Magnetic writer having convex trailing surface pole and conformal write gap

Information

  • Patent Grant
  • 9997177
  • Patent Number
    9,997,177
  • Date Filed
    Friday, September 8, 2017
    6 years ago
  • Date Issued
    Tuesday, June 12, 2018
    5 years ago
Abstract
A magnetic write apparatus has a media-facing surface (MFS), a pole, a write gap, a top shield and coil(s). The pole includes a yoke and a pole tip. The pole tip includes a bottom, a top wider than the bottom and first and second sides. The pole tip has a height between the top and the bottom. At least part of the top of the pole tip is convex in a cross-track direction between the first and second sides such that the height at the MFS is larger between the first and second sides than at the first and second sides. The height increases in a yoke direction perpendicular to the MFS. The write gap is adjacent to and conformal with the top of the pole at the MFS and is between part of the top shield and the pole. The top shield is concave at the MFS.
Description
BACKGROUND


FIG. 1 depicts an air-bearing surface (ABS) view of a conventional magnetic recording apparatus 10. The magnetic recording apparatus 10 may be a perpendicular magnetic recording (PMR) apparatus or other magnetic write apparatus. The conventional magnetic recording apparatus 10 may be a part of a merged head including the write apparatus 10 and a read apparatus (not shown). Alternatively, the magnetic recording head may only include the write apparatus 10.


The write apparatus 10 includes a leading shield 12, side shield(s) 14, gap 16, a pole 20 and a trailing shield 30. The apparatus 10 may also include other components including but not limited to coils for energizing the pole 20. The top (trailing surface) of the pole 20 is wider than the bottom (leading surface) of the pole 20.


Although the conventional magnetic recording apparatus 10 functions, there are drawbacks. In particular, the conventional magnetic write apparatus 10 may not perform sufficiently at higher recording densities. For example, at higher recording densities, the pole 20 is desired to be smaller, at least at the ABS. The conventional write apparatus 10 may be not provide a sufficiently high field or the desired field gradient for writing to a media (not shown). Stated differently, the writeability of the conventional pole 20 may suffer. Accordingly, what is needed is a system and method for improving the performance of a magnetic recording head, particularly at higher areal densities.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 depicts an ABS view of a conventional magnetic recording apparatus.



FIGS. 2A, 2B, 2C and 2D depict side, MFS, recessed and apex views of an exemplary embodiment of a magnetic write apparatus usable in a magnetic recording disk drive.



FIG. 3 depicts a view of the field profile at the media.



FIGS. 4A and 4B depict ABS and recessed views of another exemplary embodiment of a magnetic write apparatus usable in a magnetic recording disk drive.



FIGS. 5A, 5B and 5C depict MFS, recessed and apex views of another exemplary embodiment of a magnetic write apparatus usable in a magnetic recording disk drive.



FIG. 6 depicts an ABS view of another exemplary embodiment of a magnetic write apparatus usable in a disk drive.



FIG. 7 depicts an ABS view of another exemplary embodiment of a magnetic write apparatus usable in a disk drive.



FIG. 8 depicts an ABS view of another exemplary embodiment of a magnetic write apparatus usable in a disk drive.



FIG. 9 depicts an ABS view of another exemplary embodiment of a magnetic write apparatus usable in a disk drive.



FIG. 10 is a flow chart depicting an exemplary embodiment of a method for fabricating a magnetic write apparatus drive usable in a disk drive.





DETAILED DESCRIPTION

While the various embodiments disclosed are applicable to a variety of data storage devices such as magnetic recording disk drives, solid-state hybrid disk drives, networked storage systems, for the purposes of illustration the description below uses disk drives as examples.



FIGS. 2A, 2B, 2C and 2D depict side, media-facing surface (MFS), yoke and apex views of an exemplary embodiment of a magnetic write apparatus 120 usable in a magnetic recording disk drive 100. FIG. 2A depicts a side view of the disk drive 100. FIG. 2B depicts an MFS view of the write apparatus 120. FIG. 2C depicts a recessed view of the write apparatus 120. Thus, the view taken in FIG. 2C at a distance from the ABS in the yoke direction perpendicular to the ABS. FIG. 2D is an apex view of the write apparatus. For clarity, FIGS. 2A-2D are not to scale. For simplicity not all portions of the disk drive 100 and write apparatus 120 are shown. In addition, although the disk drive 100 and write apparatus 120 are depicted in the context of particular components other and/or different components may be used. For example, circuitry used to drive and control various portions of the disk drive is not shown. Only single components are shown. However, multiples of each components and/or their sub-components, might be used. The write apparatus 120 may be a perpendicular magnetic recording (PMR) writer. However, in other embodiments, the write apparatus 120 may be configured for other types of magnetic recording. The disk drive 100 typically includes the write apparatus 120 and a read apparatus. However, only the write apparatus 120 is depicted.


The disk drive 100 includes a media 102, and a slider 110 on which the write apparatus 120 has been fabricated. Although not shown, the slider 110 and thus the write apparatus 120 are generally attached to a suspension. The write apparatus 120 includes a media-facing surface (MFS). Because the write apparatus 120 is used in a disk drive, the MFS is an air-bearing surface (ABS).


The write apparatus 120 includes coil(s) 122, side gap 121, optional leading (bottom) shield 124, optional side shields 126, a pole 130, write gap 125 and trailing (top) shield 128. The trailing shield 128 is separated from the pole 130 by the write gap 125. Similarly, the side shields 126 and bottom shield 124 are separated from the sidewalls of the pole 130 by gap 121. Although shown as a single gap 121, the side gap and bottom gap may be fabricated separately. The gap 121 and write gap 125 are nonmagnetic. The side shields 126 may be magnetically connected with the trailing shield 128 and/or the leading shield 124. The coils 122 are used to energize the pole 130. Although one turn is shown in FIG. 2A, another number may be used. For example, in some embodiments, additional turns (not shown in FIG. 2A) may be used. The coil(s) 122 may be helical or spiral coils.


The pole 130 includes a pole tip 131 closer to the ABS and a yoke 133 further from the ABS. In the embodiment shown, a portion of the pole tip 131 occupies the ABS. The pole tip 131 has sidewalls 134 and 136, bottom (leading surface) 132 and top (trailing surface) 138. In the embodiment shown, the top 138 of the pole tip is wider than the bottom 132 in the cross track direction. In some embodiments, the track width of the pole 130 in the cross-track direction is on the order of at least forty and not more than sixty nanometers. However, other track widths, including smaller track widths, are possible.


The top 138 of the pole tip 131 is convex. More specifically, the top 138 of the pole tip 131 is a convex curved surface. The pole tip 131 thus has a height between the top 138 and the bottom 132 that varies across the ABS. The height at the center, hm1, is larger than the height at the edges, hs1, of the pole tip 131. The top 138 of the pole tip 131 forms angle α with the cross-track direction at the edges 134 and 136. This angle is greater than zero degrees and not more than twenty degrees. The angle may also not exceed fifteen degrees in some cases. In some embodiments, this angle is at least five degrees and not more than ten degrees. In the embodiment shown, the angles the top 138 makes at the sides 134 and 136 are the same. Stated differently, the convex top 138 of the pole tip 131 is symmetric in the cross-track direction. The maximum height is at the center of the pole tip 131. In some embodiments, the maximum height, hm1, at the ABS is not more than one hundred nanometers. In some embodiments the maximum height at the ABS may be at least eighty nanometers. However, other heights are possible. In the embodiment shown, the entire top 138 of the pole tip 131 is convex. In other embodiments, only a portion of the top 138 is convex.


In addition, as can be seen in FIGS. 2B-2D, the height and width of the pole 130 increase in the yoke direction. The top 138 of the pole tip 131 is beveled such that the height increases in the yoke direction perpendicular to the ABS. In the embodiment shown, the bottom 132 of the pole tip 131 is also beveled. This may be best seen in FIG. 2D. However, in other embodiments the bottom 132 may be flat. For example, at the ABS, the pole tip 131 has maximum height hm1 as shown in FIG. 2B. At some distance from the ABS in the yoke direction, the pole tip 131 has a larger maximum height hm2. The height at the edges 134, 136 in FIG. 2B is hs2. Similarly, as can be seen in FIGS. 2B and 2C, the width of the pole tip 131 increases. However, as is indicated in FIGS. 2B and 2C, the angle(s) the top 138 makes with the crosstrack direction are substantially constant. Because the angles α are substantially constant and the pole tip 131 widens, the height of the pole tip 131 naturally increases for the embodiment shown in FIGS. 2A-2D.


