MAGNETICALLY ATTACHABLE BATTERY RECHARGING

Information

  • Patent Application
  • 20080048609
  • Publication Number
    20080048609
  • Date Filed
    August 25, 2006
    18 years ago
  • Date Published
    February 28, 2008
    16 years ago
Abstract
A charging device for transferring electrical charge between a variety of sources and clients comprising charging circuitry and electrical leads with magnetically attaching connectors is disclosed. The magnetically attachable leads are used to connect to external batteries or other sources or clients. The charging circuitry may be a buck, boost, or boost/buck switching ASIC or may be a micro-controller.
Description

BRIEF DESCRIPTION OF THE DRAWINGS

The features and advantages of the present invention will be discussed in detail in the following description, and in conjunction with the accompanying drawings:



FIG. 1 is a block diagram illustrating the disclosed method of transferring electrical charge from a source to an external storage device.



FIG. 2 is a block diagram illustrating the disclosed method of transferring electrical charge from a source to an internal storage device.



FIG. 3 is a perspective view of an electronic device transferring charge to or from an external battery.



FIG. 4 is a perspective view of an electronic device transferring charge from an external battery to an internal battery or batteries.



FIG. 5 is a perspective view of a flashlight transferring charge from an external battery to internal battery or batteries.



FIG. 6 is a perspective view of a flashlight transferring charge from a photo-voltaic solar panel to internal battery or batteries.



FIG. 7 is a perspective view of a device transferring charge from a photo-voltaic solar panel to an external rechargeable battery.





DETAILED DESCRIPTION OF THE INVENTION

A device for transferring charge from a source to a client storage device 120 (hereinafter referred to as the “client”) is disclosed. The transfer circuitry is such that the source 110 and client 120 may be of different voltages or currents. Charge may be transferred from a higher voltage source 110 to a lower voltage client 120, from a lower voltage source 110 to a higher voltage client 120, or between a source 110 and client 120 of the same voltage. The source 110 may be an AC or a DC current. A preferred embodiment utilizes a custom boost, buck, or boost/buck switching Application Specific Integrated Circuit (“ASIC”) or a micro-controller with associated circuitry to transfer charges at differing voltages.


In a preferred embodiment, charge is transferred to or from external battery 111 via magnetic leads 101 comprising wires 103 with conducting magnetically attaching ends 102. Alternatively, one or more wires 103 may be omitted with the magnetic connection point directly attached to the device 130. In another alternative embodiment, wires 101 may have magnetically attaching ends 102 at both ends of wire 101 rather than being fixedly attached to the device 130 at one end.


The magnetic leads 101 may attach to a variety of batteries, including but not limited to standard AAA, AA, C, or D batteries and lithium or NiMH-based cells, as the vast majority of such batteries are encased with magnetic iron-based materials. Preferably, the circuitry is able to detect the proper voltage for the source 110 and the client 120. In less preferred embodiments, the user may indicate the type of source 110, client 120, or both. Alternatively, some embodiments may be designed for a specific source 110, client 120, or both. Once the source 110 and client 120 are detected or identified, the boost, buck, or boost/buck circuitry is used to step up or step down the voltage from the source 110 to match the client 120.


The magnetic leads 101 may be polarized such that each must be properly aligned with the positive or negative ends of the battery. Alternatively, the configuration of the internal circuitry is such that the device will function properly with either magnetic lead 101 attached to either end of the battery. If the magnetic leads 101 are polarized, they will preferably be marked in some manner, such as with colors or with symbols, to indicate polarity. Such marking may be on the magnetic connectors 102 or at some other point on the wire 103 or device.


The strong magnetic connection between the lead and the source provides other advantages. This connection allows for good current flow because of its low parasitic resistance. The tendency of the magnetic connector to rub on the source connection point also tends to keep the connection clean and maintain a relatively low resistance connection allowing more efficient charge transfer.


These magnets are preferentially but not necessarily plated with a solderable material like gold. The wires could be connected to the magnets with an electrically conductive epoxy, solder or the like. Alternately they may be soldered or crimped to a connector that is plated and that is designed to hold said magnets.


One preferred embodiment would utilize a micro-controller or ASIC that runs at a voltage between 3V to 5V DC. Batteries for portable devices are generally between 1.5V to 3V. This allows for a narrow purpose lower cost charging circuit. The charger 100 would only pull a charge from battery(s) 111 that are lower in voltage than the voltage the charger 100 is running at internally. This enables a simple inductive boost circuit to be employed where the input voltage is always inductively boosted to a higher charge voltage to be used in charging the internal battery 120. Inductive boosting can be accomplished by switching with a transistor a coil connected to the input source to ground and releasing it so that the higher voltage is created and captured on a capacitor through a series diode which is then used for charging the internal battery. Reverse polarity protection is provided by diode. Both ASICs and micro-controllers are capable of the voltage measurement, switching control, and regulation needed to convert input voltages to the needed charge voltage for this kind of switch boost topology.


Another advantage is that the control circuitry can be made to charge slowly which results in both less expensive (lower power rated) electrical parts and more efficient use of the source battery. Alkaline cells for instance have higher overall capacity if they are used at low current draw.


