The present invention pertains to electrographic printers and copiers utilizing developer comprising toner, carrier, and other components.
Electrographic printers and copiers utilizing developer comprising toner, carrier, and other components use a developer mixing apparatus and related processes for mixing the developer and toner used during the printing process. As is well known, the carrier can comprise permanently magnetized ferrite core particles, dispersed in a developer station with toner, whereupon the toner is attracted to and is carried by the ferrite core to an imaging roller for printing on a print medium. The gram weight of the carrier can be approximately 6-8% of the toner, which together comprises the developer. As part of this process, the carrier is intended to be reused and recirculated within the developer station. Certain conditions will cause the carrier to leave the developer station and deposit on the surface of the imaging member. Typically, there exists an electrically biased electrode 103 (the scavenger electrode), as shown in
There are conditions, however, that result in the release of the carrier from the imaging (photoconductor) member 102, but the trajectory of the carrier is such that it will overshoot the trailing edge of the electrode 103. This can result in carrier accumulating, shown as 204 in
The problem as explained above can be solved by the addition of a flap or door or some other device that covers the vertical slots. The force required to open the slot is provided by the magnetic coupling between the magnetic carrier on one side of the flap, and the developer roller magnet on the other side of the flap. A preferred embodiment of the present invention is realized in a printer comprising a developer station for holding a supply of carrier particles, a rotating member which accumulates carrier particles during its rotation; a scavenger for removing the accumulated particles from the rotating member during said rotation, the scavenger including a slot therethrough and through which the carrier particles travel to return to the developer station; and a movable flap covering an opening of the slot for accumulating the carrier particles at the flap until the flap is opened. A source of magnetic field urges the carrier particles through the slot. The carrier particles accumulate at the flap until reaching a volume sufficient to force open the movable flap and fall into the developer station due to a magnetic attraction between the magnetic field source and the accumulated carrier particles, which causes the carrier particles to eventually exert a sufficient force against the movable flap. The flap typically comprises a material having substantially no magnetic response, and could be a polyester film having a thickness of between about 0.0015 and about 0.005 inches. The magnitude of the magnetic field at the flap should be between about 500-700 gauss. The movable flap can be flexible and sufficiently deformable to open in response to the force against the movable flap. The movable flap could be rigid and rotatable to open in response to a sufficient force against the movable flap. The flap can be attached to the scavenger electrode with adhesive, adhesive tape, a nail, a screw, a rivet, or a hinge. Other known means and mechanisms could also be used. A spring or a mechanized arm could be used for closing the flap after it is opened.
Another preferred embodiment of the present invention comprises a printer having two volumes separated by a scavenger that has an opening therethrough communicating with the two volumes. A flap or door completely covers the opening and creates a seal between the two volumes. The flap or door should be made from a material having no magnetic response, be in an unloaded position when it is covering the opening, made from a polyester film of about 0.0015″ to about 0.005″ thickness, and disposed in a magnetic field, such that the magnetic field is normal to a surface of the flap or door. The magnetic field strength should be about 500 and about 700 Gauss at the surface of the flap or door. The flap or door can be attached to the scavenger by a hinge, wherein the flap or door rotates to open and close. When a sufficient amount of magnetic material is collected on the surface of the flap or door, the material creates a force that is greater than the force necessary to keep the flap or door completely covering the opening. This will open the flap or door after which the flap or door will return back to its original, unloaded, resting position after removal of the magnetic material from the surface of the flap or door.
These, and other, aspects and objects of the present invention will be better appreciated and understood when considered in conjunction with the following description and the accompanying drawings. It should be understood, however, that the following description, while indicating preferred embodiments of the present invention and numerous specific details thereof, is given by way of illustration and not of limitation. For example, the summary descriptions above are not meant to describe individual separate embodiments whose elements are not interchangeable. In fact, many of the elements described as related to a particular embodiment can be used together with, and possibly interchanged with, elements of other described embodiments. Many changes and modifications may be made within the scope of the present invention without departing from the spirit thereof, and the invention includes all such modifications. The figures below are intended to be drawn neither to any precise scale with respect to relative size, angular relationship, or relative position nor to any combinational relationship with respect to interchangeability, substitution, or representation of an actual implementation.