At the ABS, the write gap 125 is conformal with the top 138 of the pole tip 131 in the cross-track direction. Because the write gap 125 is conformal, the portion of the trailing shield 128 opposite to the convex portion of the pole tip top 138 may be concave. In some embodiments, the write gap 125 is thin. For example, the write gap 125 may be less than thirty nanometers. In some embodiments, the write gap 125 may not exceed twenty-five nanometers. However, other thicknesses are possible. In the embodiment shown, the write gap 125 also includes overhangs which extend past the gap 121 and reside over a portion of the side shields 126. Although the write gap 125 is conformal in the cross-track direction, the write gap 125 can, but need not be, conformal with the top 138 of the pole tip 131 in the yoke direction. For example, as can be seen in FIG. 2D, the thickness of the write gap 125 increases slightly in the yoke direction perpendicular to the ABS.


The disk drive 100 and write apparatus 120 may have improved performance at higher magnetic recording areal densities. The convex top 138 of the pole tip 131 allows the volume of the pole 130 to be increased for a constant track width. Thus, the pole 130 may provide a higher magnetic field and more desirable magnetic field gradient. It was believed that the convex top 138 might adversely affect the shape of the magnetic field provided to the media. However, for the angles, α, in the ranges described above, the change in the magnetic field shape is sufficiently small that an improvement in writeability due to the increased magnetic volume offsets any change in the magnetic field profile. For example, FIG. 3 depicts various magnetic field shapes 111, 127 and 129. Note that the curves 111, 127 and 129 are for explanation only and do not represent specific data from real-world devices. The dashed curve 111 indicates the field shape for a pole having a flat top. The solid curve 127 indicates the magnetic field shape for the pole 130 having an angle α of approximately five degrees. The dotted curve 129 indicates the magnetic field shape for the pole 130 having an angle α of approximately fifteen degrees. Thus, although the magnetic field changes, particularly near the top, the change may be sufficiently small that other benefits outweigh the change in the field profile from the angle ranges described above. Thus, field magnitude and gradient may be improved without unduly compromising the field shape. Consequently, the magnetic write apparatus 120 may exhibit improved performance, particularly at higher areal recording densities.



FIGS. 4A and 4B depict ABS and recessed views of another embodiment of a disk drive 100′ and magnetic write apparatus 120′. For clarity, FIGS. 4A and 4B are not to scale. For simplicity not all portions of the disk drive 100′/write apparatus 120′ are shown. In addition, although the disk drive 100′/write apparatus 120′ is depicted in the context of particular components other and/or different components may be used. For example, circuitry used to drive and control various portions of the disk drive is not shown. For simplicity, only single components are shown. However, multiples of each components and/or their sub-components, might be used. Thus, the write apparatus 120′ includes a gap 121, an optional leading shield 124, write gap 125′, optional side shields 126, optional trailing shield 128′ and convex pole 130′ having a pole tip, yoke (not explicitly labeled), bottom 132, sides 134 and 136 and top 138′ that are analogous to gap 121, optional leading shield 124, write gap 125, optional side shields 126, optional trailing shield 128 and convex pole 130 having pole tip 131, yoke 133, bottom 132, sides 134 and 136 and top 138, respectively.


The pole tip for pole 130′ may have a width in the cross-track direction and height in the down track direction analogous to that described above for the pole tip 131. The top 138′ of the pole tip is convex. More specifically, the top 138′ of the pole tip is a convex peaked surface. The pole tip 131 thus has a height between the top 138 and the bottom 132 that varies across the ABS. The height at the center, hm1′, is larger than the height at the edges, hs1′, of the pole tip. The top 138′ of the pole tip forms angle α with the cross-track direction at the edges 134 and 136. This angle for the pole tip of the pole 130′ is in the same range as that for the pole tip 131 of the pole 130. In the embodiment shown, the angles the top 138′ makes at the sides 134 and 136 are the same. Stated differently, the convex top 138′ of the pole tip 131 is symmetric in the cross-track direction. The maximum height is at the center of the pole tip. In the embodiment shown, the entire top 138′ of the pole tip is convex. In other embodiments, only a portion of the top 138′ is convex.


In addition, the height and width of the pole tip for pole 130 increase in the yoke direction. For example, at the ABS, the pole tip has maximum height hm1′ as shown in FIG. 4A. At some distance from the ABS in the yoke direction, the pole tip has a larger maximum height hm2′ as shown in FIG. 4B. The height at the sides 134, 136 is hs2′. Similarly, as can be seen in FIGS. 4A and 4B, the width of the pole tip increases. However, as is indicated in FIGS. 4A and 4B, the angle(s) the top 138′ makes with the crosstrack direction are substantially constant. Because the angles α are substantially constant and the pole tip widens, the height of the pole tip naturally increases.


At the ABS, the write gap 125′ is conformal with the top 138′ of the pole tip in the cross-track direction. Because the write gap 125′ is conformal, the portion of the trailing shield 128′ opposite to the convex portion of the top 138′ may be concave. In the embodiment shown, the write gap 125′ also includes overhangs which extend past the gap 121 and reside over a portion of the side shields 126′. The thickness of the write gap 125′ may also be in the range described above for the write gap 125. Although the write gap 125′ is conformal in the cross-track direction, the write gap 125′ can, but need not be, conformal with the top 138′ of the pole tip in the yoke direction.


The disk drive 100′ and write apparatus 120′ may have improved performance at higher magnetic recording areal densities. The convex top 138′ of the pole tip allows the volume of the pole 130′ to be increased for a constant track width. Thus, the pole 130′ may provide a higher magnetic field and more desirable magnetic field gradient. Thus, field magnitude and gradient may be improved without unduly compromising the field shape. Consequently, the magnetic write apparatus 120′ may exhibit improved performance, particularly at higher areal recording densities.



FIGS. 5A, 5B and 5C depict ABS, recessed and apex views of another embodiment of a magnetic write apparatus 140. For clarity, FIGS. 5A-5C are not to scale. For simplicity not all portions of the write apparatus 140 are shown. In addition, although the write apparatus 140 is depicted in the context of particular components other and/or different components may be used. For example, circuitry used to drive and control various portions of the disk drive is not shown. For simplicity, only single components are shown. However, multiples of each components and/or their sub-components, might be used. Thus, the write apparatus 140 includes a gap 141, an optional leading shield 144, write gap 145, optional side shields 146, optional trailing shield 148 and convex pole 150 having a pole tip, yoke (not explicitly labeled), bottom 152, sides 154 and 156 and top 158 that are analogous to the gap, optional leading shield, write gap, optional side shields, optional trailing shield and convex pole having pole tip, yoke, bottom, sides and top, respectively, described above.


The pole tip for pole 150 may have a width in the cross-track direction and height in the down track direction analogous to that described above for the pole tip 131 of the pole 130/130′. The top 158 of the pole tip is a convex curved surface analogous to the surface 138. However, as can be seen in FIGS. 5A-5C, the angle the top 158 of the pole tip makes at the sides 154 and 156 changes with distance from the ABS in the yoke direction. At the ABS, the top 158 of the pole tip forms angle α1 with the cross-track direction at the edges 154 and 156. This angle for the pole tip of the pole 150 is in the same range as that for the pole tip 131 of the poles 130 and 130′. Recessed from the ABS, the top 158 of the pole tip forms angle α2 with the cross-track direction at the edges 154 and 156. Further α2<α1. The angle the top 158 of the pole tip forms with the cross-track direction may change continuously with distance from the ABS. As can be seen in FIG. 5C, the height of the pole 150 in the down track direction still increases with increasing distance from the ABS. However, because the angle that the top 158 makes with the cross-track track direction decreases with distance from the ABS, the height of the pole 150 does not increase as rapidly as the height of the pole 130 does. This can be seen in FIG. 5C, in which the height of the pole 130 in the yoke direction is shown by a dotted line. In the embodiment shown, the angles the top 158 makes at the sides 154 and 156 are the same at a given distance from the ABS. Stated differently, the convex top 158 of the pole tip is symmetric in the cross-track direction.


