a magnetic write head that includes a magnetic write pole having pole tip portion extending to an air bearing surface and having a first flare angle relative to a plane that is perpendicular to the air bearing surface. The write pole also has a main yoke portion removed from the air bearing surface and having a second flare angle relative to the plane that is perpendicular to air bearing surface, the second angle being greater than the first flare angle. The write pole also has an intermediate portion located between the pole tip portion and the main yoke portion.
The novel shape of the write pole provides ample room for the side magnetic shields in the location of the write pole. This advantageously prevents magnetic saturation of the side shields, which in turn prevents near track and far track interference.
The novel shape of the write pole also ensures high write field strength and field gradient for optimal magnetic performance of the write head.
These and other features and advantages of the invention will be apparent upon reading of the following detailed description of preferred embodiments taken in conjunction with the Figures in which like reference numerals indicate like elements throughout.
For a fuller understanding of the nature and advantages of this invention, as well as the preferred mode of use, reference should be made to the following detailed description read in conjunction with the accompanying drawings which are not to scale.
The following description is of the best embodiments presently contemplated for carrying out this invention. This description is made for the purpose of illustrating the general principles of this invention and is not meant to limit the inventive concepts claimed herein.
Referring now to
At least one slider 113 is positioned near the magnetic disk 112, each slider 113 supporting one or more magnetic head assemblies 121. As the magnetic disk rotates, slider 113 moves radially in and out over the disk surface 122 so that the magnetic head assembly 121 can access different tracks of the magnetic disk where desired data are written. Each slider 113 is attached to an actuator arm 119 by way of a suspension 115. The suspension 115 provides a slight spring force which biases slider 113 against the disk surface 122. Each actuator arm 119 is attached to an actuator means 127. The actuator means 127 as shown in
During operation of the disk storage system, the rotation of the magnetic disk 112 generates an air bearing between the slider 113 and the disk surface 122 which exerts an upward force or lift on the slider. The air bearing thus counter-balances the slight spring force of suspension 115 and supports slider 113 off and slightly above the disk surface by a small, substantially constant spacing during normal operation.
The various components of the disk storage system are controlled in operation by control signals generated by control unit 129, such as access control signals and internal clock signals. Typically, the control unit 129 comprises logic control circuits, storage means and a microprocessor. The control unit 129 generates control signals to control various system operations such as drive motor control signals on line 123 and head position and seek control signals on line 128. The control signals on line 128 provide the desired current profiles to optimally move and position slider 113 to the desired data track on disk 112. Write and read signals are communicated to and from write and read heads 121 by way of recording channel 125.
With reference to
The write head 306 includes a magnetic write pole 318, a leading magnetic return pole 320, and may include a trailing return pole 322. The write pole 318 can be magnetically connected with a magnetic shaping layer 324 that helps to conduct magnetic flux to the write pole. The write pole 318 and shaping layer 324 can be magnetically connected with the return poles 320, 322 by magnetic back gap structures 326, 328. The write head 306 also includes a non-magnetic, electrically conductive write coil 330, which can be constructed of a material such as Cu and which is shown in cross section in
When an electrical current flows through the write coil 330, a resulting magnetic field causes a magnetic flux to flow through the magnetic layers 320, 326, 324, 328, 318, 322. This causes a write field being emitted from the tip of the write pole 318 at the ABS, which can write a bit of data to an adjacent magnetic medium (not shown in
The write pole 318 includes a pole tip portion 502 that is located at the ABS. The write pole 318 also includes an intermediate portion 504 that includes a first intermediate portion 504a and a second intermediate portion 504b, with the first intermediate portion 504a being closer to the ABS and closer to the pole tip portion 502 than the second intermediate portion 504b. Beyond the intermediate portion 504 is a main yoke portion 506. Each of these portions of the magnetic write pole structure 318 will be discussed in greater detail herein below.
With continued reference to
The pole tip portion 520 terminates at the starting point of the first intermediate portion 504a. The first intermediate portion 504a defines an angle 512 with respect to a plane perpendicular to the ABS, and the second intermediate portion 504b defines an angle 514 with respect to a plane this plane. The main yoke portion 506 has sides that define an angle 516 with respect to the plane perpendicular to the ABS.
The angle 512 of the first intermediate portion 504a is greater than the angle 516 of the main yoke portion 506, and the angle 514 of the second intermediate portion 504b is less than the angle of the main yoke portion 516. Preferably, the angle 512 of the first intermediate portion 504a is greater than 45 degrees and more preferably about 60 degrees. The angle 514 of the second intermediate portion 504b is preferably less than 45 degrees and more preferably about 35 degrees. The angle 516 of the main flare portion 506 is between the angles 512 and 514 (as mentioned above) and is more preferably about 45 degrees.
The write pole 318 having the above described angles provides several advantages over prior art write poles, which have only a single angle from the ABS through the back of the yoke. One advantage of the structure described above is that it prevents magnetic saturation of the side shields 322a. This advantageously prevents far track interference, by allowing the side shields 322a to function more efficiently. As can be seen in
With reference now to
There are a couple of possible methods for forming a write pole. One method involves depositing magnetic material full film. A mask, including a photolithographically patterned photoresist mask, is formed having a shape that defines a write pole. An ion milling can then be performed to remove portions of the magnetic material that are not protected by the mask.
Another method, often referred to as a damascene process, involves depositing or plating a fill material. A mask is then formed that has an opening that is configured to define a write pole shape. An ion milling, reactive ion etching, is then performed to remove portions of the fill layer that are exposed through the opening to form a trench that is configured in the shape of a write pole. A magnetic material is then deposited or plated into the trench, and a chemical mechanical polishing process can then be performed to remove portions of the deposited magnetic material that extend outside of the trench.
After either of the above processes have been performed to form a magnetic write pole structure such 318 as shown in
As can be seen in
The present invention overcomes this challenge. As can be seen in
It can also be appreciated with reference to
While various embodiments have been described above, it should be understood that they have been presented by way of example only and not limitation. Other embodiments falling within the scope of the invention may also become apparent to those skilled in the art. Thus, the breadth and scope of the invention should not be limited by any of the above-described exemplary embodiments, but should be defined only in accordance with the following claims and their equivalents.