A preferred embodiment of the present invention provides return of carrier back into a printer's developer station by forming horizontal slots (separated by inter slot webs) through the vertical face of the scavenger electrode, as illustrated in
Slot (sidewall) height: range from 3.2 mm to 5.5 mm, or 36% to 61% of the vertical face height of the Scavenger Electrode (approx. 9 mm vertical wall height). The interior and exterior vertical faces of the slots can be referred to as sidewalls.
Slot Width: range of 20 mm-30 mm.
Total slot area is 20%-30% of the total area of the inside vertical face of the scavenger electrode. Carrier buildup on the outside vertical face of the scavenger electrode is minimized by reducing the projected area of the inter slot web 302 on the outside vertical face. Scavenger stiffness is increased by maximizing the projected area of the inter slot web's inside vertical face of the scavenger electrode, as will be explained.
Referring to
TIA=−37.391×FIELD2+123.91×FIELD+96.438 ,
where
TIA=Total Included Angle (in Degrees)
Field=Normal Component of Magnetic Field (in mT)
where TIA≦139 Deg
The total included angle 601 is measured rail to rail as shown in
In general, slots that use a trapezoidal geometry for the inter slot web can partially satisfy the requirements of returning carrier back into the developer station, minimizing carrier buildup on the outside vertical face of the scavenger electrode, and increasing overall stiffness of the scavenger as compared to an inter slot web having a constant thickness. The requirements for the trapezoidal geometry of the inter slot web are described as follows and are shown in the top view of the scavenger electrode depicted in
Another preferred embodiment of the inter slot web is to cut or form openings in a fashion that describes a cycloid (cusp at origin) such as illustrated in
The profile of the inter slot web is thinner than the equivalent trapezoidal inter slot web towards the outside vertical face of the scavenger electrode, which further discourages carrier buildup on the outside face of the scavenger electrode because the favorable cycloidal geometry presents less resistance to the carrier when it is drawn through the slots by magnetic force from the development roller. This can be seen by comparing
In an experimental laboratory construction, the following dimensions were found to provide improved scavenger performance. The ‘a’ dimension is of the apex of the inter slot web that faces the outside vertical edge of the scavenger electrode. The length of the ‘a’ dimension should be less than or equal to about 1.5 mm, but within a range of about 1-2 mm. The ‘b’ dimension should be about 49.2 mm, but within a range of about 47-52 mm; the ‘c’ dimension should be about 4.78 mm, but within a range of abut 3-6 mm; and the ‘d’ dimension should be about 50.8 mm, but within about 47-53 mm. Slot height can range from about 3 mm to about 6 mm (36% to 61%) of the vertical face of the scavenger electrode (approx. 9 mm vertical wall height). Slot width (dimension ‘e’) ranges from about 20-30 mm. Total slot area should be about 20%-30% of the total area of the vertical face of the scavenger. The total calculated moment of inertia about the specified axis of interest 801 for the inter slot should be about 58 mm̂4, as depicted in
In a two component development system, some loss of carrier is inevitable, and management of carrier loss turns out to be a very important part of the development station design. Specifically, the need to effectively scavenge escaping carrier and return it back to the development station is crucial to the overall life of the developer. It has been shown that as the speed of the electrostatographic process is increased, the trajectory of the carrier is such that it landed farther downstream from the developer station resulting in increased build up, as depicted in
It is essential to place the scavenger electrode at the point where the influence of the developer station magnet is such that it could no longer urge the carrier back into the developer station. As the speed of the process continues to increase, the trajectory of the carrier is such that a large portion of the scavenged carrier lands far past the trail edge of the scavenger electrode. This results in carrier accumulating on the scavenger and associated mounting surfaces, and results in increased maintenance and eventual degradation in image quality. The mass of escaping carrier is such that a simple strategy of placing a tray downstream of the developer station to catch and collect the carrier is unmanageable, since it is not guaranteed that escaping carrier caught in the external tray would be returned to the developer station. A practical solution requires that the majority of this escaping carrier be returned back to the developer station.