At the ABS, the write gap 145 is conformal with the top 158 of the pole tip in the cross-track direction. Because the write gap 145 is conformal, the portion of the trailing shield 158 opposite to the convex portion of the top 158 may be concave. In the embodiment shown, the write gap 145 also includes overhangs which extend past the gap 141 and reside over a portion of the side shields 146. The thickness of the write gap 145 may also be in the range described above for the write gaps 125 and 125′. Although the write gap 145 is conformal in the cross-track direction, the write gap 145 can, but need not be, conformal with the top 158 of the pole tip in the yoke direction.


The write apparatus 140 may have improved performance at higher magnetic recording areal densities. The convex top 158 of the pole tip allows the volume of the pole 150 to be increased for a constant track width. Thus, the pole 150 may provide a higher magnetic field and more desirable magnetic field gradient. Thus, field magnitude and gradient may be improved without unduly compromising the field shape. Consequently, the magnetic write apparatus 140 may exhibit improved performance, particularly at higher areal recording densities.



FIG. 6 depicts an ABS view of another embodiment of a magnetic write apparatus 160. For clarity, FIG. 6 is not to scale. For simplicity not all portions of the write apparatus 160 are shown. In addition, although the write apparatus 160 is depicted in the context of particular components other and/or different components may be used. For example, circuitry used to drive and control various portions of the disk drive is not shown. For simplicity, only single components are shown. However, multiples of each components and/or their sub-components, might be used. Thus, the write apparatus 160 includes a gap 161, an optional leading shield 164, write gap 165, optional side shields 166, optional trailing shield 168 and convex pole 170 having a pole tip, yoke (not explicitly labeled), bottom 172, sides 174 and 176 and top 178 that are analogous to the gap, optional leading shield, write gap, optional side shields, optional trailing shield and convex pole having pole tip, yoke, bottom, sides and top, respectively, described above. Although only an ABS view is shown, the pole 170 including top surface 178, trailing shield 168 and write gap 165 may vary in the yoke direction in a manner analogous to the pole, pole tip top surface, trailing shield and write gap described above.


The pole tip for pole 170 may have a width in the cross-track direction and height in the down track direction analogous to that described above for the pole tip of the pole 130, 130′ and/or 150. The top 178 of the pole tip is a convex curved surface analogous to the surface 138 and 158. At the ABS, the top 178 of the pole tip forms angle α with the cross-track direction at the sides 174 and 176. This angle for the pole tip of the pole 170 is in the same range as that for the pole tip 131 of the poles 130 and 130′.


At the ABS, the write gap 165 is conformal with the top 178 of the pole tip in the cross-track direction. Because the write gap 155 is conformal, the portion of the trailing shield 168 opposite to the convex portion of the top 178 may be concave. In the embodiment shown, the write gap 165 does not include overhangs which extend past the gap 161. The thickness of the write gap 165 may also be in the range described above for the write gaps 125 and 125′. Although the write gap 165 is conformal in the cross-track direction, the write gap 165 can, but need not be, conformal with the top 178 of the pole tip in the yoke direction.


The write apparatus 160 may share the benefits of the write apparatuses 120, 120′ and/or 140. The pole 170 may provide a higher magnetic field and more desirable magnetic field gradient without unduly compromising the field shape. Consequently, the magnetic write apparatus 160 may exhibit improved performance, particularly at higher areal recording densities.



FIG. 7 depicts an ABS view of another embodiment of a magnetic write apparatus 160′. For clarity, FIG. 7 is not to scale. For simplicity not all portions of the write apparatus 160′ are shown. In addition, although the write apparatus 160′ is depicted in the context of particular components other and/or different components may be used. For example, circuitry used to drive and control various portions of the disk drive is not shown. For simplicity, only single components are shown. However, multiples of each components and/or their sub-components, might be used. Thus, the write apparatus 160′ includes a gap 161, an optional leading shield 164, write gap 165′, optional side shields 166, optional trailing shield 168′ and convex pole 170′ having a pole tip, yoke (not explicitly labeled), bottom 172, sides 174 and 176 and top 178′ that are analogous to the gap, optional leading shield, write gap, optional side shields, optional trailing shield and convex pole having pole tip, yoke, bottom, sides and top, respectively, described above. Although only an ABS view is shown, the pole 170′ including top surface 178′, trailing shield 168′ and write gap 165′ may vary in the yoke direction in a manner analogous to the pole, pole tip top surface, trailing shield and write gap described above. However, in the embodiment shown in FIG. 7, the top surface 178′ is a convex peaked surface. Thus, the top shield 168′ is a concave peaked surface.


The write apparatus 160′ may share the benefits of the write apparatuses 120, 120′, 140 and/or 160. The pole 170′ may provide a higher magnetic field and more desirable magnetic field gradient without unduly compromising the field shape. Consequently, the magnetic write apparatus 160′ may exhibit improved performance, particularly at higher areal recording densities.



FIG. 8 depicts an ABS view of another embodiment of a magnetic write apparatus 180. For clarity, FIG. 8 is not to scale. For simplicity not all portions of the write apparatus 180 are shown. In addition, although the write apparatus 180 is depicted in the context of particular components other and/or different components may be used. For example, circuitry used to drive and control various portions of the disk drive is not shown. For simplicity, only single components are shown. However, multiples of each components and/or their sub-components, might be used. Thus, the write apparatus 180 includes a gap 181, an optional leading shield 184, write gap 185, optional side shields 186, optional trailing shield 188 and convex pole 190 having a pole tip, yoke (not explicitly labeled), bottom 192, sides 194 and 196 and top 198 that are analogous to the gap, optional leading shield, write gap, optional side shields, optional trailing shield and convex pole having pole tip, yoke, bottom, sides and top, respectively, described above. Although only an ABS view is shown, the pole 190 including top surface 198, trailing shield 188 and write gap 185 may vary in the yoke direction in a manner analogous to the pole, pole tip top surface, trailing shield and write gap described above.


The pole tip for pole 190 may have a width in the cross-track direction and height in the down track direction analogous to that described above for the pole tip of the pole 130, 130′, 150, 170 and/or 170′. The top 198 of the pole tip is a convex curved surface analogous to the surface 138, 158 and 178. At the ABS, the top 198 of the pole tip forms angle α with the cross-track direction at one side 194 and another angle β with the cross-track direction at the other 196. These angles for the pole tip of the pole 190 are in the same range as that for the pole tip 131 of the poles 130 and 130′. However, the angles α and β differ. Thus, the maximum in the pole height of the pole tip is not in the center of the pole tip. Instead the maximum is closer to the side 196 having the larger angle β. In addition, the write gap 185 is shown as having overhangs that extend beyond the edges of the gap 181. In other embodiments, the write gap 185 does not have overhangs.


The write apparatus 180 may share the benefits of the write apparatuses 120, 120′, 140, 160 and/or 160′. The pole 190 may provide a higher magnetic field and more desirable magnetic field gradient without unduly compromising the field shape. Consequently, the magnetic write apparatus 180 may exhibit improved performance, particularly at higher areal recording densities.