Another preferred embodiment would allow only for voltages that are higher than the running voltage of the charge circuit. In this case the input voltage is chopped and averaged to create a lower voltage. Chopping, or “bucking” as it is often known, can be achieved cheaply by switching the input voltage on and off through a series inductance in order to control the charging current to the system batteries.


In yet another embodiment where an even wider range of input voltage is desired that can be both higher or lower than the desired charge voltage a more sophisticated and somewhat more expensive approach can be taken where the input voltage is boosted if it is lower than the desired charge voltage or chopped or bucked if it is higher. Several Buck/Boost Converter ICs exist on the market that can accomplish this task. However it is likely that the device would already have intelligent control and therefore a micro-controller would already be embedded in the design. A fairly sophisticated buck/boost switching regulator can be realized in the same control design with the addition of the appropriate switching elements and coils. As these magnetic connections can be freely connected in either forward or reverse polarity to the input source it is useful to build in some form of reverse polarity protection either with circuit elements such as a diode block or bridge or FET block or bridge. The block method simply allows power to flow in only the forward direction and blocks power from flowing in the reverse direction. A bridge allows the power to be directed in the proper forward direction regardless of the polarity the battery is connected. Either method protects the charging circuit, but the bridge allows the user to connect the magnets in either polarity and the device can still charge properly.


Referring to FIGS. 1 and 2 illustrate in block diagram form two basic embodiments of the disclosed recharge method. FIG. 1 illustrates transferring the charge from a source 110 to the disclosed charger 100. The charge is transferred from the charger 100 to the client storage device 120. These steps may take place simultaneously with no charge stored in the charger 100 or the charge may be transferred into some temporary storage device within the charger 100 for later transfer to the client.



FIG. 2 illustrates in block diagram form another basic embodiment where the client 120 is an internal component of the device 100, which may be removable such as with a rechargeable battery 111. The device may be a charger 100 or the charger 100 may be one sub-function of a device with a different primary purpose, such as a cellular phone that recharges its internal battery.



FIG. 3 shows a generic portable electronic device 130. It may represent a dedicated charging device with one embodiment of the disclosed magnetic leads 101. The device 130 may draw charge from any external battery 111 and subsequently using it to charge another external battery using the same set of leads. It may also be seen as representing a generic portable electronic device powered by an internal rechargeable battery whose primary function(s) is other than charging the battery. The disclosed leads 101 are then used to recharge the internal battery from an external battery 111.



FIGS. 4, 5, and 6 illustrate a few examples of the many possible embodiments of the disclosed invention. FIG. 4 shows one electronic device 131 containing an embodiment of the disclosed apparatus including an internal charging circuit with magnetic leads used to recharge an internal rechargeable battery. FIGS. 5 and 6 illustrate a flashlight 132 with embodiments of the disclosed internal circuitry and magnetic leads. These figures illustrate the use of the disclosed system to recharge the flashlight's internal power supply from an external battery and from a photo-voltaic cell, respectively.



FIG. 7 illustrates another embodiment of the disclosed system. It shows a portable charge transfer device 133 being used to transfer power from a photo-voltaic cell 112 to an external battery 111 using two sets of magnetic leads 101. Devices with additional sets of leads for drawing from multiple sources or supplying to multiple clients may also be utilized and are within the scope of this patent.


It will be appreciated that, although specific embodiments of the invention have been described herein for purposes of illustration, various modifications may be made within the spirit and scope of the invention. An equivalent structure for those shown herein falls within the invention and the claims.

Claims
  • 1. A device comprising: one or more electrical leads;magnetic connectors at end of said electrical leads; andan electrical charge storage device.
  • 2. The device of claim 1 wherein said electrical charge storage device is a battery.
  • 3. The device of claim 1 wherein said electrical charge storage device is a capacitor.
  • 4. The device of claim 1 further comprising a charging circuit.
  • 5. The device of claim 4 wherein said charging circuit is a boost circuit.
  • 6. The device of claim 4 wherein said charging circuit is a buck circuit.
  • 7. The device of claim 4 wherein said charging circuit is a boost/buck circuit.
  • 8. The device of claim 1 further comprising a micro-controller.
  • 9. The device of claim 1 further comprising a voltage detection circuit.
  • 10. A method of transferring electrical charge comprising: attaching one or more electrical leads with magnetic connectors at end of said electrical leads to a source;drawing charge from said source through a charging circuit; andsending a charge from said charging circuit to an electrical storage device.
  • 11. The method of claim 10 wherein said source is a battery.
  • 12. The method of claim 10 wherein said source is a photo-voltaic cell.
  • 13. The method of claim 10 wherein said source is an AC current.
  • 14. The method of claim 10 wherein said source is a DC current.
  • 15. The method of claim 10 wherein said charging circuit is a boost circuit.
  • 16. The method of claim 10 wherein said charging circuit is a buck circuit.
  • 17. The method of claim 10 wherein said charging circuit is a boost/buck circuit.
  • 18. The method of claim 10 wherein said electrical charge storage device is a battery.
  • 19. The method of claim 10 wherein said electrical charge storage device is a capacitor.