Initial attempts at a solution involved drilling holes and cutting slots into the vertical face of the scavenger electrode. This resulted in a vast majority of the carrier returning back to the developer station. This design was not completely effective, because the inter slot web areas accumulated carrier to the point where it would make contact with the imaging member surface, causing an image defect. With reference to
With reference to
With reference to
A solution to this potential problem is solved in a preferred embodiment of the present invention illustrated in
Preferred embodiments of the flap, or door, should completely cover an opening or openings of variable geometry in the scavenger electrode, where the door or flap creates a seal between two different volumes, an inside volume (shown on the left of the scavenger electrode in the Figures herein) and an outside volume (shown on the right of the scavenger electrode in the Figures herein). The door or flap is preferably made from a material with no magnetic response or interaction and of sufficient rigidity to seal the opening when it is not flexed open. A preferred material of the door or flap is a polyester film of about 0.0015″ to 0.005″ thickness. The flap in a flexible flap embodiment should have a sufficiently low Modulus of Elasticity that it is easily deformed by low loads and is loaded well below the elastic limit for that material. The magnetic field being imposed on, or through, the flap or door should be normal to the flap or door surface and have a magnitude between about 500-700 Gauss at the flap. The flap or door should be allowed to bend, flex, or rotate (e.g. rigid embodiment) in a direction toward the source of the imposed magnetic field, revealing the opening covered by the flap. It can be attached by use of a mechanical hinge, or adhesive, or adhesive tape, or small nails or screws, or rivets, or other similar means so long as the flap acts as a seal to prevent toner dust from entering through the slot.
The flap or door should be such that when a sufficient amount of magnetic material is collected on the face of the flap or door that faces the outside volume, it creates a force between the magnetic material collected and the imposed magnetic field that is greater that the force necessary to keep the flap or door in contact with the inside face of the scavenger electrode. The flap or door, as described above, should return back to its original position after removal of the magnetic carrier from the flap or door. The flap or door should provide the motive closing force through deformation of the flap or door itself, or by its own weight, or by a mechanized device providing the closing force such as a motorized arm (not shown in the Figures), or by an external spring or some other such device that stores energy. If a mechanized (motorized) door, which can be rigid, is used then it can be timed and also used to open and close the flap or door at preselected intervals during printer use so that any accumulated carrier can be drawn, or attracted, through the slots.
It will be understood that, although specific embodiments of the invention have been described herein for purposes of illustration and explained in detail with particular reference to certain preferred embodiments thereof, numerous modifications and all sorts of variations may be made and can be effected within the spirit of the invention and without departing from the scope of the invention. Accordingly, the scope of protection of this invention is limited only by the following claims and their equivalents.
Reference is made to commonly assigned, co-pending U.S. Patent Applications: Ser. No. ______, by Brown et al., (Docket 96105) filed of even date herewith entitled, “Method Of Implementing A Magnetically Actuated Flap Seal”; Ser. No. 12/827,261 by Brown et al. (Docket 96396) filed Jun. 30, 2010 entitled “Printer Having An Alternate Scavenger Geometry”; Ser. No. 12/827,305 by Brown et al. (Docket 96397) filed Jun. 30, 2010 entitled “Fabrication Of An Alternate Scavenger Geometry”; and Ser. No. 12/859,549 by Brown et al. (Docket 96065) filed Aug. 19, 2010 entitled “An Alternate Scavenger Geometry that Promotes Carrier Return Back Into the Development Station”, the disclosures of which are incorporated herein by reference in their entireties.