FIG. 9 depicts an ABS view of another embodiment of a magnetic write apparatus 180′. For clarity, FIG. 9 is not to scale. For simplicity not all portions of the write apparatus 180′ are shown. In addition, although the write apparatus 180′ is depicted in the context of particular components other and/or different components may be used. For example, circuitry used to drive and control various portions of the disk drive is not shown. For simplicity, only single components are shown. However, multiples of each components and/or their sub-components, might be used. Thus, the write apparatus 180′ includes a gap 181, an optional leading shield 184, write gap 185′, optional side shields 186, optional trailing shield 188′ and convex pole 190′ having a pole tip, yoke (not explicitly labeled), bottom 192, sides 194 and 196 and top 198′ that are analogous to the gap, optional leading shield, write gap, optional side shields, optional trailing shield and convex pole having pole tip, yoke, bottom, sides and top, respectively, described above. Although only an ABS view is shown, the pole 190′ including top surface 198′, trailing shield 188′ and write gap 185′ may vary in the yoke direction in a manner analogous to the pole, pole tip top surface, trailing shield and write gap described above. However, in the embodiment shown in FIG. 9, the top surface 198′ is a convex peaked surface. Thus, the top shield 188′ is a concave peaked surface. The top 198′ forms an angle, α, with the cross-track direction at the side 194 and an angle, β′, with the cross-track direction at the side 196.


The write apparatus 180′ may share the benefits of the write apparatuses 120, 120′, 140, 160, 160′ and/or 180. The pole 190′ may provide a higher magnetic field and more desirable magnetic field gradient without unduly compromising the field shape. Consequently, the magnetic write apparatus 180′ may exhibit improved performance, particularly at higher areal recording densities.



FIG. 10 depicts an exemplary embodiment of a method 200 for providing a magnetic write apparatus such as a magnetic disk drive. However, other magnetic recording devices may be fabricated. For simplicity, some steps may be omitted, interleaved, combined, performed in another order and/or include substeps. The method 200 is described in the context of providing a single magnetic recording apparatus. However, the method 200 may be used to fabricate multiple magnetic recording apparatuses at substantially the same time. The method 200 is also described in the context of particular structures. A particular structure may include multiple materials, multiple substructures and/or multiple sub-layers. The method 200 is described in the context of the write apparatus 120. However, the method 200 may be used in fabricating other write apparatuses including but not limited to the write apparatuses 120′, 140, 160, 160′, 180 and/or 180′. The method 200 also may start after of other portions of the magnetic recording apparatus are fabricated. For example, the method 200 may start after a read apparatus and/or other structure have been fabricated.


A bottom shield 124 may optionally be provided, via step 202. Step 202 may include providing a multilayer or monolithic (single layer) magnetic shield. In other embodiments, step 202 may be omitted. The bottom gap 125 may be provided, via step 204. Step 204 may include depositing a nonmagnetic layer. The pole 130 is provided, via step 206. In some embodiments, step 206 uses a damascene process to form the pole, by forming a trench in a layer and fabricating the pole 130 in the trench. Step 206 provides the pole such that the top is wider than the bottom and such that the top surface 138 is convex. Thus, the top 138 forming angle, a, with the cross track direction at the sides 134 and 136 is formed. For other poles, other angles may be formed. The conformal write gap 125 is formed, via step 208. The top shield 128 is provided, via step 210. Fabrication of the write apparatus 120 may then be completed.


Using the method 200, the magnetic write apparatus 120 may be provided. Apparatuses 120′, 140, 160, 160′, 180 and/or 180′ may be fabricated in a similar fashion. Thus, the benefits described above for higher areal density recording may be achieved.

Claims
  • 1. A magnetic write apparatus comprising: a pole comprising a pole tip, the pole tip comprising a top extending in a cross track direction,wherein at a media facing surface, the pole tip forms a first angle at a first side of the pole tip between the top and a plane that extends along the cross track direction;wherein at a position recessed from the media facing surface, the first angle decreases to a second angle at the first side; andwherein the cross track direction is perpendicular to a down track direction and the down track direction is parallel to the media facing surface.
  • 2. The magnetic write apparatus of claim 1, wherein the top has a convex curved surface.
  • 3. The magnetic write apparatus of claim 1, wherein the pole tip further comprises a bottom extending in the cross track direction, wherein the top is wider than the bottom.
  • 4. The magnetic write apparatus of claim 1, wherein at the media facing surface, the pole tip forms a third angle at a second side of the pole tip between the top and the plane.
  • 5. The magnetic write apparatus of claim 4, wherein at the position recessed from the media facing surface, the third angle decreases to a fourth angle.
  • 6. The magnetic write apparatus of claim 5, wherein the third angle is equal in value to the first angle and the fourth angle is equal in value to the second angle.
  • 7. The magnetic write apparatus of claim 1, further comprising a write gap, wherein a portion of the write gap conforms to a shape of the top.
  • 8. A magnetic write apparatus comprising: a pole comprising a pole tip, the pole tip comprising: a bottom extending parallel to a cross track direction;a top extending in the cross track direction and wider than the bottom;a first side extending between the top and the bottom in a down track direction; anda second side extending in the down track direction between the top and the bottom,wherein at a media facing surface, the pole tip forms a first angle at the first side between the top and a plane that extends along the cross track direction;wherein at a position recessed from the media facing surface, the first angle decreases to a third angle at the first side between the top and the plane; andwherein the down track direction is parallel to the media facing surface and the cross track direction is perpendicular to the down track direction.
  • 9. The magnetic write apparatus of claim 8, wherein the pole tip forms a second angle at the second side between the top and the plane, wherein the second angle is formed at the media facing surface and is equal in value to the first angle.
  • 10. The magnetic write apparatus of claim 9, wherein the pole tip forms a fourth angle at the second side between the top and the plane, wherein the fourth angle is formed at a position recessed from the media facing surface, and wherein the fourth angle is less than the second angle.
  • 11. A magnetic write apparatus comprising: a pole comprising a pole tip, the pole tip comprising: a bottom extending parallel to a cross track direction;a top extending in the cross track direction and wider than the bottom;a first side extending between the top and the bottom in a down track direction; anda second side extending in the down track direction between the top and the bottom,wherein the pole tip has a height between the top and the bottom, and the height increases from a media facing surface in a yoke direction that is perpendicular to the media facing surface;wherein at the media facing surface the pole tip forms a first angle at the first side between the top and a plane that extends parallel to the cross track direction;wherein at a position recessed from the media facing surface, the first angle decreases to a second angle at the first side between the top and the plane; andwherein the down track direction is parallel to the media facing surface and the cross track direction is perpendicular to the down track direction.
  • 12. The magnetic write apparatus of claim 11, wherein the pole has a width between the first side and the second side in the cross track direction, and wherein the width increases from the media facing surface in the yoke direction.
  • 13. The magnetic write apparatus of claim 11, wherein the top has a convex surface.
  • 14. The magnetic write apparatus of claim 11, wherein the second angle changes continuously with distance in the yoke direction.
  • 15. The magnetic write apparatus of claim 11, wherein the pole tip forms a third angle at the second side between the top and the plane at the media facing surface, and wherein the third angle is equal to the first angle.
  • 16. The magnetic write apparatus of claim 11, wherein the pole tip forms a fourth angle at the second side between the top and the plane at the position recessed from the media facing surface, and wherein the fourth angle is equal to the second angle.
  • 17. The magnetic write apparatus of claim 11, wherein the first angle is greater than zero degrees and not more than twenty degrees.
  • 18. The magnetic write apparatus of claim 11, further comprising a write gap that is conformal with a shape of the top in the cross track direction.
  • 19. The magnetic write apparatus of claim 18, wherein the write gap comprises overhangs that extend past the first side and second side of the pole tip.
  • 20. The magnetic write apparatus of claim 11, wherein the height is not more than one hundred nanometers.
CROSS-REFERENCE TO RELATED APPLICATION

This application is a divisional of U.S. application Ser. No. 14/956,168, filed on Dec. 1, 2015, the entirety of which is incorporated by reference herein.

US Referenced Citations (652)
Number Name Date Kind
5820337 Jackson et al. Oct 1998 A
6016290 Chen et al. Jan 2000 A
6018441 Wu et al. Jan 2000 A
6025978 Hoshi et al. Feb 2000 A
6025988 Yan Feb 2000 A
6032353 Hiner et al. Mar 2000 A
6033532 Minami Mar 2000 A
6034851 Zarouri et al. Mar 2000 A
6043959 Crue et al. Mar 2000 A
6046885 Aimonetti et al. Apr 2000 A
6049650 Jerman et al. Apr 2000 A
6055138 Shi Apr 2000 A
6058094 Davis et al. May 2000 A
6073338 Liu et al. Jun 2000 A
6078479 Nepela et al. Jun 2000 A
6081499 Berger et al. Jun 2000 A
6094803 Carlson et al. Aug 2000 A
6099362 Viches et al. Aug 2000 A
6103073 Thayamballi Aug 2000 A
6108166 Lederman Aug 2000 A
6118629 Huai et al. Sep 2000 A
6118638 Knapp et al. Sep 2000 A
6125018 Takagishi et al. Sep 2000 A
6130779 Carlson et al. Oct 2000 A
6134089 Barr et al. Oct 2000 A
6136166 Shen et al. Oct 2000 A
6137661 Shi et al. Oct 2000 A
6137662 Huai et al. Oct 2000 A
6160684 Heist et al. Dec 2000 A
6163426 Nepela et al. Dec 2000 A
6166891 Lederman et al. Dec 2000 A
6173486 Hsiao et al. Jan 2001 B1
6175476 Huai et al. Jan 2001 B1
6178066 Barr Jan 2001 B1
6178070 Hong et al. Jan 2001 B1
6178150 Davis Jan 2001 B1
6181485 He Jan 2001 B1
6181525 Carlson Jan 2001 B1
6185051 Chen et al. Feb 2001 B1
6185077 Tong et al. Feb 2001 B1
6185081 Simion et al. Feb 2001 B1
6188549 Wiitala Feb 2001 B1
6190764 Shi et al. Feb 2001 B1
6193584 Rudy et al. Feb 2001 B1
6195229 Shen et al. Feb 2001 B1
6198608 Hong et al. Mar 2001 B1
6198609 Barr et al. Mar 2001 B1
6201673 Rottmayer et al. Mar 2001 B1
6204998 Katz Mar 2001 B1
6204999 Crue et al. Mar 2001 B1
6212153 Chen et al. Apr 2001 B1
6215625 Carlson Apr 2001 B1
6219205 Yuan et al. Apr 2001 B1
6221218 Shi et al. Apr 2001 B1
6222707 Huai et al. Apr 2001 B1
6229782 Wang et al. May 2001 B1
6230959 Heist et al. May 2001 B1
6233116 Chen et al. May 2001 B1
6233125 Knapp et al. May 2001 B1
6237215 Hunsaker et al. May 2001 B1
6252743 Bozorgi Jun 2001 B1
6255721 Roberts Jul 2001 B1
6258468 Mahvan et al. Jul 2001 B1
6266216 Hikami et al. Jul 2001 B1
6271604 Frank et al. Aug 2001 B1
6275354 Huai et al. Aug 2001 B1
6277505 Shi et al. Aug 2001 B1
6282056 Feng et al. Aug 2001 B1
6296955 Hossain et al. Oct 2001 B1
6297955 Frank et al. Oct 2001 B1
6304414 Crue et al. Oct 2001 B1
6307715 Berding et al. Oct 2001 B1
6310746 Hawwa et al. Oct 2001 B1
6310750 Hawwa et al. Oct 2001 B1
6317290 Wang et al. Nov 2001 B1
6317297 Tong et al. Nov 2001 B1
6322911 Fukagawa et al. Nov 2001 B1
6330136 Wang et al. Dec 2001 B1
6330137 Knapp et al. Dec 2001 B1
6333830 Rose et al. Dec 2001 B2
6340533 Ueno et al. Jan 2002 B1
6349014 Crue et al. Feb 2002 B1
6351355 Min et al. Feb 2002 B1
6353318 Sin et al. Mar 2002 B1
6353511 Shi et al. Mar 2002 B1
6356412 Levi et al. Mar 2002 B1
6359779 Frank et al. Mar 2002 B1
6369983 Hong Apr 2002 B1
6376964 Young et al. Apr 2002 B1
6377535 Chen et al. Apr 2002 B1
6381095 Sin et al. Apr 2002 B1
6381105 Huai et al. Apr 2002 B1
6389499 Frank et al. May 2002 B1
6392850 Tong et al. May 2002 B1
6396660 Jensen et al. May 2002 B1
6399179 Hanrahan et al. Jun 2002 B1
6400526 Crue et al. Jun 2002 B2
6404600 Hawwa et al. Jun 2002 B1
6404601 Rottmayer et al. Jun 2002 B1
6404706 Stovall et al. Jun 2002 B1
6410170 Chen et al. Jun 2002 B1
6411522 Frank et al. Jun 2002 B1
6417998 Crue et al. Jul 2002 B1
6417999 Knapp et al. Jul 2002 B1
6418000 Gibbons et al. Jul 2002 B1
6418048 Sin et al. Jul 2002 B1
6421211 Hawwa et al. Jul 2002 B1
6421212 Gibbons et al. Jul 2002 B1
6424505 Lam et al. Jul 2002 B1
6424507 Lederman et al. Jul 2002 B1
6430009 Komaki et al. Aug 2002 B1
6430806 Chen et al. Aug 2002 B1
6433965 Gopinathan et al. Aug 2002 B1
6433968 Shi et al. Aug 2002 B1
6433970 Knapp et al. Aug 2002 B1
6437945 Hawwa et al. Aug 2002 B1
6445536 Rudy et al. Sep 2002 B1
6445542 Levi et al. Sep 2002 B1
6445553 Barr et al. Sep 2002 B2
6445554 Dong et al. Sep 2002 B1
6447935 Zhang et al. Sep 2002 B1
6448765 Chen et al. Sep 2002 B1
6451514 Iitsuka Sep 2002 B1
6452742 Crue et al. Sep 2002 B1
6452765 Mahvan et al. Sep 2002 B1
6456465 Louis et al. Sep 2002 B1
6459552 Liu et al. Oct 2002 B1
6462920 Karimi Oct 2002 B1
6466401 Hong et al. Oct 2002 B1
6466402 Crue et al. Oct 2002 B1
6466404 Crue et al. Oct 2002 B1
6468436 Shi et al. Oct 2002 B1
6469877 Knapp et al. Oct 2002 B1
6477019 Matono et al. Nov 2002 B2
6479096 Shi et al. Nov 2002 B1
6483662 Thomas et al. Nov 2002 B1
6487040 Hsiao et al. Nov 2002 B1
6487056 Gibbons et al. Nov 2002 B1
6490125 Barr Dec 2002 B1
6496330 Crue et al. Dec 2002 B1
6496334 Pang et al. Dec 2002 B1
6504676 Hiner et al. Jan 2003 B1
6512657 Heist et al. Jan 2003 B2
6512659 Hawwa et al. Jan 2003 B1
6512661 Louis Jan 2003 B1
6512690 Qi et al. Jan 2003 B1
6515573 Dong et al. Feb 2003 B1
6515791 Hawwa et al. Feb 2003 B1
6532823 Knapp et al. Mar 2003 B1
6535363 Hosomi et al. Mar 2003 B1
6552874 Chen et al. Apr 2003 B1
6552928 Qi et al. Apr 2003 B1
6577470 Rumpler Jun 2003 B1
6583961 Levi et al. Jun 2003 B2
6583968 Scura et al. Jun 2003 B1
6597548 Yamanaka et al. Jul 2003 B1
6611398 Rumpler et al. Aug 2003 B1
6618223 Chen et al. Sep 2003 B1
6629357 Akoh Oct 2003 B1
6633464 Lai et al. Oct 2003 B2
6636394 Fukagawa et al. Oct 2003 B1
6639291 Sin et al. Oct 2003 B1
6650503 Chen et al. Nov 2003 B1
6650506 Risse Nov 2003 B1
6654195 Frank et al. Nov 2003 B1
6657816 Barr et al. Dec 2003 B1
6661621 Iitsuka Dec 2003 B1
6661625 Sin et al. Dec 2003 B1
6674610 Thomas et al. Jan 2004 B1
6680863 Shi et al. Jan 2004 B1
6683763 Hiner et al. Jan 2004 B1
6687098 Huai Feb 2004 B1
6687178 Qi et al. Feb 2004 B1
6687977 Knapp et al. Feb 2004 B2
6691226 Frank et al. Feb 2004 B1
6697294 Qi et al. Feb 2004 B1
6700738 Sin et al. Mar 2004 B1
6700759 Knapp et al. Mar 2004 B1
6704158 Hawwa et al. Mar 2004 B2
6707083 Hiner et al. Mar 2004 B1
6713801 Sin et al. Mar 2004 B1
6721138 Chen et al. Apr 2004 B1
6721149 Shi et al. Apr 2004 B1
6721203 Qi et al. Apr 2004 B1
6724569 Chen et al. Apr 2004 B1
6724572 Stoev et al. Apr 2004 B1
6729015 Matono et al. May 2004 B2
6735850 Gibbons et al. May 2004 B1
6737281 Dang et al. May 2004 B1
6744608 Sin et al. Jun 2004 B1
6747301 Hiner et al. Jun 2004 B1
6751055 Alfoqaha et al. Jun 2004 B1
6754049 Seagle et al. Jun 2004 B1
6756071 Shi et al. Jun 2004 B1
6757140 Hawwa Jun 2004 B1
6760196 Niu et al. Jul 2004 B1
6762910 Knapp et al. Jul 2004 B1
6765756 Hong et al. Jul 2004 B1
6775902 Huai et al. Aug 2004 B1
6778358 Jiang et al. Aug 2004 B1
6781927 Heanuc et al. Aug 2004 B1
6785955 Chen et al. Sep 2004 B1
6791793 Chen et al. Sep 2004 B1
6791807 Hikami et al. Sep 2004 B1
6798616 Seagle et al. Sep 2004 B1
6798625 Ueno et al. Sep 2004 B1
6801408 Chen et al. Oct 2004 B1
6801411 Lederman et al. Oct 2004 B1
6803615 Sin et al. Oct 2004 B1
6806035 Atireklapvarodom et al. Oct 2004 B1
6807030 Hawwa et al. Oct 2004 B1
6807332 Hawwa Oct 2004 B1
6809899 Chen et al. Oct 2004 B1
6816345 Knapp et al. Nov 2004 B1
6828897 Nepela Dec 2004 B1
6829160 Qi et al. Dec 2004 B1
6829819 Crue et al. Dec 2004 B1
6833979 Knapp et al. Dec 2004 B1
6834010 Qi et al. Dec 2004 B1
6859343 Alfoqaha et al. Feb 2005 B1
6859997 Tong et al. Mar 2005 B1
6861937 Feng et al. Mar 2005 B1
6870712 Chen et al. Mar 2005 B2
6873494 Chen et al. Mar 2005 B2
6873547 Shi et al. Mar 2005 B1
6879464 Sun et al. Apr 2005 B2
6888184 Shi et al. May 2005 B1
6888704 Diao et al. May 2005 B1
6891702 Tang May 2005 B1
6894871 Alfoqaha et al. May 2005 B2
6894877 Crue et al. May 2005 B1
6906894 Chen et al. Jun 2005 B2
6909578 Missell et al. Jun 2005 B1
6912106 Chen et al. Jun 2005 B1
6934113 Chen Aug 2005 B1
6934129 Zhang et al. Aug 2005 B1
6940688 Jiang et al. Sep 2005 B2
6942824 Li Sep 2005 B1
6943993 Chang et al. Sep 2005 B2
6944938 Crue et al. Sep 2005 B1
6947258 Li Sep 2005 B1
6950266 McCaslin et al. Sep 2005 B1
6954332 Hong et al. Oct 2005 B1
6958885 Chen et al. Oct 2005 B1
6961221 Niu et al. Nov 2005 B1
6969989 Mei Nov 2005 B1
6975486 Chen et al. Dec 2005 B2
6987643 Seagle Jan 2006 B1
6989962 Dong et al. Jan 2006 B1
6989972 Stoev et al. Jan 2006 B1
7006327 Krounbi et al. Feb 2006 B2
7007372 Chen et al. Mar 2006 B1
7012832 Sin et al. Mar 2006 B1
7023658 Knapp et al. Apr 2006 B1
7026063 Ueno et al. Apr 2006 B2
7027268 Zhu et al. Apr 2006 B1
7027274 Sin et al. Apr 2006 B1
7035046 Young et al. Apr 2006 B1
7041985 Wang et al. May 2006 B1
7046490 Ueno et al. May 2006 B1
7054113 Seagle et al. May 2006 B1
7057857 Niu et al. Jun 2006 B1
7059868 Yan Jun 2006 B1
7070698 Le Jul 2006 B2
7092195 Liu et al. Aug 2006 B1
7110289 Sin et al. Sep 2006 B1
7111382 Knapp et al. Sep 2006 B1
7113366 Wang et al. Sep 2006 B1
7114241 Kubota et al. Oct 2006 B2
7116517 He et al. Oct 2006 B1
7124654 Davies et al. Oct 2006 B1
7126788 Liu et al. Oct 2006 B1
7126790 Liu et al. Oct 2006 B1
7131346 Buttar et al. Nov 2006 B1
7133253 Seagle et al. Nov 2006 B1
7134185 Knapp et al. Nov 2006 B1
7154715 Yamanaka et al. Dec 2006 B2
7170725 Zhou et al. Jan 2007 B1
7177117 Jiang et al. Feb 2007 B1
7193815 Stoev et al. Mar 2007 B1
7196880 Anderson et al. Mar 2007 B1
7199974 Alfoqaha Apr 2007 B1
7199975 Pan Apr 2007 B1
7211339 Seagle et al. May 2007 B1
7212384 Stoev et al. May 2007 B1
7238292 He et al. Jul 2007 B1
7239478 Sin et al. Jul 2007 B1
7248431 Liu et al. Jul 2007 B1
7248433 Stoev et al. Jul 2007 B1
7248437 Yazawa et al. Jul 2007 B2
7248449 Seagle Jul 2007 B1
7280325 Pan Oct 2007 B1
7283327 Liu et al. Oct 2007 B1
7284316 Huai et al. Oct 2007 B1
7286329 Chen et al. Oct 2007 B1
7289303 Sin et al. Oct 2007 B1
7292409 Stoev et al. Nov 2007 B1
7296339 Yang et al. Nov 2007 B1
7307814 Seagle et al. Dec 2007 B1
7307818 Park et al. Dec 2007 B1
7310204 Stoev et al. Dec 2007 B1
7318947 Park et al. Jan 2008 B1
7333295 Medina et al. Feb 2008 B1
7337530 Stoev et al. Mar 2008 B1
7342752 Zhang et al. Mar 2008 B1
7349170 Rudman et al. Mar 2008 B1
7349179 He et al. Mar 2008 B1
7354664 Jiang et al. Apr 2008 B1
7363697 Dunn et al. Apr 2008 B1
7371152 Newman May 2008 B1
7372665 Stoev et al. May 2008 B1
7375926 Stoev et al. May 2008 B1
7379269 Krounbi et al. May 2008 B1
7386933 Krounbi et al. Jun 2008 B1
7389577 Shang et al. Jun 2008 B1
7417832 Erickson et al. Aug 2008 B1
7419891 Chen et al. Sep 2008 B1
7428124 Song et al. Sep 2008 B1
7430098 Song et al. Sep 2008 B1
7436620 Kang et al. Oct 2008 B1
7436628 Kameda et al. Oct 2008 B2
7436638 Pan Oct 2008 B1
7440220 Kang et al. Oct 2008 B1
7443632 Stoev et al. Oct 2008 B1
7444740 Chung et al. Nov 2008 B1
7464457 Le et al. Dec 2008 B2
7477481 Guthrie et al. Jan 2009 B2
7493688 Wang et al. Feb 2009 B1
7508627 Zhang et al. Mar 2009 B1
7522377 Jiang et al. Apr 2009 B1
7522379 Krounbi et al. Apr 2009 B1
7522382 Pan Apr 2009 B1
7542246 Song et al. Jun 2009 B1
7551406 Thomas et al. Jun 2009 B1
7552523 He et al. Jun 2009 B1
7554767 Hu et al. Jun 2009 B1
7583466 Kermiche et al. Sep 2009 B2
7595967 Moon et al. Sep 2009 B1
7639451 Yatsu et al. Dec 2009 B2
7639457 Chen et al. Dec 2009 B1
7660080 Liu et al. Feb 2010 B1
7672080 Tang et al. Mar 2010 B1
7672086 Jiang Mar 2010 B1
7684160 Erickson et al. Mar 2010 B1
7688546 Bai et al. Mar 2010 B1
7691434 Zhang et al. Apr 2010 B1
7695761 Shen et al. Apr 2010 B1
7715147 Feldbaum et al. May 2010 B2
7719795 Hu et al. May 2010 B2
7726009 Liu et al. Jun 2010 B1
7729086 Song et al. Jun 2010 B1
7729087 Stoev et al. Jun 2010 B1
7736823 Wang et al. Jun 2010 B1
7742259 Kameda et al. Jun 2010 B2
7785666 Sun et al. Aug 2010 B1
7796356 Fowler et al. Sep 2010 B1
7800858 Bajikar et al. Sep 2010 B1
7819979 Chen et al. Oct 2010 B1
7821736 Che et al. Oct 2010 B2
7829264 Wang et al. Nov 2010 B1
7846643 Sun et al. Dec 2010 B1
7855854 Hu et al. Dec 2010 B2
7869160 Pan et al. Jan 2011 B1
7872824 MacChioni et al. Jan 2011 B1
7872833 Hu et al. Jan 2011 B2
7910267 Zeng et al. Mar 2011 B1
7911735 Sin et al. Mar 2011 B1
7911737 Jiang et al. Mar 2011 B1
7916426 Hu et al. Mar 2011 B2
7918013 Dunn et al. Apr 2011 B1
7968219 Jiang et al. Jun 2011 B1
7978430 Le et al. Jul 2011 B2
7982989 Shi et al. Jul 2011 B1
8008912 Shang Aug 2011 B1
8012804 Wang et al. Sep 2011 B1
8015692 Zhang et al. Sep 2011 B1
8018677 Chung et al. Sep 2011 B1
8018678 Zhang et al. Sep 2011 B1
8024748 Moravec et al. Sep 2011 B1
8054586 Balamane et al. Nov 2011 B2
8066892 Guthrie et al. Nov 2011 B2
8066893 Baer et al. Nov 2011 B2
8072705 Wang et al. Dec 2011 B1
8074345 Anguelouch et al. Dec 2011 B1
8077418 Hu et al. Dec 2011 B1
8077434 Shen et al. Dec 2011 B1
8077435 Liu et al. Dec 2011 B1
8077557 Hu et al. Dec 2011 B1
8079135 Shen et al. Dec 2011 B1
8081403 Chen et al. Dec 2011 B1
8091210 Sasaki et al. Jan 2012 B1
8097846 Anguelouch et al. Jan 2012 B1
8104166 Zhang et al. Jan 2012 B1
8108986 Liu Feb 2012 B2
8116043 Leng et al. Feb 2012 B2
8116171 Lee Feb 2012 B1
8125732 Bai et al. Feb 2012 B2
8125856 Li et al. Feb 2012 B1
8134794 Wang Mar 2012 B1
8134802 Bai et al. Mar 2012 B2
8136224 Sun et al. Mar 2012 B1
8136225 Zhang et al. Mar 2012 B1
8136805 Lee Mar 2012 B1
8141235 Zhang Mar 2012 B1
8146236 Luo et al. Apr 2012 B1
8149536 Yang et al. Apr 2012 B1
8151441 Rudy et al. Apr 2012 B1
8159769 Batra et al. Apr 2012 B2
8163185 Sun et al. Apr 2012 B1
8164760 Willis Apr 2012 B2
8164855 Gibbons et al. Apr 2012 B1
8164864 Kaiser et al. Apr 2012 B2
8165709 Rudy Apr 2012 B1
8166631 Tran et al. May 2012 B1
8166632 Zhang et al. May 2012 B1
8169473 Yu et al. May 2012 B1
8171618 Wang et al. May 2012 B1
8179636 Bai et al. May 2012 B1
8191237 Luo et al. Jun 2012 B1
8194365 Leng et al. Jun 2012 B1
8194366 Li et al. Jun 2012 B1
8196285 Zhang et al. Jun 2012 B1
8200054 Li et al. Jun 2012 B1
8203800 Li et al. Jun 2012 B2
8208350 Hu et al. Jun 2012 B1
8220140 Wang et al. Jul 2012 B1
8222599 Chien Jul 2012 B1
8225488 Zhang et al. Jul 2012 B1
8227023 Liu et al. Jul 2012 B1
8228633 Tran et al. Jul 2012 B1
8231796 Li et al. Jul 2012 B1
8233248 Li et al. Jul 2012 B1
8248896 Yuan et al. Aug 2012 B1
8254060 Shi et al. Aug 2012 B1
8257597 Guan et al. Sep 2012 B1
8259410 Bai et al. Sep 2012 B1
8259539 Hu et al. Sep 2012 B1
8262918 Li et al. Sep 2012 B1
8262919 Luo et al. Sep 2012 B1
8264797 Emley Sep 2012 B2
8264798 Guan et al. Sep 2012 B1
8270126 Roy et al. Sep 2012 B1
8276258 Tran et al. Oct 2012 B1
8277669 Chen et al. Oct 2012 B1
8279719 Hu et al. Oct 2012 B1
8284517 Sun et al. Oct 2012 B1
8288204 Wang et al. Oct 2012 B1
8289821 Huber Oct 2012 B1
8291743 Shi et al. Oct 2012 B1
8307539 Rudy et al. Nov 2012 B1
8307540 Tran et al. Nov 2012 B1
8308921 Hiner et al. Nov 2012 B1
8310785 Zhang et al. Nov 2012 B1
8310901 Batra et al. Nov 2012 B1
8315019 Mao et al. Nov 2012 B1
8316527 Hong et al. Nov 2012 B2
8320076 Shen et al. Nov 2012 B1
8320077 Tang et al. Nov 2012 B1
8320078 Zeltser et al. Nov 2012 B1
8320219 Wolf et al. Nov 2012 B1
8320220 Yuan et al. Nov 2012 B1
8320722 Yuan et al. Nov 2012 B1
8322022 Yi et al. Dec 2012 B1
8322023 Zeng et al. Dec 2012 B1
8325569 Shi et al. Dec 2012 B1
8333008 Sin et al. Dec 2012 B1
8334093 Zhang et al. Dec 2012 B2
8336194 Yuan et al. Dec 2012 B2
8339737 Mino et al. Dec 2012 B2
8339738 Tran et al. Dec 2012 B1
8341826 Jiang et al. Jan 2013 B1
8343319 Li et al. Jan 2013 B1
8343364 Gao et al. Jan 2013 B1
8349195 Si et al. Jan 2013 B1
8351307 Wolf et al. Jan 2013 B1
8351308 Chou et al. Jan 2013 B2
8357244 Zhao et al. Jan 2013 B1
8373945 Luo et al. Feb 2013 B1
8375564 Luo et al. Feb 2013 B1
8375565 Hu et al. Feb 2013 B2
8379347 Guan et al. Feb 2013 B2
8381391 Park et al. Feb 2013 B2
8385157 Champion et al. Feb 2013 B1
8385158 Hu et al. Feb 2013 B1
8394280 Wan et al. Mar 2013 B1
8400731 Li et al. Mar 2013 B1
8404128 Zhang et al. Mar 2013 B1
8404129 Luo et al. Mar 2013 B1
8405930 Li et al. Mar 2013 B1
8409453 Jiang et al. Apr 2013 B1
8413317 Wan et al. Apr 2013 B1
8416540 Li et al. Apr 2013 B1
8419953 Su et al. Apr 2013 B1
8419954 Chen et al. Apr 2013 B1
8422176 Leng et al. Apr 2013 B1
8422342 Lee Apr 2013 B1
8422841 Shi et al. Apr 2013 B1
8424192 Yang et al. Apr 2013 B1
8441756 Sun et al. May 2013 B1
8443510 Shi et al. May 2013 B1
8444866 Guan et al. May 2013 B1
8449948 Medina et al. May 2013 B2
8451556 Wang et al. May 2013 B1
8451563 Zhang et al. May 2013 B1
8454846 Zhou et al. Jun 2013 B1
8455119 Jiang et al. Jun 2013 B1
8456961 Wang et al. Jun 2013 B1
8456963 Hu et al. Jun 2013 B1
8456964 Yuan et al. Jun 2013 B1
8456966 Shi et al. Jun 2013 B1
8456967 Mallary Jun 2013 B1
8458892 Si et al. Jun 2013 B2
8462592 Wolf et al. Jun 2013 B1
8468682 Zhang Jun 2013 B1
8468683 Mao et al. Jun 2013 B2
8472288 Wolf et al. Jun 2013 B1
8480911 Osugi et al. Jul 2013 B1
8486285 Zhou et al. Jul 2013 B2
8486286 Gao et al. Jul 2013 B1
8488272 Tran et al. Jul 2013 B1
8491801 Tanner et al. Jul 2013 B1
8491802 Gao et al. Jul 2013 B1
8493693 Zheng et al. Jul 2013 B1
8493695 Kaiser et al. Jul 2013 B1
8495813 Hu et al. Jul 2013 B1
8498084 Leng et al. Jul 2013 B1
8506828 Osugi et al. Aug 2013 B1
8514517 Batra et al. Aug 2013 B1
8518279 Wang et al. Aug 2013 B1
8518832 Yang et al. Aug 2013 B1
8520336 Liu et al. Aug 2013 B1
8520337 Liu et al. Aug 2013 B1
8524068 Medina et al. Sep 2013 B2
8526275 Yuan et al. Sep 2013 B1
8531801 Xiao et al. Sep 2013 B1
8532450 Wang et al. Sep 2013 B1
8533937 Wang et al. Sep 2013 B1
8537494 Pan et al. Sep 2013 B1
8537495 Luo et al. Sep 2013 B1
8537502 Park et al. Sep 2013 B1
8545999 Leng et al. Oct 2013 B1
8547659 Bai et al. Oct 2013 B1
8547660 Allen et al. Oct 2013 B2
8547667 Roy et al. Oct 2013 B1
8547730 Shen et al. Oct 2013 B1
8555486 Medina et al. Oct 2013 B1
8559141 Pakala et al. Oct 2013 B1
8563146 Zhang et al. Oct 2013 B1
8565049 Tanner et al. Oct 2013 B1
8570686 Hosomi et al. Oct 2013 B2
8576517 Tran et al. Nov 2013 B1
8578594 Jiang et al. Nov 2013 B2
8582238 Liu et al. Nov 2013 B1
8582241 Yu et al. Nov 2013 B1
8582253 Zheng et al. Nov 2013 B1
8588039 Shi et al. Nov 2013 B1
8593914 Wang et al. Nov 2013 B2
8597528 Roy et al. Dec 2013 B1
8599520 Liu et al. Dec 2013 B1
8599657 Lee Dec 2013 B1
8603593 Roy et al. Dec 2013 B1
8607438 Gao et al. Dec 2013 B1
8607439 Wang et al. Dec 2013 B1
8611035 Bajikar et al. Dec 2013 B1
8611054 Shang et al. Dec 2013 B1
8611055 Pakala et al. Dec 2013 B1
8614864 Hong et al. Dec 2013 B1
8619512 Yuan et al. Dec 2013 B1
8625233 Ji et al. Jan 2014 B1
8625941 Shi et al. Jan 2014 B1
8628672 Si et al. Jan 2014 B1
8630068 Mauri et al. Jan 2014 B1
8634280 Wang et al. Jan 2014 B1
8638529 Leng et al. Jan 2014 B1
8643980 Fowler et al. Feb 2014 B1
8649123 Zhang et al. Feb 2014 B1
8665561 Knutson et al. Mar 2014 B1
8670211 Sun et al. Mar 2014 B1
8670213 Zeng et al. Mar 2014 B1
8670214 Knutson et al. Mar 2014 B1
8670294 Shi et al. Mar 2014 B1
8670295 Hu et al. Mar 2014 B1
8675318 Ho et al. Mar 2014 B1
8675455 Krichevsky et al. Mar 2014 B1
8681594 Shi et al. Mar 2014 B1
8689430 Chen et al. Apr 2014 B1
8693141 Elliott et al. Apr 2014 B1
8703397 Zeng et al. Apr 2014 B1
8705205 Li et al. Apr 2014 B1
8711518 Zeng et al. Apr 2014 B1
8711528 Xiao et al. Apr 2014 B1
8717709 Shi et al. May 2014 B1
8720044 Tran et al. May 2014 B1
8721902 Wang et al. May 2014 B1
8724259 Liu et al. May 2014 B1
8749790 Tanner et al. Jun 2014 B1
8749920 Knutson et al. Jun 2014 B1
8753903 Tanner et al. Jun 2014 B1
8760807 Zhang et al. Jun 2014 B1
8760818 Diao et al. Jun 2014 B1
8760819 Liu et al. Jun 2014 B1
8760822 Li et al. Jun 2014 B1
8760823 Chen et al. Jun 2014 B1
8763235 Wang et al. Jul 2014 B1
8767347 Sasaki et al. Jul 2014 B1
8780498 Jiang et al. Jul 2014 B1
8780505 Xiao Jul 2014 B1
8786983 Liu et al. Jul 2014 B1
8790524 Luo et al. Jul 2014 B1
8790527 Luo et al. Jul 2014 B1
8792208 Liu et al. Jul 2014 B1
8792210 De La Fuente et al. Jul 2014 B2
8792312 Wang et al. Jul 2014 B1
8793866 Zhang et al. Aug 2014 B1
8797680 Luo et al. Aug 2014 B1
8797684 Tran et al. Aug 2014 B1
8797686 Bai et al. Aug 2014 B1
8797692 Guo et al. Aug 2014 B1
8813324 Emley et al. Aug 2014 B2
8824101 Edelman Sep 2014 B2
8828248 Mao et al. Sep 2014 B2
8873201 Benakli et al. Oct 2014 B2
8988824 Brinkman et al. Mar 2015 B1
9013830 Guan Apr 2015 B2
9042051 Zeng et al. May 2015 B2
9082423 Liu et al. Jul 2015 B1
9478236 Liu et al. Oct 2016 B1
20020024755 Kim et al. Feb 2002 A1
20020080523 Sato et al. Jun 2002 A1
20020170165 Plumer et al. Nov 2002 A1
20070188918 Im et al. Aug 2007 A1
20090310244 Shimazawa et al. Dec 2009 A1
20100265616 Ohtake et al. Oct 2010 A1
20100277832 Bai et al. Nov 2010 A1
20100290157 Zhang et al. Nov 2010 A1
20110086240 Xiang et al. Apr 2011 A1
20120111826 Chen et al. May 2012 A1
20120140358 Sasaki et al. Jun 2012 A1
20120216378 Emley et al. Aug 2012 A1
20120237878 Zeng et al. Sep 2012 A1
20120298621 Gao Nov 2012 A1
20130216702 Kaiser et al. Aug 2013 A1
20130216863 Li et al. Aug 2013 A1
20130257421 Shang et al. Oct 2013 A1
20140153134 Han et al. Jun 2014 A1
20140154529 Yang et al. Jun 2014 A1
20140175050 Zhang et al. Jun 2014 A1
20140326699 Hsiao et al. Nov 2014 A1
20140376124 Albrecht et al. Dec 2014 A1
20150380016 Sasaki et al. Dec 2015 A1
20160035374 Takagishi et al. Feb 2016 A1
20160284366 Yamaguchi et al. Sep 2016 A1
Non-Patent Literature Citations (2)
Entry
Non-Final Office Action on the U.S. Appl. No. 14/956,168 dated Jan. 6, 2017.
Notice of Allowance on U.S. Appl. No. 14/956,168 dated May 24, 2017.
Related Publications (1)
Number Date Country
20170372728 A1 Dec 2017 US
Divisions (1)
Number Date Country
Parent 14956168 Dec 2015 US
Child 15698958 US